

Service Component Architecture Java
Component Implementation
Specification Version 1.1
Committee Draft 01/Public Review Draft 01

4th May 2009
Specification URIs:
This Version:

http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec-cd01.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-cd01.doc
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-cd01.pdf

Previous Version:

Latest Version:
http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec.doc
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec.pdf

Latest Approved Version:

Technical Committee:
OASIS Service Component Architecture / J (SCA-J) TC

Chair(s):
David Booz, IBM
Mark Combellack, Avaya

Editor(s):
David Booz, IBM
Mike Edwards, IBM
Anish Karmarkar, Oracle

Related work:
This specification replaces or supersedes:

• Service Component Architecture Java Component Implementation Specification Version
1.00, 15 February 2007

This specification is related to:
• Service Component Architecture Assembly Model Specification Version 1.1
• Service Component Architecture Policy Framework Specification Version 1.1
• Service Component Architecture Java Common Annotations and APIs Specification

Version 1.1
Declared XML Namespace(s):

http://docs.oasis-open.org/ns/opencsa/sca/200903

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 1 of 34

http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec-wd08.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-wd05.doc
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec-wd08.pdf
http://docs.oasis-open.org/sca-j/sca-javaci-1.1-spec.html
http://docs.oasis-open.org//sca-j/sca-javaci-1.1-spec.doc
http://docs.oasis-open.org//sca-j/sca-javaci-draft-20070926.pdf
http://www.oasis-open.org/committees/
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 2 of 34

Abstract:
This specification extends the SCA Assembly Model by defining how a Java class provides an
implementation of an SCA component, including its various attributes such as services,
references, and properties and how that class is used in SCA as a component implementation
type. It requires all the annotations and APIs as defined by the SCA Java Common Annotations
and APIs specification.
This specification also details the use of metadata and the Java API defined in the context of a
Java class used as a component implementation type.

Status:
This document was last revised or approved by the OASIS Service Component Architecture / J
(SCA-J) TC on the above date. The level of approval is also listed above. Check the “Latest
Version” or “Latest Approved Version” location noted above for possible later revisions of this
document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-j/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-j/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/sca-j/.

http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/ipr.php
http://www.oasis-open.org/committees/sca-j/
http://www.oasis-open.org/committees/sca-j/

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 3 of 34

Notices
Copyright © OASIS® 2005, 2009. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 4 of 34

Table of Contents
1 Introduction ... 5

1.1 Terminology .. 5
1.2 Normative References .. 5
1.3 Non-Normative References .. 5

2 Service .. 6
2.1 Use of @Service ... 6
2.2 Local and Remotable Services ... 8
2.3 Introspecting Services Offered by a Java Implementation ... 8
2.4 Non-Blocking Service Operations ... 8
2.5 Callback Services ... 8

3 References ... 9
3.1 Reference Injection ... 9
3.2 Dynamic Reference Access.. 9

4 Properties ... 10
4.1 Property Injection .. 10
4.2 Dynamic Property Access ... 10

5 Implementation Instance Creation .. 11
6 Implementation Scopes and Lifecycle Callbacks ... 13
7 Accessing a Callback Service .. 14
8 Component Type of a Java Implementation .. 15

8.1 Component Type of an Implementation with no @Service Annotations .. 16
8.2 ComponentType of an Implementation with no @Reference or @Property Annotations 17
8.3 Component Type Introspection Examples .. 18
8.4 Java Implementation with Conflicting Setter Methods .. 19

9 Specifying the Java Implementation Type in an Assembly .. 21
10 Java Packaging and Deployment Model .. 22

10.1 Contribution Metadata Extensions .. 22
10.2 Java Artifact Resolution .. 24
10.3 Class Loader Model .. 24

11 Conformance .. 25
11.1 SCA Java Component Implementation Composite Document ... 25
11.2 SCA Java Component Implementation Contribution Document .. 25
11.3 SCA Runtime .. 25

A. XML Schemas .. 26
A.1 sca-contribution-java.xsd .. 26
A.2 sca-implementation-java.xsd .. 26

B. Conformance Items .. 28
C. Acknowledgements .. 31
D. Non-Normative Text ... 33
E. Revision History .. 34

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 5 of 34

1 Introduction 1

This specification extends the SCA Assembly Model [ASSEMBLY] by defining how a Java class provides
an implementation of an SCA component (including its various attributes such as services, references,
and properties) and how that class is used in SCA as a component implementation type.

