
sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 1 of 32

Service Component Architecture Java
Component Implementation
Specification Version 1.1
Working Draft 04_Issue 147

23th March 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec-wd04.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-wd04.doc
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-wd04.pdf

Previous Version:

Latest Version:
http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec.doc
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec.pdf

Latest Approved Version:

Technical Committee:
OASIS Service Component Architecture / J (SCA-J) TC

Chair(s):
David Booz, IBM
Mark Combellack, Avaya

Editor(s):
David Booz, IBM
Mike Edwards, IBM
Anish Karmarkar, Oracle

Related work:
This specification replaces or supersedes:

• Service Component Architecture Java Component Implementation Specification Version
1.00, 15 February 2007

This specification is related to:

• Service Component Architecture Assembly Model Specification Version 1.1
• Service Component Architecture Policy Framework Sepcification Version 1.1

Declared XML Namespace(s):
http://docs.oasis-open.org/ns/opencsa/sca/200712

Abstract:
This specification extends the SCA Assembly Model by defining how a Java class provides an
implementation of an SCA component, including its various attributes such as services,

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 2 of 32

references, and properties and how that class is used in SCA as a component implementation
type. It requires all the annotations and APIs as defined by the SCA Java Common Annotations
and APIs specification.

This specification also details the use of metadata and the Java API defined in the context of a
Java class used as a component implementation type.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Version” location noted above for possible later revisions of this
document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/sca-j/.

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 3 of 32

Notices
Copyright © OASIS® 2005, 2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 4 of 32

Table of Contents
1 Introduction... 5

1.1 Terminology .. 5
1.2 Normative References .. 5
1.3 Non-Normative References .. 5

2 Service.. 6
2.1 Use of @Service... 6
2.2 Local and Remotable services.. 8
2.3 Introspecting services offered by a Java implementation... 8
2.4 Non-Blocking Service Operations... 8
2.5 Callback Services ... 8

3 References ... 9
3.1 Reference Injection... 9
3.2 Dynamic Reference Access.. 9

4 Properties ... 10
4.1 Property Injection.. 10
4.2 Dynamic Property Access... 10

5 Implementation Instance Creation.. 11
6 Implementation Scopes and Lifecycle Callbacks ... 13
7 Accessing a Callback Service .. 14
8 Component Type of a Java Implementation .. 15

8.1 Component Type of an Implementation with no @Service annotations .. 16
8.2 ComponentType of an Implementation with no @Reference or @Property annotations 16
8.3 Java Implementation with conflicting setter methods ... 17

9 Specifying the Java Implementation Type in an Assembly .. 20
10 Java Packaging and Deployment Model .. 21

10.1 Contribution Metadata Extensions.. 21
10.2 Java Artifact Resolution .. 23
10.3 Classloader Model .. 23

11 Conformance .. 24
A. XML Schemas .. 25

A.1 sca-contribution-java.xsd.. 25
B. Conformance Items .. 27
C. Acknowledgements .. 30
D. Non-Normative Text ... 31
E. Revision History.. 32

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 5 of 32

1 Introduction 1

This specification extends the SCA Assembly Model [ASSEMBLY] by defining how a Java class provides 2
an implementation of an SCA component (including its various attributes such as services, references, 3
and properties) and how that class is used in SCA as a component implementation type. 4

This specification requires all the annotations and APIs as defined by the SCA Java Common 5
Annotations and APIs specification [JAVACAA]. All annotations and APIs referenced in this document are 6
defined in the former unless otherwise specified. Moreover, the semantics defined in the Common 7
Annotations and APIs specification are normative. 8

In addition, it details the use of metadata and the Java API defined in [JAVACAA] in the context of a Java 9
class used as a component implementation type 10

1.1 Terminology 11

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 12
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 13
in [RFC2119]. 14

1.2 Normative References 15

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 16
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 17

 18
[ASSEMBLY] SCA Assembly Specification, 19

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-20
cd01.pdf 21

 22
[POLICY] SCA Policy Specification 23
 http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf 24
 25
[JAVACAA] SCA Java Common Annotations and APIs 26
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd01.pdf 27
 28
[WSDL] WSDL Specification, WSDL 1.1: http://www.w3.org/TR/wsdl, WSDL 2.0: 29

http://www.w3.org/TR/wsdl20/ 30
 31
[OSGi Core] OSGI Service Platform Core Specification, Version 4.0.1 32
 http://www.osgi.org/download/r4v41/r4.core.pdf 33
 34
[JAVABEANS] JavaBeans 1.01 Specification, 35

http://java.sun.com/javase/technologies/desktop/javabeans/api/ 36

1.3 Non-Normative References 37

TBD TBD 38

Formatted: Indent: First line:

 0"

Formatted: Font: Bold,

Complex Script Font: Bold

Deleted: ¶

Deleted:]

Deleted: ,

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 6 of 32

2 Service 39

A component implementation based on a Java class can provide one or more services. 40

The services provided by a Java-based implementation MUST have an interface defined in one of the 41
following ways: 42

• A Java interface 43

• A Java class 44

• A Java interface generated from a Web Services Description Language [WSDL] (WSDL) 45
portType. 46

[JCI20001] 47

Java implementation classes MUST implement all the operations defined by the service interface. 48
[JCI20002] If the service interface is defined by a Java interface, the Java-based component can 49
either implement that Java interface, or implement all the operations of the interface. 50

A service whose interface is defined by a Java class (as opposed to a Java interface) is not 51
remotable. Java interfaces generated from WSDL portTypes are remotable, see the WSDL 2 Java 52
and Java 2 WSDL section of the SCA Java Common Annotations and APIs Specification [JAVACAA] 53
for details. 54

