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1 Introduction

This specification extends the SCA Assembly Model [1] by defining how a Java class provides an implementation of an SCA component (including its various attributes such as services, references, and properties) and how that class is used in SCA as a component implementation type. 

This specification requires all the  annotations and APIs as defined by  the SCA Java Common Annotations and APIs specification [2]. All annotations and APIs referenced in this document are defined in the former unless otherwise specified. Moreover, the semantics defined in the Common Annotations and APIs specification are normative.

In addition, it details the use of metadata and the Java API defined in [2] in the context of a Java class used as a component implementation type

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

TBD
TBD


[1] SCA Assembly Specification

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf

[2] SCA Java Common Annotations and APIs

http://www.osoa.org/download/attachments/35/SCA_JavaCommonAnnotationsAndAPIs_V100.pdf

1.3 Non-Normative References

TBD
TBD
2 Service

A component implementation based on a Java class may provide one or more services. 

The services provided by a Java-based implementation may have an interface defined in one of the following ways:

· A Java interface

· A Java class 

· A Java interface generated from a Web Services Description Language [3] (WSDL) portType. 

Java implementation classes must implement all the operations defined by the service interface. If the service interface is defined by a Java interface, the Java-based  component can either implement that Java interface, or implement all the operations of the interface.

A service whose interface is defined by a Java class (as opposed to a Java interface) is not remotable.  Java interfaces generated from WSDL portTypes are remotable, see the WSDL 2 Java and Java 2 WSDL section of the SCA Java Common Annotations and API Specification for details.

A Java implementation type may specify the services it provides explicitly through the use of @Service. In certain cases as defined below, the use of @Service is not required and the services a Java implementation type offers may be inferred from the implementation class itself. 

2.1 Use of @Service

Service interfaces may be specified as a Java interface. A Java class, which is a component implementation, may offer a service by implementing a Java interface specifying the service contract. As a Java class may implement multiple interfaces, some of which may not define SCA services, the @Service annotation can be used to indicate the services provided by the implementation and their corresponding Java interface definitions. 

The following is an example of a Java service interface and a Java implementation, which provides a service using that interface:

Interface:

public interface HelloService {

String hello(String message);
}
Implementation class:

@Service(HelloService.class)
public class HelloServiceImpl implements HelloService {

public String hello(String message) {


...

}
}
The XML representation of the component type for this implementation is shown below for illustrative purposes. There is no need to author the component type as it can be reflected from the Java class. 

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">

<service name="HelloService">


<interface.java interface="services.hello.HelloService"/>

</service>
</componentType>
The Java implementation class itself, as opposed to an interface, may also define a service offered by a component. In this case, @Service may be used to explicitly declare the implementation class defines the service offered by the implementation. In this case, a component will only offer services declared by @Service. The following illustrates this:

@Service(HelloServiceImpl.class)
public class HelloServiceImpl implements AnotherInterface {

public String hello(String message) {


...

}

…

}
In the above example, HelloWorldServiceImpl offers one service as defined by the public methods on the implementation class. The interface AnotherInterface in this case does not specify a service offered by the component. The following is an XML representation of the introspected component type: 

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">

<service name="HelloService">


<interface.java interface="services.hello.HelloServiceImpl"/>

</service>
</componentType>
@Service may be used to specify multiple services offered by an implementation as in:

@Service(interfaces={HelloService.class, AnotherInterface.class})
public class HelloServiceImpl implements HelloService, AnotherInterface {

public String hello(String message) {


...

}

…
}
The following snippet shows the introspected component type for this implementation. 

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0">

<service name="HelloService">


<interface.java interface="services.hello.HelloService"/>

</service>

<service name="AnotherService">


<interface.java interface="services.hello.AnotherService"/>

</service>
</componentType>
2.2 Local and Remotable services

A Java service contract defined by an interface or implementation class may use @Remotable to declare that the service follows the semantics of remotable services as defined by the SCA Assembly Specification. The following example demonstrates the use of @Remotable:

package services.hello;
@Remotable

public interface HelloService {

String hello(String message);
}
Unless @Remotable is declared, a service defined by a Java interface or implementation class is inferred to be a local service as defined by the SCA Assembly Model Specification.

