Callback Simplification

The current BEA proposal for simplifying callbacks can be summarized as the following 3 items:

1. Eliminating custom callback objects.

2. All callbacks are equally “conversational”.
3. Combining ConversationID and CallbackID.
Eliminating callback objects is explored elsewhere. This writeup will assume that simplification and elaborate on points 2 and 3.

Adopting both (2) and (3) looks like the following:

All references that have callback interfaces (i.e. the interface uses a bidirectional interface), irrespective of whether the outbound interface is “conversational”, must use a binding that can pass a conversation ID out-of-band with every call. Service provider code that uses callbacks must send the callback using either an injected proxy for the callback, or a callback proxy obtained from the RequestContext. The infrastructure must work with the bindings to make sure that the conversation ID that was passed in the outbound direction is passed back with any callback (also out-of-band).

In this respect, all bidirectional interfaces work the way that we have previously described for “conversational callbacks”.
However, if the bidirectional interface has not been marked as conversational, then the infrastructure will not use the same conversational ID for any two consecutive outbound calls. In this way, a non-conversational bidirectional interface can be thought of as a conversational bi-directional interface where a new conversation is started with each outbound call. When a client is called for a callback, the client can get the conversation ID from RequestContext.getConversation().
The client can also set the conversation ID before making each call on a reference with a non-conversational interface, but must end the conversation before resetting the conversation ID on a reference with a conversational interface.

For conversational interfaces, on the service provider, the callback proxy object is semantically equivalent object throughout the conversation – there is no request-specific information in the callback proxy.
API Simplification
If we get rid of CallbackID’s as a separate concept from ConversationID’s, and we don’t have ServiceReference.setCallbackObject(), then there is little value left for the ServiceReference and CallableReference interfaces. The operations associated with conversations can all be in a conversation object, and the conversation object can be retrieved for a proxy without needing a ServiceReference or CallableReference.
We may be able to get the entire SCA API down to the following (the numbered lines are discussed below):
public interface ComponentContext {

 URI getURI();
 B getProperty(Class type, String propertyName);
 RequestContext getRequestContext();

(1) B createServiceProxy(Class businessInterface,

 String referenceName);

(2)
 Conversation getConversation(Object proxy);

}

public interface RequestContext {

 String getService();

 Subject getSecuritySubject();

(3) B getCallbackProxy(Class businessInterface,

 String referenceName);

(4) Conversation getConversation();

}

public interface Conversation {

 Object getConversationID();

 void setConversationID();

 void end();

}

The above API makes the following changes to the current Java API:
(1) The first change is the smallest. ComponentContext.getService() is changed to createServiceProxy, since it returns a new proxy with each call. Each proxy is potentially associated with a different conversation.
(2) Instead of getServiceReference(refName), we have getConversation(proxy). The expectation is that the only thing that you might like to do with a proxy other than call its business methods is to access the methods associated with the conversation for that proxy. These methods can be made available by getting the Conversation object that is associated with the proxy, without having to have a ServiceReference object. The component context can give you the conversation for the proxy.

(3) Instead of the RequestContext.getServiceReference returning a CallableReference object for the callback, and then using CallableReference.getService() to get at the callback proxy, just directly get the CallbackProxy from the serviceReference.

(4) The Conversation for the request (and the callback) is then accessed through RequestContext.getCallbackConversation().
With these changes, the number of interfaces that the user has to understand drops from 5 to 3, and the number of different combinations of the various contexts and IDs that developers have to understand drops dramatically.
Additional Potential API Simplifications

As long as we are simplifying, the following are additional simplifications that we may want to consider, although these are not directly associated with callabacks or conversations:

1. Remove RequestContext.getServiceName()
Ratonale

This is only useful in case where a component implementation implements two service interfaces with the same operation and it needs to know which service was invoked. This is an edge case.

Solution
Use two different component implementations or rename one of the operations.

2. Remove ComponentContext.getProperty(Class type, String propertyName);
Rationale

This serves no practical purpose since a component can have its properties injected.

--

The resulting Java API will consist of the existing annotations and three classes:

public interface ComponentContext {

 URI getURI();

 RequestContext getRequestContext();

 B createServiceProxy(Class businessInterface,

 String referenceName);

 Conversation getConversation(Object proxy);

}

public interface RequestContext {

 Subject getSecuritySubject();

 B getCallbackProxy(Class businessInterface,

 String referenceName);

 Conversation getConversation();

}

public interface Conversation {

 Object getConversationID();

 void setConversationID();

 void end();

}

--

3. Allow @Callback and @ComponentName with constructor injection

Rationale
It doesn’t decrease the number of methods, but since we allow references and properties to be injected in constructors; we should not force the use of setters for these either.

