SCA-J TC Meeting July 15, 2008

Raw chat from the chat room

Tuesday July 15

9.00 - 9.15 Welcome

Roll call

Appointment of scribe

Agenda bashing

Approval of minutes of 7/10 TC call

9.15 - 10.30 Accepting new issues

Issues discussion

JAVA-25 Callback Simplification

10.30 - 10.50 Break

10.50 - 12.30 Issues discussion

JAVA-25 Callback Simplification (contd)

JAVA-2 Determining the data binding to use (e.g. JAXB or SDO)

JAVA-37 Injection on private fields - or not

12.30 - 1.30 Lunch

1.30 - 3.20 Plan for delivering a CD for JavaCAA

Issues discussion: Issues with proposed resolutions

JAVA-35 The ServiceReference interface should extend Serializable

JAVA-36 RequestContext.getServiceReference description is unclear

JAVA-10 State sharing between ServiceReference and type-safereference

JAVA-17 A hole in the algorithm of introspecting property/referencefrom an unannotated impl class

JAVA-22 When is a RequestContext available?

JAVA-44 Runtime behaviour not specified for incorrect @Init/@Destroysignature

3.20 - 3.40 Break

3.40 - 5.30 Issues discussion

JAVA-46 equals() method on ServiceReference and CallableReference

JAVA-1 Accessing SCA Service from non-SCA component code

JAVA-6 @AllowsPassByReference requires more detailed description

5.30 Adjourn
Bryan Aupperle: please dial-in when you get a chance
Mark Combellack2 morphed into Mark Combellack
anonymous1 morphed into Sanjay
anonymous morphed into Vladimir Savchenko
anonymous morphed into Pradeep
Simon Nash: ---

Rotating scribe list:

Peter Walker Sun Microsystems (1)

Roberto Chinnici Sun Microsystems (2)

Mike Edwards IBM (2)

Ashok Malhotra Oracle Corporation (2)

Sanjay Patil SAP AG (2)

Pradeep Simha TIBCO Software Inc. (2)

Peter Peshev SAP AG (2)

Ron Barack SAP AG (3)

Martin Chapman Oracle Corporation (2)

Michael Beisiegel IBM (3)

Jim Marino Individual (3)

Bryan Aupperle IBM (2)

Mark Combellack Avaya, Inc. (2)

Vamsavardhana Chillakuru IBM (1)

David Booz IBM (4)

Anish Karmarkar Oracle Corporation (4)

Sanjay: scribe: Sanjay
anonymous morphed into anish
Sanjay: topic: Agenda bashing
Sanjay: Issue JAVA-2 deferred until tomorrow since Plamen can not be here today.
anonymous morphed into anonymous englishman
anonymous englishman morphed into Martin C
Sanjay: Agenda approved.
Sanjay: topic: Approval of minutes of 7/10 TC call
Simon Nash: http://www.oasis-open.org/apps/org/workgroup/sca-j/download.php/28864/SCA%20Java%20minutes%202008-07-10.doc
Sanjay: No objections. Minutes of 7/10 TC call approved.
Sanjay: topic: Accepting new issues
Sanjay: http://lists.oasis-open.org/archives/sca-j/200807/msg00037.html
Sanjay: NEW ISSUE: More examples on <interface.wsdl> mapping to Java
Sanjay: MikeE observes that adding examples may be a wise move but wonders whether specifying normatively wsdl-->Java mapping is a good idea.
Sanjay: MartinC questions why we should standardize wsdl-->Java mapping given that there are many alterantives
Sanjay: Vladimir: Staring with wsdl interface types (vs. Java interface types) is a common scenario
Sanjay: ... not standardizing wsdl-->Java mapping may lead to non-portable components
Sanjay: motion to open the issue - m:Vladimir, s:MikeE, carried unan.
Sanjay: NEW ISSUE: Define an API to call References whose SEI is not know at Design time

http://lists.oasis-open.org/archives/sca-j/200807/msg00036.html
Sanjay: SimonN: Why is it required today to pass SEI class?
Sanjay: MikeE: Decision was made to avoid new SCA specific API for dynamic calls and instead just use Java introspection.
Sanjay: VladimirS: depending upon introspection requires class generation
Sanjay: MikeE: the spec allows the desired functionality but is grossly underspecified.
Sanjay: ... Dynamic API (like DII) was considered heavy weight and rejected
Sanjay: SimonN: at least some clarification of the spec seems necessary
Sanjay: ACTION: MikE to raise an issue to clarify the meaning of section 7.1
Sanjay: SimonN: there was clear consensus in the past to not define SCA specific API for dynamic API
Sanjay: motion to open the new issue - m:Vladimir, s:MikeE, MikeE objects to rejecting the issue unanimously.
Sanjay: yes: 1, no: 5 - motion fails
Sanjay: Issue rejected
Sanjay: topic: Issues discussion