If an implementation class has implemented interfaces that are not decorated with an @Remotable annotation, the class is considered to implement a single local service whose type is defined by the class (note that local services may be typed using either Java interfaces or classes).

An implementation class may provide hints to the SCA runtime about whether it can achieve pass-by-value  semantics without making a copy by using the @AllowsPassByReference.

2.3 Introspecting services offered by a Java implementation

In the cases described below, the services offered by a Java implementation class may be determined through introspection, eliding the need to specify them using @Service. The following algorithm is used to determine how services are introspected from an implementation class:

If the interfaces of the SCA services are not specified with the @Service annotation on the implementation class, it is assumed that all implemented interfaces that have been annotated as @Remotable are the service interfaces provided by the component. If none of the implemented interfaces is remotable, then by default the implementation offers a single service whose type is the implementation class.

2.4 Non-Blocking Service Operations

Service operations defined by a Java interface or implementation class may use @OneWay to declare that the SCA runtime must honor non-blocking semantics as defined by the SCA Assembly Specification when a client invokes the service operation.

2.5 Non-Conversational and Conversational Services

The Java implementation type supports all of the conversational service annotations as defined by the SCA Java Common Annotations and API Specification: @Conversational, @EndsConversation, and @ConversationAttributes.

The following semantics hold for service contracts defined by Java interface or implementation class. A service contract defined by a Java interface or implementation class is inferred to be non-conversational as defined by the SCA Assembly Specification unless it is decorated with @Conversational. In the latter case, @Conversational is used to declare that a component implementation offering the service implements conversational semantics as defined by the SCA Assembly Specification.

2.6 Callback Services

A callback interface is declared by using the @Callback annotation on the service interface implemented by a Java class.

3 References

References may be obtained through injection or through the ComponentContext API as defined in the SCA Java Common Annotations and API Specification. When possible, the preferred mechanism for accessing references is through injection.

3.1 Reference Injection

A Java implementation type may explicitly specify its references through the use of @Reference as in the following example:


public class ClientComponentImpl implements Client {



private HelloService service;



@Reference



public void setHelloService(HelloService service) {




this.service =  service;

}

}

If @Reference marks a public or protected setter method, the SCA runtime is required to provide the appropriate implementation of the service reference contract as specified by the parameter type of the method. This must done by invoking the setter method an implementation instance. When injection occurs is defined by the scope of the implementation.  However, it will always occur before the first service method is called. 

If @Reference marks a public or protected field, the SCA runtime is required to provide the appropriate implementation of the service reference contract as specified by the field type. This must done by setting the field on an implementation instance. When injection occurs is defined by the scope of the implementation.

If @Reference marks a parameter on a constructor, the SCA runtime is required to provide the appropriate implementation of the service reference contract as specified by the constructor parameter during instantiation of an implementation instance. 

References may also be determined by introspecting the implementation class according to the rules defined in Section Error! Reference source not found..

References may be declared optional as defined by the Java Common Annotations and API Specification.

3.2 Dynamic Reference Access

References may be accessed dynamically through ComponentContext.getService() and ComponentContext.getServiceReference(..)  methods as described in the Java Common Annotations and API Specification.

4 Properties

4.1 Property Injection

Properties may be obtained through injection or through the ComponentContext API as defined in the SCA Java Common Annotations and API Specification. When possible, the preferred mechanism for accessing propertoes is through injection.

A Java implementation type may explicitly specify its properties through the use of @Property as in the following example:


public class ClientComponentImpl implements Client {



private int maxRetries;



@Property



public void setRetries(int maxRetries) {




this. maxRetries = maxRetries;

}

}

If @Property marks a public or protected setter method, the SCA runtime is required to provide the appropriate property value. This must done by invoking the setter method an implementation instance. When injection occurs is defined by the scope of the implementation.  