A Java implementation type can specify the services it provides explicitly through the use of the 55
@Service annotation. In certain cases as defined below, the use of the @Service annotation is not 56
necessary and the services a Java implementation type offers can be inferred from the 57
implementation class itself. 58

2.1 Use of @Service 59

Service interfaces can be specified as a Java interface. A Java class, which is a component 60
implementation, can offer a service by implementing a Java interface specifying the service 61
contract. As a Java class can implement multiple interfaces, some of which might not define SCA 62
services, the @Service annotation can be used to indicate the services provided by the 63
implementation and their corresponding Java interface definitions. 64

The following is an example of a Java service interface and a Java implementation, which provides 65
a service using that interface: 66

Interface: 67

public interface HelloService { 68
 69

 String hello(String message); 70
} 71

 72

Implementation class: 73

@Service(HelloService.class) 74
public class HelloServiceImpl implements HelloService { 75

 76
 public String hello(String message) { 77
 ... 78

 } 79
} 80

 81

The XML representation of the component type for this implementation is shown below for 82
illustrative purposes. There is no need to author the component type as it is introspected from the 83
Java class. 84

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 7 of 32

 85

<?xml version="1.0" encoding="ASCII"?> 86
<componentType xmlns="http://docs.oasis-open.org/ns /opencsa/sca/200712"> 87

 88
 <service name="HelloService"> 89
 <interface.java interface="services.hello.HelloSe rvice"/> 90
 </service> 91
 92

</componentType> 93
 94

The Java implementation class itself, as opposed to an interface, can also define a service offered 95
by a component. In this case, the @Service annotation can be used to explicitly declare the 96
implementation class defines the service offered by the implementation. In this case, a component 97
will only offer services declared by @Service. The following illustrates this: 98

 99

@Service(HelloServiceImpl.class) 100
public class HelloServiceImpl implements AnotherInterface { 101

 102
 public String hello(String message) { 103
 ... 104

 } 105
 … 106

} 107

 108
In the above example, HelloServiceImpl offers one service as defined by the public methods of the 109
implementation class. The interface AnotherInterface in this case does not specify a service 110
offered by the component. The following is an XML representation of the introspected component 111
type: 112

<?xml version= "1.0" encoding= "ASCII" ?> 113
<componentType xmlns=" http://docs.oasis-open.org/ns/opencsa/sca/200712 "> 114

 115
 <service name= "HelloServiceImpl" > 116
 <interface.java interface="services.hello.Hel loServiceImpl"/> 117
 </service> 118

 119
</componentType> 120
 121

The @Service annotation can be used to specify multiple services offered by an implementation as 122
in the following example: 123

 124

@Service(interfaces={HelloService. class, AnotherInterface. class}) 125
public class HelloServiceImpl implements HelloService, AnotherInterface 126
{ 127

 128
 public String hello(String message) { 129
 ... 130

 } 131
 … 132

} 133
 134

The following snippet shows the introspected component type for this implementation. 135

<?xml version= "1.0" encoding= "ASCII" ?> 136
<componentType xmlns=" http://docs.oasis-open.org/ns/opencsa/sca/200712 "> 137

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 8 of 32

 138
 <service name= "HelloService" > 139
 <interface.java interface= "services.hello.HelloService" /> 140
 </service> 141
 <service name= "AnotherService" > 142
 <interface.java interface= "services.hello.AnotherService" /> 143
 </service> 144

 145
</componentType> 146

2.2 Local and Remotable services 147

A Java service contract defined by an interface or implementation class uses the @Remotable 148
annotation to declare that the service follows the semantics of remotable services as defined by 149
the SCA Assembly Specification. The following example demonstrates the use of the @Remotable 150
annotation: 151

package services.hello; 152
 153

@Remotable 154
public interface HelloService { 155

 156
 String hello(String message); 157
} 158

 159

Unless annotated with a @Remotable annotation, a service defined by a Java interface or a Java 160
implementation class is inferred to be a local service as defined by the SCA Assembly Model 161
Specification. 162

An implementation class can provide hints to the SCA runtime about whether it can achieve pass-163
by-value semantics without making a copy by using the @AllowsPassByReference annotation. 164

2.3 Introspecting services offered by a Java implementation 165

The services offered by a Java implementation class are determined through introspection, as 166
defined in the section "Component Type of a Java Implementation". 167

If the interfaces of the SCA services are not specified with the @Service annotation on the 168
implementation class, it is assumed that all implemented interfaces that have been annotated as 169
@Remotable are the service interfaces provided by the component. If an implementation class has 170
only implemented interfaces that are not annotated with a @Remotable annotation, the class is 171
considered to implement a single local service whose type is defined by the class (note that local 172
services can be typed using either Java interfaces or classes). 173

2.4 Non-Blocking Service Operations 174

Service operations defined by a Java interface or by a Java implementation class can use the 175
@OneWay annotation to declare that the SCA runtime needs to honor non-blocking semantics as 176
defined by the SCA Assembly Specification [ASSEMBLY] when a client invokes the service 177
operation. 178

2.5 Callback Services 179

A callback interface can be declared by using the @Callback annotation on the service interface 180
implemented by a Java class. Alternatively, the @callbackInterface attribute of the 181
<interface.java/> element can be used to declare a callback interface. 182

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 9 of 32

3 References 183

A Java implementation class can obtain service references either through injection or through 184
the ComponentContext API as defined in the SCA Java Common Annotations and API Specification 185
[JAVACAA]. When possible, the preferred mechanism for accessing references is through injection. 186

3.1 Reference Injection 187

A Java implementation type can explicitly specify its references through the use of the @Reference 188
annotation as in the following example: 189