2
3
4
5
6
7
8
9

10
11

13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38

This specification requires all the annotations and APIs as defined by the SCA Java Common
Annotations and APIs specification [JAVACAA]. All annotations and APIs referenced in this document
are defined in the former unless otherwise specified. Moreover, the semantics defined in the Common
Annotations and APIs specification are normative.

In addition, it details the use of metadata and the Java API defined in the SCA Java Common
Annotations and APIs Specification [JAVACAA] in the context of a Java class used as a component
implementation type

1.1 Terminology 12

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References 16

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[ASSEMBLY] SCA Assembly Model Specification Version 1.1,
 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-

cd03.pdf

[POLICY] SCA Policy Framework Specification Version 1.1,
 http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf

[JAVACAA] SCA Java Common Annotations and APIs Specification Version 1.1,
 http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd03.pdf

[WSDL] WSDL Specification, WSDL 1.1: http://www.w3.org/TR/wsdl

[OSGi Core] OSGI Service Platform Core Specification, Version 4.0.1
 http://www.osgi.org/download/r4v41/r4.core.pdf

[JAVABEANS] JavaBeans 1.01 Specification,

http://java.sun.com/javase/technologies/desktop/javabeans/api/

1.3 Non-Normative References 37

TBD TBD

http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf
http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-spec-cd03.pdf
http://www.w3.org/TR/wsdl
http://www.osgi.org/download/r4v41/r4.core.pdf
http://java.sun.com/javase/technologies/desktop/javabeans/api/

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 6 of 34

2 Service 39

A component implementation based on a Java class can provide one or more services. 40

The services provided by a Java-based implementation MUST have an interface defined in one of the 41
following ways: 42

• A Java interface 43
• A Java class 44
• A Java interface generated from a Web Services Description Language [WSDL] (WSDL) 45

portType. 46
47 [JCI20001]

Java implementation classes MUST implement all the operations defined by the service interface.
[JCI20002] If the service interface is defined by a Java interface, the Java-based component can
either implement that Java interface, or implement all the operations of the interface.

48
49
50

51
52

53
54
55
56

58
59
60
61
62

63
64

65

Java interfaces generated from WSDL portTypes are remotable, see the WSDL to Java and Java to
WSDL section of the SCA Java Common Annotations and APIs Specification [JAVACAA] for details.

A Java implementation type can specify the services it provides explicitly through the use of the
@Service annotation. In certain cases as defined below, the use of the @Service annotation is not
necessary and the services a Java implementation type offers can be inferred from the implementation
class itself.

2.1 Use of @Service 57

Service interfaces can be specified as a Java interface. A Java class, which is a component
implementation, can offer a service by implementing a Java interface specifying the service contract.
As a Java class can implement multiple interfaces, some of which might not define SCA services, the
@Service annotation can be used to indicate the services provided by the implementation and their
corresponding Java interface definitions.

The following is an example of a Java service interface and a Java implementation which provides a
service using that interface:

Interface:

package services.hello; 66
67

public interface HelloService { 68
69

 String hello(String message); 70
} 71

72

73

Implementation class:

@Service(HelloService.class) 74
public class HelloServiceImpl implements HelloService { 75

76
 public String hello(String message) { 77

... 78
 } 79
} 80

81

82
83

The XML representation of the component type for this implementation is shown below for illustrative
purposes. There is no need to author the component type as it is introspected from the Java class.

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 7 of 34

84

<?xml version="1.0" encoding="UTF-8"?> 85
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 86

87
 <service name="HelloService"> 88

<interface.java interface="services.hello.HelloService"/> 89
 </service> 90

91
</componentType> 92

93

94
95
96
97

98

Another possibility is to use the Java implementation class itself to define a service offered by a
component and the interface of the service. In this case, the @Service annotation can be used to
explicitly declare the implementation class defines the service offered by the implementation. In this
case, a component will only offer services declared by @Service. The following illustrates this:

package services.hello; 99
100

@Service(HelloServiceImpl.class) 101
public class HelloServiceImpl implements AnotherInterface { 102

103
 public String hello(String message) { 104

... 105
 } 106

107 …
} 108

109
110
111
112

In the above example, HelloServiceImpl offers one service as defined by the public methods of the
implementation class. The interface AnotherInterface in this case does not specify a service offered by
the component. The following is an XML representation of the introspected component type:

<?xml version="1.0" encoding="UTF-8"?> 113
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 114

115
 <service name="HelloServiceImpl"> 116

<interface.java interface="services.hello.HelloServiceImpl"/> 117
 </service> 118

119
</componentType> 120

121

122
123

124

The @Service annotation can be used to specify multiple services offered by an implementation as in
the following example:

@Service(interfaces={HelloService.class, AnotherInterface.class}) 125
public class HelloServiceImpl implements HelloService, AnotherInterface 126
{ 127

128
 public String hello(String message) { 129

... 130
} 131

 … 132
} 133

134

135

The following snippet shows the introspected component type for this implementation.