If @Property marks a public or protected field, the SCA runtime is required to provide the appropriate property value. When injection occurs is defined by the scope of the implementation.

If @Property marks a parameter on a constructor, the SCA runtime is required to provide the appropriate property value during instantiation of an implementation instance. 

Properties may also be determined by introspecting the implementation class according to the rules defined in Section Error! Reference source not found..

Properties may be declared optional as defined by the Java Common Annotations and API Specification.

4.2 Dynamic Property Access

Properties may be accesses dynamically through ComponentContext. getProperty () method as described in the Java Common Annotations and API Specification.

5  Implementation Instance Instantiation 

A Java implementation class must provide a public or protected constructor that can be used by the SCA runtime to instantiate implementation instances. The constructor may contain parameters; in the presence of such parameters, the SCA container will pass the applicable property or reference values when invoking the constructor. Any property or reference values not supplied in this manner will be set into the field or passed to the setter method associated with the property or reference before any service method is invoked.

The constructor to use is selected by the container as follows:

1. A declared constructor annotated with a @Constructor annotation.

2. A declared constructor that unambiguously identifies all property and reference values.

3. A no-argument constructor.

The @Constructor annotation must only be specified on one constructor; the SCA container must report an error if multiple constructors are annotated with @Constructor.

The property or reference associated with each parameter of a constructor is identified:

· by name in the @Constructor annotation (if present)

· through the presence of a @Property or @Reference annotation on the parameter declaration

· by uniquely matching the parameter type to the type of a property or reference 

Cyclic references between components may be handled by the container in one of two ways:

· If any reference in the cycle is optional, then the container may inject a null value during construction, followed by injection of a reference to the target before invoking any service.

· The container may inject a proxy to the target service; invocation of methods on the proxy may result in a ServiceUnavailableException

The following are examples of legal Java component constructor declarations:

/** Simple class taking a single property value */

public class Impl1 {

    String someProperty;

    public Impl1(String propval) {...}

}

/** Simple class taking a property and reference in the constructor;

 * The values are not injected into the fields.

 *//

public class Impl2 {

    public String someProperty;

    public SomeService someReference;

    public Impl2(String a, SomeService b) {...}

}

/** Class declaring a named property and reference through the constructor */

public class Impl3 {

    @Constructor({"someProperty", "someReference"})

    public Impl3(String a, SomeService b) {...}

}

/** Class declaring a named property and reference through parameters */

public class Impl3b {

    public Impl3b(

        @Property("someProperty") String a, 

        @Reference("someReference) SomeService b

        ) {...}

}
/** Additional property set through a method */

public class Impl4 {

    public String someProperty;

    public SomeService someReference;

    public Impl2(String a, SomeService b) {...}

    @Property public void setAnotherProperty(int x) {...}

}
6 Implementation Scopes and Lifecycle Callbacks

The Java implementation type supports all of the scopes defined in the Java Common Annotations and API Specification: STATELESS, REQUEST, CONVERSATION, and COMPOSITE. Implementations specify their scope through the use of the @Scope annotation as in:


@Scope(”COMPOSITE”)


public class ClientComponentImpl implements Client {


// …

}

When the @Scope annotation is not specified on an implementation class, its scope is defaulted to STATELESS.

A Java component implementation specifies init and destroy callbacks by using @Init and @Destroy respectively. For example:

public class ClientComponentImpl implements Client {

@Init

public void init() {



//…


}


@Destroy

public void destroy() {



//…


}

}

6.1 Conversational Implementation

Java implementation classes that are CONVERSATION scoped may use @ConversationID to have the current conversation ID injected on a public or protected field or setter method. Alternatively, the Conversation API as defined in the Java Common Annotations and API Specification may be used to obtain the current conversation ID.