 190
 public class ClientComponentImpl implements Client { 191
 private HelloService service; 192
 193
 @Reference 194
 public void setHelloService(HelloService service) { 195
 this.service = service; 196

} 197
} 198

 199

If @Reference marks a setter method, the SCA runtime provides the appropriate implementation 200
of the service reference contract as specified by the parameter type of the method. This is done by 201
invoking the setter method of an implementation instance of the Java class. When injection occurs 202
is defined by the scope of the implementation. However, injection always occurs before the first 203
service method is called. 204

If @Reference marks a field, the SCA runtime provides the appropriate implementation of the 205
service reference contract as specified by the field type. This is done by setting the field on an 206
implementation instance of the Java class. When injection occurs is defined by the scope of the 207
implementation. However, injection always occurs before the first service method is called. 208

If @Reference marks a parameter on a constructor, the SCA runtime provides the appropriate 209
implementation of the service reference contract as specified by the constructor parameter during 210
instantiation of an implementation instance of the Java class. 211

References marked with the @Reference annotation can be declared with required=false, as 212
defined by the Java Common Annotations and APIs Specification [JAVACAA] - i.e. the reference 213
multiplicity is 0..1 or 0..n, where the implementation is designed to cope with the reference not 214
being wired to a target service. 215

In the case where a Java class contains no @Reference or @Property annotations, references are 216
determined by introspecting the implementation class as described in the section "ComponentType 217
of an Implementation with no @Reference or @Property annotations ". 218

3.2 Dynamic Reference Access 219

As an alternative to reference injection, service references can be accessed dynamically through 220
the API methods ComponentContext.getService() and ComponentContext.getServiceReference() 221
methods as described in the Java Common Annotations and API Specification [JAVACAA]. 222

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 10 of 32

4 Properties 223

4.1 Property Injection 224

Properties can be obtained either through injection or through the ComponentContext API as 225
defined in the SCA Java Common Annotations and API Specification [JAVACAA]. When possible, 226
the preferred mechanism for accessing properties is through injection. 227

A Java implementation type can explicitly specify its properties through the use of the @Property 228
annotation as in the following example: 229

 230
 public class ClientComponentImpl implements Client { 231
 private int maxRetries; 232
 233
 @Property 234
 public void setRetries(int maxRetries) { 235
 this.maxRetries = maxRetries; 236

} 237
} 238

 239

If the @Property annotation marks a setter method, the SCA runtime provides the appropriate 240
property value by invoking the setter method of an implementation instance of the Java class. 241
When injection occurs is defined by the scope of the implementation. However, injection always 242
occurs before the first service method is called. 243

If the @Property annotation marks a field, the SCA runtime provides the appropriate property 244
value by setting the value of the field of an implementation instance of the Java class. When 245
injection occurs is defined by the scope of the implementation. However, injection always occurs 246
before the first service method is called. 247

If the @Property annotation marks a parameter on a constructor, the SCA runtime provides the 248
appropriate property value during instantiation of an implementation instance of the Java class. 249

Properties marked with the @Property annotation can be declared with required=false as defined 250
by the Java Common Annotations and APIs Specification [JAVACAA], i.e. the property mustSupply 251
attribute is false and where the implementation is designed to cope with the component 252
configuration not supplying a value for the property. 253

In the case where a Java class contains no @Reference or @Property annotations, properties are 254
determined by introspecting the implementation class as described in the section "ComponentType 255
of an Implementation with no @Reference or @Property annotations ". 256

4.2 Dynamic Property Access 257

As an alternative to property injection, properties can also be accessed dynamically through the 258
ComponentContext.getProperty() method as described in the Java Common Annotations and API 259
Specification [JAVACAA]. 260

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 11 of 32

5 Implementation Instance Creation 261

A Java implementation class MUST provide a public or protected constructor that can be used by 262
the SCA runtime to create the implementation instance. [JCI50001] The constructor can contain 263
parameters; in the presence of such parameters, the SCA container passes the applicable property 264
or reference values when invoking the constructor. Any property or reference values not supplied 265
in this manner are set into the field or are passed to the setter method associated with the 266
property or reference before any service method is invoked. 267

The constructor to use for the creation of an implementation instance MUST be selected by the SCA 268
runtime using the sequence: 269

1. A declared constructor annotated with a @Constructor annotation. 270

2. A declared constructor that unambiguously identifies all property and reference values. 271

3. A no-argument constructor. 272

[JCI50004] 273

The @Constructor annotation MUST only be specified on one constructor; the SCA container MUST 274
raise an error if multiple constructors are annotated with @Constructor. [JCI50002] 275

The property or reference associated with each parameter of a constructor is identified through 276
the presence of a @Property or @Reference annotation on the parameter declaration 277

Cyclic references between components MUST be handled by the SCA runtime in one of two ways: 278

• If any reference in the cycle is optional, then the container can inject a null value during 279
construction, followed by injection of a reference to the target before invoking any service. 280

• The container can inject a proxy to the target service; invocation of methods on the proxy can 281
result in a ServiceUnavailableException 282