<?xml version="1.0" encoding="UTF-8"?> 136

http://docs.oasis-open.org/ns/opencsa/sca/200712
http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 8 of 34

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200903"> 137
138

 <service name="HelloService"> 139
<interface.java interface="services.hello.HelloService"/> 140

 </service> 141
 <service name="AnotherService"> 142

<interface.java interface="services.hello.AnotherService"/> 143
 </service> 144

145
</componentType> 146

148
149
150
151

2.2 Local and Remotable Services 147

A Java service contract defined by an interface or implementation class uses the @Remotable
annotation to declare that the service follows the semantics of remotable services as defined by the
SCA Assembly Model Specification [ASSEMBLY]. The following example demonstrates the use of the
@Remotable annotation:

package services.hello; 152
153

@Remotable 154
public interface HelloService { 155

156
 String hello(String message); 157
} 158

159

160
161
162

163
164

166
167

168
169
170
171
172
173

175
176
177
178

180
181
182
183

Unless annotated with a @Remotable annotation, a service defined by a Java interface or a Java
implementation class is inferred to be a local service as defined by the SCA Assembly Model
Specification [ASSEMBLY].

An implementation class can provide hints to the SCA runtime about whether it can achieve pass-by-
value semantics without making a copy by using the @AllowsPassByReference annotation.

2.3 Introspecting Services Offered by a Java Implementation 165

The services offered by a Java implementation class are determined through introspection, as defined
in the section "Component Type of a Java Implementation".

If the interfaces of the SCA services are not specified with the @Service annotation on the
implementation class, it is assumed that all implemented interfaces that have been annotated as
@Remotable are the service interfaces provided by the component. If an implementation class has
only implemented interfaces that are not annotated with a @Remotable annotation, the class is
considered to implement a single local service whose type is defined by the class (note that local
services can be typed using either Java interfaces or classes).

2.4 Non-Blocking Service Operations 174

Service operations defined by a Java interface or by a Java implementation class can use the
@OneWay annotation to declare that the SCA runtime needs to honor non-blocking semantics as
defined by the SCA Assembly Model Specification [ASSEMBLY] when a client invokes the service
operation.

2.5 Callback Services 179

A callback interface can be declared by using the @Callback annotation on the service interface or
Java implementation class as described in the Java Common Annotations and APIs Specification
[JAVACAA]. Alternatively, the @callbackInterface attribute of the <interface.java/> element can be
used to declare a callback interface.

http://docs.oasis-open.org/ns/opencsa/sca/200712

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 9 of 34

3 References 184

A Java implementation class can obtain service references either through injection or through the
ComponentContext API as defined in the SCA Java Common Annotations and APIs Specification
[JAVACAA]. When possible, the preferred mechanism for accessing references is through injection.

185
186
187

189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205

206
207
208
209

210
211
212

213
214
215
216

217
218
219

221
222
223

3.1 Reference Injection 188

A Java implementation type can explicitly specify its references through the use of the @Reference
annotation as in the following example:

public class ClientComponentImpl implements Client {
 private HelloService service;

 @Reference
 public void setHelloService(HelloService service) {

this.service = service;
}

}

If @Reference marks a setter method, the SCA runtime provides the appropriate implementation of
the service reference contract as specified by the parameter type of the method. This is done by
invoking the setter method of an implementation instance of the Java class. When injection occurs is
defined by the scope of the implementation. However, injection always occurs before the first service
method is called.

If @Reference marks a field, the SCA runtime provides the appropriate implementation of the service
reference contract as specified by the field type. This is done by setting the field on an implementation
instance of the Java class. When injection occurs is defined by the scope of the implementation.
However, injection always occurs before the first service method is called.

If @Reference marks a parameter on a constructor, the SCA runtime provides the appropriate
implementation of the service reference contract as specified by the constructor parameter during
creation of an implementation instance of the Java class.

Except for constructor parameters, references marked with the @Reference annotation can be
declared with required=false, as defined by the Java Common Annotations and APIs Specification
[JAVACAA] - i.e., the reference multiplicity is 0..1 or 0..n, where the implementation is designed to
cope with the reference not being wired to a target service.

In the case where a Java class contains no @Reference or @Property annotations, references are
determined by introspecting the implementation class as described in the section "ComponentType of
an Implementation with no @Reference or @Property annotations ".