For the provider of a conversational service, there is the need to maintain state data between successive method invocations within a single conversation.  For an Java implementation type, there are two possible strategies which may be used to handle this state data:

1. The implementation can be built as a stateless piece of code (essentially, the code expects a new instance of the code to be used for each method invocation).  The code must then be responsible for accessing the conversationID of the conversation, which is maintained by the SCA runtime code.  The implementation is then responsible for persisting any necessary state data during the processing of a method and for accessing the persisted state data when required, all using the conversationID as a key.

2. The implementation can be built as a stateful piece of code, which means that it stores any state data within the instance fields of the Java class.  The implementation must then be declared as being of conversation scope using the @Scope annotation.  This indicates to the SCA runtime that the implementation is stateful and that the runtime must perform correlation between client method invocations and a particular instance of the service implementation and that the runtime is also responsible for persisting and restoring the implementation instance if the runtime needs to clear the instance out of memory for any reason.  (Note that conversations are potentially very long lived and that SCA runtimes may involve the use of clustered systems where a given instance object may be moved between nodes in the cluster over time, for load balancing purposes)


7 Accessing a Callback Service

Java implementation classes that require a callback service may use @Callback to have a reference to the callback service associated with the current invocation injected on a public or protected field or setter method.

8 Component Type of a Java Implementation

The component type of a Java Implementation is introspected from the implementation class as follows:
A <service/> element exists for each interface identified by a @Service annotation:
· name attribute is the simple name of the interface (ie without the package name)

· requires attribute is omitted unless the @Service is also annotated with an @Requires - in this case, the requires attribute is present with a value equivalent to the intents declared by the @Requires annotation.
· policySets sttribute is omitted unless the @Service is also annotated with an @PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy sets declared by the @PolicySets annotation.
· interface child element is present with the interface attribute set to the fully qualified name of the interface class identified by the @Service annotation
· binding child element is omitted

· callback child element is omitted
A <reference/> element exists for each @Reference annotation:

· name attribute has the value of the name parameter of the @Reference annotation, if present, otherwise it is the name of the field or the name implied by the setter method, depending on what element of the class is annotated by the @Reference (note: for a constructor parameter, the @Reference annotation is required to have a name parameter)
· autowire attribute is omitted

· wiredByImpl attribute is omitted

· target attribute is omitted

· a) where the type of the field, setter or constructor parameter is an interface, the multiplicity attribute is (1..1) unless the @Reference annotation contains required=false, in which case it is (0..1)
b) where the type of the field, setter or parameter is an array or is a java.util.Collection, the multiplicity attribute is (1..n) unless the @Reference annotation contains required=false, in which case it is (0..n)
· requires attribute is omitted unless the field, setter method or parameter is also annotated with  @Requires - in this case, the requires attribute is present with a value equivalent to the intents declared by the@Requires annotation.
· policySets attribute is omitted unless the field, setter method or parameter is also annotated with  @PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy sets declared by the @PolicySets annotation.
· interface child element with the interface attribute set to the fully qualified name of the interface class which types the field or setter method
· binding child element is omitted

· callback child element is omitted
A <property/> element exists for each @Property annotation:

· name attribute has the value of the name parameter of the @Property annotation, if present, otherwise it is the name of the field or the name implied by the setter method, depending on what element of the class is annotated by the @Property (note: for a constructor parameter, the @Property annotation is required to have a name parameter)
· value attribute is omitted
· type attribute which is set to the XML type implied by the JAXB mapping of the Java type of the field or the Java type defined by the parameter of the setter method.  Where the type of the field or of the setter method is an array, the element type of the array is used. Where the type of the field or of the setter method is an java.util.Collection, the parameterized type of the Collection or its member type is used. If the JAXB mapping is to a global element rather than a type (JAXB @XMLRootElement annotation), the type attribute is omitted.
· element attribute is omitted unless the JAXB mapping of the Java type of the field or the Java type defined by the parameter of the setter method is to a global element (JAXB @XMLRootElement annotation).  In this case, the element attribute has the value of the name of the XSD global element implied by the JAXB mapping.
· many attribute set to “false” unless the type of the field or of the setter method is an array or a java.util.Collection, in which case it is set to "true".
· mustSupply attribute set to "false" unless the @Property annotation has required=true, in which case it is set to "true"
8.1 Component Type of an Implementation with no @Service annotations
The section defines the rules for determining the services of a Java component implementation that does not explicitly declare them using the @Service annotation.  Note that these rules apply only to implementation classes that contain no @Service annotations.
If there are no SCA services specified with the @Service annotation in an implementation class, the class offers:

· either: one Service for each of the interfaces implemented by the class where the interface is annotated with @Remotable. 
· or:  if the class implements zero interfaces where the interface is annotated with @Remotable, then by default the implementation offers a single local service whose type is the implementation class itself
A <service/> element exists for each service identified in this way:

· name attribute is the simple name of the interface or the simple name of the class
· requires attribute is omitted 

· policySets sttribute is omitted 

· interface child element is present with the interface attribute set to the fully qualified name of the interface class or to the fully qualified name of the class itself
· binding child element is omitted

· callback child element is omitted

8.2 ComponentType of an Implementation with no @Reference or @Property annotations
The section defines the rules for determining the properties and the references of a Java component implementation that does not explicitly declare them using the @Reference or the @Property annotations.  Note that these rules apply only to implementation classes that contain no @Reference annotations and no @Property annotations.
In the absence of any @Property or @Reference annotations, the properties and references of an implementation class are defined as follows:
The following setter methods and fields are taken into consideration:
1. Public setter methods that are not part of the implementation of an SCA service (either explicitly marked with @Service or implicitly defined as described above)
2. 
3. Public or protected fields unless there is a public setter method for the same name

An unannotated field or setter method is a reference if:

· its type is an interface annotated with @Remotable

· its type is an array where the element type of the array is an interface annotated with @Remotable
· its type is a java.util.Collection where the parameterized type of the Collection or its member type is an interface annotated with @Remotable
The reference in the component type has:

· name attribute with the value of the name of the field or the name implied by the name of the setter method
· multiplicity attribute is (1..1) for the case where the type is an interface
multiplicity attribute is (0..n) for the cases where the type is an array or is a java.util.Collection
· interface child element with the interface class which types the field or setter method

· all other attributes and child elements of the reference are omitted
An unannotated field or setter method is a property if it is not a reference following the rules above.
For each property of this type, the component type has a property element with:
· name attribute with the value of the name of the field or the name implied by the name of the setter method

· type attribute and element attribute set as described for a property declared via a @Property annotation
· value attribute omitted
· many attribute set to “false” unless the type of the field or of the setter method is an array or a java.util.Collection, in which case it is set to "true".
· mustSupply attribute set to false

1. 
2. 
3. 

9 Specifying the Java Implementation Type in an Assembly

The following defines the implementation element schema used for the Java implementation type:.

<implementation.java class="NCName" />

The implementation.java element has the following attributes:

· class (required) – the fully qualified name of the Java class of the implementation

10 Specifying the Component Type

For a Java implementation class, the component type  is typically derived directly from introspection of the Java class .

A component type can optionally be specified in a side file. The component type side file is found with the same classloader that loaded the Java class. The side file must be located  in a directory that corresponds to the namespace of the implementation and have the same name as the Java class, but with a .componentType extension instead of the .class extension.

The rules on how a component type side file adds to the component type information reflected from the component implementation are described as part of the SCA assembly model specification [1].  If the component type information is in conflict with the implementation, it is an error.

If the component type side file specifies a service interface using a WSDL interface, then the Java class should implement the interface that would be generated by the JAX-WS mapping of the WSDL to a Java interface. See the section 'WSDL 2 Java and Java 2 WSDL' in [2].
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