[JCI50003] 283

The following are examples of legal Java component constructor declarations: 284

 285

/** Simple class taking a single property value */ 286

public class Impl1 { 287

 String someProperty; 288

 public Impl1(String propval) {...} 289

} 290

 291

/** Simple class taking a property and reference in the constructor; 292

 * The values are not injected into the fields. 293

 *// 294

public class Impl2 { 295

 public String someProperty; 296

 public SomeService someReference; 297

 public Impl2(String a, SomeService b) {...} 298

} 299

 300

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 12 of 32

/** Class declaring a named property and reference through the 301
constructor */ 302

public class Impl3 { 303

 @Constructor({"someProperty", "someReference"}) 304

 public Impl3(String a, SomeService b) {...} 305

} 306

 307

/** Class declaring a named property and reference through parameters 308
*/ 309

public class Impl3b { 310

 public Impl3b(311

 @Property("someProperty") String a, 312

 @Reference("someReference) SomeService b 313

) {...} 314

} 315

 316

/** Additional property set through a method */ 317

public class Impl4 { 318

 public String someProperty; 319

 public SomeService someReference; 320

 public Impl2(String a, SomeService b) {...} 321

 @Property public void setAnotherProperty(int x) {...} 322

} 323

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 13 of 32

6 Implementation Scopes and Lifecycle Callbacks 324

The Java implementation type supports all of the scopes defined in the Java Common Annotations 325
and API Specification: STATELESS and COMPOSITE. The SCA runtime MUST support the 326
STATELESS and COMPOSITE implementation scopes. [JCI60001] 327

Implementations specify their scope through the use of the @Scope annotation as in: 328

 329
 @Scope(”COMPOSITE”) 330
 public class ClientComponentImpl implements Client { 331

 // … 332
} 333

When the @Scope annotation is not specified on an implementation class, its scope is defaulted to 334
STATELESS. 335

A Java component implementation specifies init and destroy callbacks by using the @Init and 336
@Destroy annotations respectively, as described in the Java Common Annotations and APIs 337
specification [JAVACAA]. 338

For example: 339

 public class ClientComponentImpl implements Client { 340
 341
@Init 342
public void init() { 343

 //… 344
 } 345
 346
 @Destroy 347

public void destroy() { 348
 //… 349
 } 350
} 351

 352

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 14 of 32

7 Accessing a Callback Service 353

Java implementation classes that implement a service which has an associated callback interface 354
can use the @Callback annotation to have a reference to the callback service associated with the 355
current invocation injected on a field or injected via a setter method. 356

As an alternative to callback injection, references to the callback service can be accessed 357
dynamically through the API methods RequestContext.getCallback() and 358
RequestContext.getCallbackReference() as described in the Java Common Annotations and APIs 359
Specification [JAVACAA]. 360

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 15 of 32

8 Component Type of a Java Implementation 361

An SCA runtime MUST introspect the componentType of a Java implementation class following the rules 362
defined in the section "Component Type of a Java Implementation". [JCI80001] 363

The component type of a Java Implementation is introspected from the implementation class as follows: 364

 365

A <service/> element exists for each interface identified by a @Service annotation: 366

• name attribute is the simple name of the interface (ie without the package name) 367

• requires attribute is omitted unless the @Service is also annotated with an @Requires - in this 368
case, the requires attribute is present with a value equivalent to the intents declared by the 369
@Requires annotation. 370

• policySets sttribute is omitted unless the @Service is also annotated with an @PolicySets - in this 371
case, the policySets attribute is present with a value equivalent to the policy sets declared by the 372
@PolicySets annotation. 373

• interface child element is present with the interface attribute set to the fully qualified name of the 374
interface class identified by the @Service annotation 375

• binding child element is omitted 376

• callback child element is omitted 377

 378

A <reference/> element exists for each @Reference annotation: 379

• name attribute has the value of the name parameter of the @Reference annotation, if present, 380
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS] 381
corresponding to the setter method name, depending on what element of the class is annotated 382
by the @Reference (note: for a constructor parameter, the @Reference annotation needs to have 383
a name parameter) 384

• autowire attribute is omitted 385

• wiredByImpl attribute is omitted 386

• target attribute is omitted 387

• a) where the type of the field, setter or constructor parameter is an interface, the multiplicity 388
attribute is (1..1) unless the @Reference annotation contains required=false, in which case it 389
is (0..1) 390
b) where the type of the field, setter or parameter is an array or is a java.util.Collection, the 391
multiplicity attribute is (1..n) unless the @Reference annotation contains required=false, in 392
which case it is (0..n) 393

• requires attribute is omitted unless the field, setter method or parameter is also annotated with 394
@Requires - in this case, the requires attribute is present with a value equivalent to the intents 395
declared by the@Requires annotation. 396

• policySets attribute is omitted unless the field, setter method or parameter is also annotated with 397
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy 398
sets declared by the @PolicySets annotation. 399

• interface child element with the interface attribute set to the fully qualified name of the interface 400
class which types the field or setter method 401

• binding child element is omitted 402

• callback child element is omitted 403

 404

A <property/> element exists for each @Property annotation: 405

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 16 of 32

• name attribute has the value of the name parameter of the @Property annotation, if present, 406
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS] 407
corresponding to the setter method name, depending on what element of the class is annotated 408
by the @Property (note: for a constructor parameter, the @Property annotation needs to have a 409
name parameter) 410

• value attribute is omitted 411

• type attribute which is set to the XML type implied by the JAXB mapping of the Java type of the 412
field or the Java type defined by the parameter of the setter method. Where the type of the field 413
or of the setter method is an array, the element type of the array is used. Where the type of the 414
field or of the setter method is an java.util.Collection, the parameterized type of the Collection or 415
its member type is used. If the JAXB mapping is to a global element rather than a type (JAXB 416
@XMLRootElement annotation), the type attribute is omitted. 417

• element attribute is omitted unless the JAXB mapping of the Java type of the field or the Java 418
type defined by the parameter of the setter method is to a global element (JAXB 419
@XMLRootElement annotation). In this case, the element attribute has the value of the name of 420
the XSD global element implied by the JAXB mapping. 421

• many attribute set to “false” unless the type of the field or of the setter method is an array or a 422
java.util.Collection, in which case it is set to "true". 423

• mustSupply attribute set to "true" unless the @Property annotation has required=false, in which 424
case it is set to "false" 425