3.2 Dynamic Reference Access 220

As an alternative to reference injection, service references can be accessed dynamically through the
API methods ComponentContext.getService() and ComponentContext.getServiceReference() methods
as described in the Java Common Annotations and APIs Specification [JAVACAA].

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 10 of 34

4 Properties 224

4.1 Property Injection 225

Properties can be obtained either through injection or through the ComponentContext API as defined
in the SCA Java Common Annotations and APIs Specification [JAVACAA]. When possible, the preferred
mechanism for accessing properties is through injection.

226
227
228

229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244

245
246
247
248

249
250

251
252
253
254

255
256
257

259
260
261

A Java implementation type can explicitly specify its properties through the use of the @Property
annotation as in the following example:

public class ClientComponentImpl implements Client {
 private int maxRetries;

 @Property
 public void setMaxRetries(int maxRetries) {

this.maxRetries = maxRetries;
}

}

If the @Property annotation marks a setter method, the SCA runtime provides the appropriate
property value by invoking the setter method of an implementation instance of the Java class. When
injection occurs is defined by the scope of the implementation. However, injection always occurs
before the first service method is called.

If the @Property annotation marks a field, the SCA runtime provides the appropriate property value
by setting the value of the field of an implementation instance of the Java class. When injection occurs
is defined by the scope of the implementation. However, injection always occurs before the first
service method is called.

If the @Property annotation marks a parameter on a constructor, the SCA runtime provides the
appropriate property value during creation of an implementation instance of the Java class.

Except for constructor parameters, properties marked with the @Property annotation can be declared
with required=false as defined by the Java Common Annotations and APIs Specification [JAVACAA],
i.e., the property mustSupply attribute is false and where the implementation is designed to cope with
the component configuration not supplying a value for the property.

In the case where a Java class contains no @Reference or @Property annotations, properties are
determined by introspecting the implementation class as described in the section "ComponentType of
an Implementation with no @Reference or @Property annotations ".

4.2 Dynamic Property Access 258

As an alternative to property injection, properties can also be accessed dynamically through the
ComponentContext.getProperty() method as described in the Java Common Annotations and APIs
Specification [JAVACAA].

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 11 of 34

5 Implementation Instance Creation 262

A Java implementation class MUST provide a public or protected constructor that can be used by the 263
SCA runtime to create the implementation instance. [JCI50001] The constructor can contain
parameters; in the presence of such parameters, the SCA container passes the applicable property or
reference values when invoking the constructor. Any property or reference values not supplied in this
manner are set into the field or are passed to the setter method associated with the property or
reference before any service method is invoked.

264
265
266
267
268

The constructor to use for the creation of an implementation instance MUST be selected by the SCA 269
runtime using the sequence: 270

1. A declared constructor annotated with a @Constructor annotation. 271
2. A declared constructor, all of whose parameters are annotated with either @Property or 272

@Reference. 273
3. A no-argument constructor. 274

275 [JCI50004]
The @Constructor annotation MUST only be specified on one constructor; the SCA container MUST 276
raise an error if multiple constructors are annotated with @Constructor. [JCI50002] 277

The SCA runtime MUST raise an error if there are multiple constructors that are not annotated with 278
@Constructor and have a non-empty parameter list with all parameters annotated with either 279
@Property or @Reference. [JCI50005] 280

281
282

The property or reference associated with each parameter of a constructor is identified through the
presence of a @Property or @Reference annotation on the parameter declaration.

Cyclic references between components MUST be handled by the SCA runtime in one of two ways: 283
• If any reference in the cycle is optional, then the container can inject a null value during 284

construction, followed by injection of a reference to the target before invoking any service. 285
• The container can inject a proxy to the target service; invocation of methods on the proxy can 286

result in a ServiceUnavailableException 287
288

289
290
291
292

[JCI50003]

The following are examples of legal Java component constructor declarations:

/** Constructor declared using @Constructor annotation */
public class Impl1 {
 private String someProperty;
 @Constructor 293
 public Impl1(@Property("someProperty") String propval) {...} 294

295
296
297
298
299
300

}

/** Declared constructor unambiguously identifying all Property
 * and Reference values */
public class Impl2 {
 private String someProperty;
 private SomeService someReference; 301
 public Impl2(@Property("someProperty") String a, 302
 @Reference("someReference") SomeService b) 303
 {...} 304

305
306
307
308
309
310

}

/** Declared constructor unambiguously identifying all Property
 * and Reference values plus an additional Property injected
 * via a setter method */