JAVA-25 Callback Simplification
Simon Nash: http://www.oasis-open.org/apps/org/workgroup/sca-j/download.php/27733/JAVA-25-Proposal-2.doc
Sanjay: Motion to exclude the topic of conversations from the discussion until the non-convesational cases are fully addressed. m:Simon, s:Martin
Sanjay: carried unan.
Mark Combellack: Dialling back in now
Ashok: Starting the afternoon session
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-37
Ashok: ISSUE 37 - injection on private fields
Ashok: MikeE: More general than private fields
Ashok: Simon: Sentiment seems to be 'yes'. Who would like to take an action to create wording to solve this issue.
Ashok: MikeE: We could close and say editors will add appropriate wording
Ashok: MarkC: Anything that was not 'final'?
Ashok: Motion: MikeE resolve 37 by permitting injection onto any java visbility
Ashok: Any visibility of constructors, fields or setter where allowed by Java
Ashok: MikeE moves, Mark C seconds
Ashok: Accepted unanimously. Issue 37 resolved!
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-35
Ashok: Simon: skipping CD discussion
Ashok: Issue 35
Ashok: MarkC: motions that we add 'serializable' to service reference and callable reference
Ashok: JimM: Do we need this?
Ashok: Simon: How do we deserialize?
Ashok: MarkC: I can do this in Tuscany
Ashok: deserialize within scope of SCA runtime
Ashok: Simon: Need to be able to find the runtime
Ashok: MikeE: Its deserialized in the context of the component you are in
Ashok: Martin: Why are we not using futures?
Ashok: MarkC: Moves to make callable reference extends serializable
Ashok: to resolce issue 35
Ashok: Seconded by Mike E
Ashok: Approved unanimously! Issue 35 resolved!
Ashok: ISSUE 36
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-36
Simon Nash: When invoked during the execution of a service operation, this API MUST

return a CallableReference that represents the service. When invoked

during the execution of a callback operation, this API MUST return a

CallableReference that represents the callback.
Simon Nash: TARGET: Java Common Annotations and APIs (draft 2008022
DESCRIPTION: The textual description of the

RequestContext.getServiceReference() could be improved. It is not clear

why this API is different from RequestContext.getCallbackReference().

PROPOSAL:

Replace lines 731-733 with the following:

When invoked during the execution of a service operation, this API MUST

return a CallableReference that represents the service. When invoked

during the execution of a callback operation, this API MUST return a

CallableReference that represents the callback.
Ashok: Simon: Are these words an improvement?
Ashok: MarkC: disagrees
Bryan Aupperle: I'm dropping off now
Mark Combellack: Slightly tweaked wording. What about:

When invoked during the execution of a Service Operation, this method MUST return a CallableReference that represents the Service interface that was invoked.

When invoked during the execution of a Callback Operation, this method MUST return a CallableReference that represents the Callback interface that was invoked.
anonymous1 morphed into Vladimir
Mark Combellack: Revised wording - version 2:
Mark Combellack: When invoked during the execution of a service operation, this method MUST return a CallableReference that represents the service that was invoked.

When invoked during the execution of a callback operation, this method MUST return a CallableReference that represents the callback that was invoked.
Ashok: MarkC: Motions to resolve issue 36 with above wording
Ashok: MikeE seconds
Ashok: Approved unanimously. Issue 36 is resolved.
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-10
Ashok: ISSUE 10
Ashok: Simon: perhaps defer this as it depends on other stuff we still need to discuss
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-22
Ashok: Issue deferred
Ashok: Issue 22
Ashok: How does a request context relate to a request
Ashok: MarkC: describes a fifth usecase on the board
Ashok: Simon: You don't like my words!
Simon Nash: ...MUST return non-null when invoked during the execution of a service operation
Simon Nash: ...SHOULD return null when not invoked during the execution of a service operation
Simon Nash: ...SHOULD return null when invoked not during the execution of a service operation
anonymous1 morphed into anish
Simon Nash: ...MUST return non-null when invoked during the execution of a service operation on the same thread that the SCA runtime provided, before return back to the SCA runtime
Simon Nash: ...MUST return non-null when invoked during the execution of a service operation or callback operation, on the same thread that the SCA runtime provided, before returning back to the SCA runtime
Simon Nash: ...MUST return non-null when invoked during the execution of a service operation or callback operation, on the same thread that the SCA runtime provided
Ashok: MikeE: Are we distinguishing between SCA methods and non-SCA methods?
Simon Nash: Returns the context for the current SCA service request, or null if there is no current request or if the context is unavailable. This method MUST return non-null when invoked during the execution of a service operation or callback operation, on the same thread that the SCA runtime provided, and MUST return null in all otehr cases.
Ashok: s/otehr/other/
Simon Nash: Returns the context for the current SCA service request, or null if there is no current request or if the context is unavailable. This method MUST return non-null when invoked during the execution of a Java business method for a service operation or callback operation, on the same thread that the SCA runtime provided, and MUST return null in all other cases.
Ashok: Simon moves to resolve issue 22 by adding above words to description
Ashok: Second: anish
Ashok: Approved w/o objection. Issue 22 is resolved.
Ashok: issue 44:
anish test
Simon Nash: http://www.osoa.org/jira/browse/JAVA-44
Vladimir: this is from JSR 250
Vladimir: The PostConstruct annotation is used on a method that needs to be executed after dependency injection is done to perform any initialization. This method MUST be invoked before the class is put into service. This annotation MUST be supported on all classes that support dependency injection. The method annotated with PostConstruct MUST be invoked even if the class does not request any resources to be injected. Only one method can be annotated with this annotation. The method on which the PostConstruct annotation is applied MUST fulfill all of the following criteria:

- The method MUST NOT have any parameters except in the case of EJB interceptors in which case it takes an InvocationContext object as defined by the EJB specification.

- The return type of the method MUST be void.

- The method MUST NOT throw a checked exception.

- The method on which PostConstruct is applied MAY be public, protected, package private or private.

TABLE 2-5

Element

Description

Default

value

Container for defining multiple resources.

2-16 Common Annotations for the JavaTM Platform

- The method MUST NOT be static except for the application client.

- The method MAY be final or non-final, except in the case of EJBs where it MUST be non-final.

- If the method throws an unchecked exception the class MUST NOT be put into service. In the case of EJBs the method annotated with PostConstruct can handle exceptions and cleanup before the bean instance is discarded.
Simon Nash: wireless test
Ashok: MarkC: I hear very little disagreement
Mark Combellack: http://www.osoa.org/jira/browse/JAVA-44
Simon Nash: Replace the following paragraph in section 8.10 of the 2/28 JavaCAA spec draft:

1116 The @Init annotation type is used to annotate a Java class method that is called when the scope

1117 defined for the local service implemented by the class starts. The method must have a void return

1118 value and no arguments. The annotated method must be public. The annotated method is called

1119 after all property and reference injection is complete.

by the following text:

The @Init annotation is used to denote a Java class method that is called when the scope defined for the

local service implemented by the class starts. The method MUST have a void return value and no arguments.

The annotated method MUST be public.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. A method annotated with @Init that does not match these

criteria MUST NOT be called by the SCA runtime.
Ashok: Simon: We need to go further than ...
Ashok: the above wording
Simon Nash: The @Init annotation is used to denote a Java class method that is called when the scope defined for the

local service implemented by the class starts. The method MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If there is a method annotated with @Init that does not match these

criteria, the SCA runtime MUST NOT call the @Init method and MUST not call the business method that causeded by the SCA runtime.
Simon Nash: The @Init annotation is used to denote a Java class method that is called when the scope defined for the

local service implemented by the class starts. The method MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If there is a method annotated with @Init that does not match these

criteria, the SCA runtime MUST NOT call the @Init method and MUST not call any business method of the component.
Simon Nash: The @Init annotation is used to denote a Java class method that is called when the scope defined for the

local service implemented by the class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If there is a method annotated with @Init that does not match these

criteria, the SCA runtime MUST NOT instantiate the component implementation.
Simon Nash: The @Init annotation is used to denote a Java class method that is called when the scope defined for the

implementation class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If there is a method annotated with @Init that does not match these

criteria, the SCA runtime MUST NOT instantiate the implementation class.
Simon Nash: The @Init annotation is used to denote a single Java class method that is called when the scope defined for the

implementation class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If the implementation class does not match these

criteria, the SCA runtime MUST NOT instantiate the implementation class.
Simon Nash: The @Init annotation is used to denote a single Java class method that is called when the scope defined for the

implementation class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If the implementation class contains an @Init annotation that does not match these

criteria, the SCA runtime MUST NOT instantiate the implementation class.
Simon Nash: The @Init annotation is used to denote a single Java class method that is called when the scope defined for the

implementation class starts. The method MAY have any access modifier and MUST have a void return value and no arguments.

If there is a method that matches these criteria, the SCA runtime MUST call the annotated method after all

property and reference injection is complete. If the implementation class has a method with an @Init annotation that does not match these

criteria, the SCA runtime MUST NOT instantiate the implementation class.
Simon Nash: motion: resolve issue 44 with above text for @Init, and equivalent text for @Destroy
Ashok: Second: Anish
Ashok: Approved unanimously. Issue 44 resolved!
Ashok: Issue 46 - equals on services and references
Ashok: why is equals (same object) not good enough?
Ashok: May serialize and deserialize
Ashok: Simon: equal is no observable difference
Mark Combellack: Two ServiceRefences are considered to be eq
Ashok: ACTION: MarkC to go away and think about this and come up with a new proposal.
Ashok: ISSUE 30 and 21
Ashok: "Process" scope and Clarify Request Scope lifetime
Ashok: Meeting recessed