8.1 Component Type of an Implementation with no @Service 426

annotations 427

The section defines the rules for determining the services of a Java component implementation that does 428
not explicitly declare them using the @Service annotation. Note that these rules apply only to 429
implementation classes that contain no @Service annotations. 430

If there are no SCA services specified with the @Service annotation in an implementation class, the class 431
offers: 432

• either: one Service for each of the interfaces implemented by the class where the interface 433
is annotated with @Remotable. 434

• or: if the class implements zero interfaces where the interface is annotated with 435
@Remotable, then by default the implementation offers a single local service whose type 436
is the implementation class itself 437

A <service/> element exists for each service identified in this way: 438

• name attribute is the simple name of the interface or the simple name of the class 439

• requires attribute is omitted 440

• policySets attribute is omitted 441

• interface child element is present with the interface attribute set to the fully qualified name of the 442
interface class or to the fully qualified name of the class itself 443

• binding child element is omitted 444

• callback child element is omitted 445

 446

8.2 ComponentType of an Implementation with no @Reference or 447

@Property annotations 448

The section defines the rules for determining the properties and the references of a Java component 449
implementation that does not explicitly declare them using the @Reference or the @Property 450

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 17 of 32

annotations. Note that these rules apply only to implementation classes that contain no @Reference 451
annotations and no @Property annotations. 452

 453

In the absence of any @Property or @Reference annotations, the properties and references of an 454
implementation class are defined as follows: 455

The following setter methods and fields are taken into consideration: 456

1. Public setter methods that are not part of the implementation of an SCA service (either 457
explicitly marked with @Service or implicitly defined as described above) 458

2. Public or protected fields unless there is a public setter method for the same name 459

 460

An unannotated field or setter method is a reference if: 461

• its type is an interface annotated with @Remotable 462

• its type is an array where the element type of the array is an interface annotated with 463
@Remotable 464

• its type is a java.util.Collection where the parameterized type of the Collection or its 465
member type is an interface annotated with @Remotable 466

The reference in the component type has: 467

• name attribute with the value of the name of the field or the JavaBeans property name 468
[JAVABEANS] corresponding to the setter method name 469

• multiplicity attribute is (1..1) for the case where the type is an interface 470
multiplicity attribute is (1..n) for the cases where the type is an array or is a 471
java.util.Collection 472

• interface child element with the interface attribute set to the fully qualified name of the 473
interface class which types the field or setter method 474

• all other attributes and child elements of the reference are omitted 475

 476

An unannotated field or setter method is a property if it is not a reference following the rules above. 477

For each property of this type, the component type has a property element with: 478

• name attribute with the value of the name of the field or the JavaBeans property name 479
[JAVABEANS] corresponding to the setter method name 480

• type attribute and element attribute set as described for a property declared via a 481
@Property annotation 482

• value attribute omitted 483

• many attribute set to “false” unless the type of the field or of the setter method is an array 484
or a java.util.Collection, in which case it is set to "true". 485

• mustSupply attribute set to true 486

8.3 Java Implementation with conflicting setter methods 487

If a Java implementation class, with or without @Property and @Reference annotations, has more than 488
one setter method with the same JavaBeans property name [JAVABEANS] corresponding to the setter 489
method name, then if more than one method is inferred to set the same SCA property or to set the same 490
SCA reference, the SCA runtime MUST raise an error and MUST NOT instantiate the implementation 491
class. [JCI80002] 492

The following are examples of illegal Java implementation due to the presence of more than one setter 493
method resulting in either an SCA property or an SCA reference with the same name: 494

 495

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 18 of 32

/** Illegal since two setter methods with same Java Beans property name 496
are annotated with @Property annotation. */ 497
public class IllegalImpl1 { 498
 // Setter method with upper case initial letter 'S' 499
 @Property 500
 public void setSomeProperty(String someProperty) {...} 501
 502
 // Setter method with lower case initial letter 's' 503
 @Property 504
 public void setsomeProperty(String someProperty) {...} 505
} 506

 507
/** Illegal since setter methods with same JavaBean s property name are 508
annotated with @Reference annotation. */ 509
public class IllegalImpl2 { 510
 // Setter method with upper case initial letter 'S' 511
 @Reference 512
 public void setSomeReference(SomeService servic e) {...} 513
 514
 // Setter method with lower case initial letter 's' 515
 @Reference 516
 public void setsomeReference(SomeService servic e) {...} 517
} 518

 519
/** Illegal since two setter methods with same Java Beans property name 520
are resulting in an SCA property. Implementation h as no @Property or 521
@Reference annotations. */ 522
public class IllegalImpl3 { 523
 // Setter method with upper case initial letter 'S' 524
 public void setSomeOtherProperty(String somePro perty) {...} 525
 526
 // Setter method with lower case initial letter 's' 527
 public void setsomeOtherProperty(String somePro perty) {...} 528
} 529

 530
/** Illegal since two setter methods with same Java Beans property name 531
are resulting in an SCA reference. Implementation has no @Property or 532
@Reference annotations. */ 533
public class IllegalImpl4 { 534
 // Setter method with upper case initial letter 'S' 535
 public void setSomeOtherReference(SomeService s ervice) {...} 536
 537
 // Setter method with lower case initial letter 's' 538
 public void setsomeOtherReference(SomeService s ervice) {...} 539
} 540

 541

The following is an example of a legal Java implementation in spite of the implementation class having 542
two setter methods with same JavaBeans property name [JAVABEANS] corresponding to the setter 543
method name: 544

 545

/** Two setter methods with same JavaBeans property name, but one is 546
annotated with @Property and the other is annotated with @Reference 547
annotation. */ 548
public class WeirdButLegalImpl { 549
 // Setter method with upper case initial letter 'F' 550
 @Property 551
 public void setFoo(String foo) {...} 552

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 19 of 32

 553
 // Setter method with lower case initial letter 'f' 554
 @Reference 555
 public void setfoo(SomeService service) {...} 556
} 557

 558

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 20 of 32

9 Specifying the Java Implementation Type in an 559

Assembly 560

The following pseudo-schema defines the implementation element schema used for the Java 561
implementation type: 562

 563

<implementation.java class="xs:NCName" 564
 requires="list of xs:QName"? 565

policySets="list of xs:QName"?/> 566
 567

The implementation.java element has the following attributes: 568

• class : NCName (1..1) – the fully qualified name of the Java class of the implementation 569

• requires : QName (0..n) – a list of policy intents. See the Policy Framework specification 570
[POLICY] for a description of this attribute. 571

• policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification 572
[POLICY] for a description of this attribute. 573

 574

The <implementation.java> element MUST conform to the schema defined in sca-implementation-575
java.xsd. [JCI90001] 576

The fully qualified name of the Java class referenced by the @class attribute of <implementation.java/> 577
value MUST resolve to a Java class, using the artifact resolution rules defined in Section 10.2, that can 578
be used an Java component implementation. [JCI90002] 579

The Java class referenced by the @class attribute of <implementation.java/> MUST conform to J2SE 580
version 5.0. [JCI90003] 581

Deleted: .

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 21 of 32

10 Java Packaging and Deployment Model 582

The SCA Assembly Specification [ASSEMBLY] describes the basic packaging model for SCA 583
contributions in the chapter on Packaging and Deployment. This specification defines extensions to the 584
basic model for SCA contributions that contain Java component implementations. 585

The model for the import and export of Java classes follows the model for import-package and export-586
package defined by the OSGi Service Platform Core Specification [OSGi Core]. Similar to an OSGI 587
bundle, an SCA contribution that contains Java classes represents a classloader boundary at runtime. 588
That is, classes are loaded by a contribution specific classloader such that all contributions with 589
visibility to those classes are using the same Class Objects in the JVM. 590

10.1 Contribution Metadata Extensions 591

SCA contributions can be self contained such that all the code and metadata needed to execute the 592
components defined by the contribution is contained within the contribution. However, in larger 593
projects, there is often a need to share artifacts across contributions. This is accomplished through 594
the use of the import and export extension points as defined in the sca-contribution.xml document. 595
An SCA contribution that needs to use a Java class from another contribution can declare the 596
dependency via an <import.java/> extension element, contained within a <contribution/> element, as 597
defined below: 598
<import.java package="xs:string" location="xs:anyUR I"?/> 599

 600

The import.java element has the following attributes: 601

• package : string (1..1) – The name of one or more Java package(s) to use from another 602
contribution. Where there is more than one package, the package names are separated by a 603
comma ",". 604
 605
The package can have a version number range appended to it, separated from the package 606
name by a semicolon ";" followed by the text "version=" and the version number range, for 607
example: 608
package="com.acme.package1;version=1.4.1" 609
package="com.acme.package2;version=[1.2,1.3]" 610
 611
Version number range follows the format defined in the OSGi Core specification [OSGi Core]: 612
 613
[1.2,1.3] - enclosing square brackets - inclusive range meaning any version in the range from 614
the lowest to the highest, including the lowest and the highest 615
(1.3.1,2.4.1) - enclosing round brackets - exclusive range meaning any version in the range 616
from the lowest to the highest but not including the lowest or the highest. 617
1.4.1 - no enclosing brackets - implies any version at or later than the specified version 618
number is acceptable - equivalent to [1.4.1, infinity) 619
 620
If no version is specified for an imported package, then it is assumed to have a version range 621
of [0.0.0, infinity) - ie any version is acceptable. 622
 623

• location : anyURI (0..1) – The URI of the SCA contribution which is used to resolve the java 624
packages for this import. 625

Each Java package that is imported into the contribution MUST be included in one and only one 626
import.java element. [JCI100001] Multiple packages can be imported, either through specifying 627
multiple packages in the @package attribute or through the presence of multiple import.java 628
elements. 629

The SCA runtime MUST ensure that the package used to satisfy an import matches the package name, 630
the version number or version number range and (if present) the location specified on the import.java 631
element [JCI100002] 632

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 22 of 32

An SCA contribution that wants to allow a Java package to be used by another contribution can 633
declare the exposure via an <export.java/> extension element as defined below: 634

<export.java package="xs:string"/> 635

 636

The export.java element has the following attributes: 637

• package : string (0..1) – The name of one or more Java package(s) to expose for sharing by 638
another contribution. Where there is more than one package, the package names are 639
separated by a comma ",". 640
The package can have a version number appended to it, separated from the package name 641
by a semicolon ";" followed by the text "version=" and the version number: 642
package="com.acme.package1;version=1.4.1" 643
 644
The package can have a uses directive appended to it, separated from the package name by 645
a semicolon ";" followed by the text "uses=" which is then followed by a list of package names 646
contained within single quotes "'" (needed as the list contains commas). 647
 648
The uses directive indicates that the SCA runtime MUST ensure that any SCA contribution that 649
imports this package from this exporting contribution also imports the same version as is used by 650
this exporting contribution of any of the packages contained in the uses directive. [JCI100003] 651
Typically, the packages in the uses directive are packages used in the interface to the package 652
being exported (eg as parameters or as classes/interfaces that are extended by the exported 653
package). Example: 654
 655
package="com.acme.package1;uses='com.acme.package2,com.acme.package3'" 656
 657

If no version information is specified for an exported package, the version defaults to 0.0.0. 658

If no uses directive is specified for an exported package, there is no requirement placed on a 659
contribution which imports the package to use any particular version of any other packages. 660

Each Java package that is exported from the contribution MUST be included in one and only one 661
export.java element. [JCI100004] Multiple packages can be exported, either through specifying 662
multiple packages in the @package attribute or through the presence of multiple export.java 663
elements. 664

For example, a contribution that wants to: 665

• use classes from the some.package package from another contribution (any version) 666

• use classes of the some.other.package package from another contribution, at exactly version 667
2.0.0 668

• expose the my.package package from its own contribution, with version set to 1.0.0 669

would specify an sca-contribution.xml file as follows: 670

 671

<?xml version="1.0" encoding="ASCII"?> 672
<contribution xmlns=http://docs.oasis-open.org/ns/o pencsa/sca/200712> 673
 … 674
 <import.java package=”some.package”/> 675
 <import.java package=”some.other.package;version =[2.0.0]”/> 676
 <export.java package=”my.package;version=1.0.0”/ > 677
</contribution> 678

 679

A Java package that is specified on an export element MUST be contained within the contribution 680
containing the export element. [JCI100007] 681

 682

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 23 of 32

10.2 Java Artifact Resolution 683

The SCA runtime MUST ensure that within a contribution, Java classes are resolved according to the 684
following steps in the order specified: 685

1. If the contribution contains a Java Language specific resolution mechanism such as a classpath 686
declaration in the archive’s manifest, then that mechanism is used first to resolve classes. If the class is 687
not found, then continue searching at step 2. 688

2. If the package of the Java class is specified in an import declaration then: 689

a) if @location is specified, the location searched for the class is the contribution declared by the 690
@location attribute. 691

b) if @location is not specified, the locations which are searched for the class are the contribution(s) in 692
the Domain which have export declarations for that package. If there is more than one contribution 693
exporting the package, then the contribution chosen is SCA Runtime dependent, but is always the same 694
contribution for all imports of the package. 695

If the java package is not found, continue to step 3. 696

3. The contribution itself is searched using the archive resolution rules defined by the Java Language. 697

[JCI100008] 698

10.3 Classloader Model 699

The SCA runtime MUST ensure that the Java classes used by a contribution are all loaded by a class 700
loader that is unique for each contribution in the Domain. [JCI100010] The SCA runtime MUST ensure 701
that Java classes that are imported into a contribution are loaded by the exporting contribution’s class 702
loader [JCI100011], as described in the section "Contribution Metadata Extensions" 703

For example, suppose contribution A using class loader ACL, imports package some.package from 704
contribution B that is using class loader BCL then expression; 705

ACL.loadClass(importedClassName) == BCL.loadClass(i mportedClassName) 706

evaluates to true. 707

The SCA runtime MUST set the thread context classloader of a component implementation class to the 708
classloader of its containing contribution. [JCI100009] 709

 710

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 24 of 32

11 Conformance 711

The XML schema available at the namespace URI, defined by this specification, is considered to be 712
authoritative, and takes precedence over the XML Schema defined in the appendix of this document. 713

An SCA runtime MUST reject a contribution file that does not conform to the sca-contribution-java.xsd 714
schema. [JCI110001] 715

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 25 of 32

A. XML Schemas 716

A.1 sca-contribution-java.xsd 717

<?xml version ="1.0" encoding ="UTF-8" ?> 718
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Re served. OASIS trademark, 719
IPR and other policies apply. --> 720
<schema xmlns ="http://www.w3.org/2001/XMLSchema" 721
 xmlns:sca ="http://docs.oasis-open.org/ns/opencsa/sca/200712" 722
 targetNamespace ="http://docs.oasis-open.org/ns/opencsa/sca/200712" 723
 elementFormDefault ="qualified" > 724
 725
 <include schemaLocation ="sca-core-1.1-schema-200803.xsd" /> 726
 727
 <!-- Import.java --> 728
 <element name="import.java" type ="sca:JavaImportType" /> 729
 <complexType name="JavaImportType" > 730
 <complexContent > 731
 <extension base ="sca:Import" > 732
 <attribute name="package" type ="NCName" use ="required" /> 733
 <attribute name="location" type ="anyURI" use ="optional" /> 734
 </ extension > 735
 </ complexContent > 736
 </ complexType > 737
 738
 <!-- Export.java --> 739
 <element name="export.java" type ="sca:JavaExportType" /> 740
 <complexType name="JavaExportType" > 741
 <complexContent > 742
 <extension base ="sca:Export" > 743
 < attribute name="package" type ="NCName" use ="required" /> 744
 </ extension > 745
 </ complexContent > 746
 </ complexType > 747
 748

</ schema> 749

A.2 sca-implementation-java.xsd 750

<?xml version="1.0" encoding="UTF-8"?> 751
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Re served. 752
 OASIS trademark, IPR and other policies apply. --> 753
<schema xmlns="http://www.w3.org/2001/XMLSchema" 754
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa /sca/200903" 755
 targetNamespace="http://docs.oasis-open.org/ns/o pencsa/sca/200903" 756
 elementFormDefault="qualified"> 757
 758
 <include schemaLocation="sca-core-1.1-cd03.xsd"/ > 759
 760
 <!-- Java Implementation --> 761
 <element name="implementation.java" type="sca:Ja vaImplementation" 762
 substitutionGroup="sca:implementation"/ > 763
 <complexType name="JavaImplementation"> 764
 <complexContent> 765
 <extension base="sca:Implementation"> 766

Comment [ME1]: sca-
implementation-java.xsd
missing - Issue required

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 26 of 32

 <sequence> 767
 <any namespace="##other" processCont ents="lax" minOccurs="0" 768
 maxOccurs="unbounded"/> 769
 </sequence> 770
 <attribute name="class" type="NCName" u se="required"/> 771
 <anyAttribute namespace="##any" process Contents="lax"/> 772
 </extension> 773
 </complexContent> 774
 </complexType> 775
 776

</schema> 777

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 27 of 32

B. Conformance Items 778

This section contains a list of conformance items for the SCA Java Component Implementation 779
specification. 780

 781

Conformance ID Description

[JCI20001] The services provided by a Java-based implementation MUST
have an interface defined in one of the following ways:

• A Java interface

• A Java class

• A Java interface generated from a Web Services
Description Language [WSDL] (WSDL) portType.

[JCI20002] Java implementation classes MUST implement all the operations
defined by the service interface.

[JCI50001] A Java implementation class MUST provide a public or protected
constructor that can be used by the SCA runtime to create the
implementation instance.

[JCI50002] The @Constructor annotation MUST only be specified on one
constructor; the SCA container MUST raise an error if multiple
constructors are annotated with @Constructor.

[JCI50003] Cyclic references between components MUST be handled by the
SCA runtime in one of two ways:

• If any reference in the cycle is optional, then the container
can inject a null value during construction, followed by injection of
a reference to the target before invoking any service.

• The container can inject a proxy to the target service;
invocation of methods on the proxy can result in a
ServiceUnavailableException

[JCI50004] The constructor to use for the creation of an implementation
instance MUST be selected by the SCA runtime using the
sequence:

1. A declared constructor annotated with a @Constructor
annotation.

2. A declared constructor that unambiguously identifies all
property and reference values.

3. A no-argument constructor.

[JCI60001] The SCA runtime MUST support the STATELESS and
COMPOSITE implementation scopes.

[JCI80001] An SCA runtime MUST introspect the componentType of a Java
implementation class following the rules defined in the section
"Component Type of a Java Implementation".

[JCI80002] If a Java implementation class, with or without @Property and
@Reference annotations, has more than one setter method with
the same JavaBeans property name [JAVABEANS]

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 28 of 32

corresponding to the setter method name, then if more than one
method is inferred to set the same SCA property or to set the
same SCA reference, the SCA runtime MUST raise an error and
MUST NOT instantiate the implementation class.

[JCI90001] The <implementation.java> element MUST conform to the
schema defined in sca-implementation-java.xsd.

[JCI90002] The fully qualified name of the Java class referenced by the
@class attribute of <implementation.java/> value MUST resolve
to a Java class, using the artifact resolution rules defined in
Section 10.2, that can be used an Java component
implementation.

[JCI90003] The Java class referenced by the @class attribute of
<implementation.java/> MUST conform to J2SE version 5.0.

[JCI100001] Each Java package that is imported into the contribution MUST
be included in one and only one import.java element.

[JCI100002] The SCA runtime MUST ensure that the package used to satisfy
an import matches the package name, the version number or
version number range and (if present) the location specified on
the import.java element.

[JCI100003] The uses directive indicates that the SCA runtime MUST ensure
that any SCA contribution that imports this package from this
exporting contribution also imports the same version as is used
by this exporting contribution of any of the packages contained in
the uses directive.

[JCI100004] Each Java package that is exported from the contribution MUST
be included in one and only one export.java element.

[JCI100007] A Java package that is specified on an export element MUST be
contained within the contribution containing the export element.

[JCI100008] The SCA runtime MUST ensure that within a contribution, Java
classes are resolved according to the following steps in the order
specified:

1. If the contribution contains a Java Language specific resolution
mechanism such as a classpath declaration in the archive’s
manifest, then that mechanism is used first to resolve classes. If
the class is not found, then continue searching at step 2.

2. If the package of the Java class is specified in an import
declaration then:

a) if @location is specified, the location searched for the class is
the contribution declared by the @location attribute.

b) if @location is not specified, the locations which are searched
for the class are the contribution(s) in the Domain which have
export declarations for that package. If there is more than one
contribution exporting the package, then the contribution chosen
is SCA Runtime dependent, but is always the same contribution
for all imports of the package.

If the java package is not found, continue to step 3.

3. The contribution itself is searched using the archive resolution
rules defined by the Java Language.

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 29 of 32

[JCI100009] The SCA runtime MUST set the thread context classloader of a
component implementation class to the classloader of its
containing contribution.

[JCI100010] The SCA runtime MUST ensure that the Java classes used by a
contribution are all loaded by a class loader that is unique for
each contribution in the Domain.

[JCI100011] The SCA runtime MUST ensure that Java classes that are
imported into a contribution are loaded by the exporting
contribution’s class loader

[JCI110001] An SCA runtime MUST reject a contribution file that does not
conform to the sca-contribution-java.xsd schema.

 782

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 30 of 32

C. Acknowledgements 783

The following individuals have participated in the creation of this specification and are gratefully 784
acknowledged: 785

Participants: 786
[Participant Name, Affiliation | Individual Member] 787
[Participant Name, Affiliation | Individual Member] 788

 789

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 31 of 32

D. Non-Normative Text 790

sca-javaci-1.1-spec-wd04 20th March 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 32 of 32

E. Revision History 791

[optional; should not be included in OASIS Standards] 792

 793

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

wd02 2008-12-16 David Booz * Applied resolution for issue 55, 32

* Editorial cleanup to make a working draft

 - [1] style changed to [ASSEMBLY]

 - updated namespace references

wd03 2009-02-26 David Booz • Accepted all changes from wd02

• Applied 60, 87, 117, 126

• Removed conversations

wd04 2009-03-20 Mike Edwards Accepted all changes from wd03

Issue 105 - RFC 2119 Language added -
covers most of the specification.

Accepted all changes after RFC 2119 language
added.

 794

 795