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 12 of 34

311
312
313

public class Impl3 {
 private String someProperty;
 private String anotherProperty;
 private SomeService someReference; 314
 public Impl3(@Property("someProperty") String a, 315
 @Reference("someReference") SomeService b) 316
 {...} 317
 @Property 318
 public void setAnotherProperty(String anotherProperty) {...} 319

320
321

}

/** No-arg constructor */ 322

323 public class Impl4 {
 @Property 324

325 public String someProperty;
 @Reference 326
 public SomeService someReference; 327
 public Impl4() {...} 328

329
330

}

/** Unannotated implementation with no-arg constructor */ 331

332
333

public class Impl5 {
 public String someProperty;
 public SomeService someReference; 334
 public Impl5() {...} 335

336 }

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 13 of 34

6 Implementation Scopes and Lifecycle Callbacks 337

The Java implementation type supports all of the scopes defined in the Java Common Annotations and 338
APIs Specification: STATELESS and COMPOSITE. The SCA runtime MUST support the STATELESS and 339
COMPOSITE implementation scopes. [JCI60001] 340

341

342

Implementations specify their scope through the use of the @Scope annotation as in:

@Scope("COMPOSITE") 343

344
345
346
347
348

349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365

public class ClientComponentImpl implements Client {
 // …

}
When the @Scope annotation is not specified on an implementation class, its scope is defaulted to
STATELESS.

A Java component implementation specifies init and destroy methods by using the @Init and
@Destroy annotations respectively, as described in the Java Common Annotations and APIs
specification [JAVACAA].

For example:

public class ClientComponentImpl implements Client {

@Init
public void init() {

//…
 }

 @Destroy

public void destroy() {
//…

 }
}

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 14 of 34

7 Accessing a Callback Service 366

Java implementation classes that implement a service which has an associated callback interface can
use the @Callback annotation to have a reference to the callback service associated with the current
invocation injected on a field or injected via a setter method.

367
368
369

370
371
372

As an alternative to callback injection, references to the callback service can be accessed dynamically
through the API methods RequestContext.getCallback() and RequestContext.getCallbackReference()
as described in the Java Common Annotations and APIs Specification [JAVACAA].

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 15 of 34

8 Component Type of a Java Implementation 373

An SCA runtime MUST introspect the componentType of a Java implementation class following the rules 374
defined in the section "Component Type of a Java Implementation". [JCI80001] 375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

410
411
412
413
414
415
416
417

The component type of a Java Implementation is introspected from the implementation class as follows:

A <service/> element exists for each interface or implementation class identified by a @Service
annotation:

• name attribute is the simple name of the interface or implementation class (i.e., without the
package name)

• requires attribute is omitted unless the service implementation class is annotated with general or
specific intent annotations - in this case, the requires attribute is present with a value equivalent
to the intents declared by the service implementation class.

• policySets attribute is omitted unless the service implementation class is annotated with
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy
sets declared by the @PolicySets annotation.

• <interface.java> child element is present with the interface attribute set to the fully qualified name
of the interface or implementation class identified by the @Service annotation. See the Java
Common Annotations and APIs specification [JAVACAA] for a definition of how policy annotations
on Java interfaces, Java classes, and methods of Java interfaces are handled.

• binding child element is omitted
• callback child element is omitted

A <reference/> element exists for each @Reference annotation:

• name attribute has the value of the name parameter of the @Reference annotation, if present,
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS]
corresponding to the setter method name, depending on what element of the class is annotated
by the @Reference (note: for a constructor parameter, the @Reference annotation needs to have
a name parameter)

• autowire attribute is omitted
• wiredByImpl attribute is omitted
• target attribute is omitted
• a) where the type of the field, setter or constructor parameter is an interface, the multiplicity

attribute is (1..1) unless the @Reference annotation contains required=false, in which case it
is (0..1)
b) where the type of the field, setter or parameter is an array or is a java.util.Collection, the
multiplicity attribute is (1..n) unless the @Reference annotation contains required=false, in
which case it is (0..n)

• requires attribute is omitted unless the field, setter method or parameter is also annotated with
general or specific intent annotations - in this case, the requires attribute is present with a value
equivalent to the intents declared by the Java reference.

• policySets attribute is omitted unless the field, setter method or parameter is also annotated with
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy
sets declared by the @PolicySets annotation.

• <interface.java> child element with the interface attribute set to the fully qualified name of the
interface class which types the field or setter method. See the Java Common Annotations and

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 16 of 34

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

454

455
456
457
458
459
460
461

462
463
464

465

APIs specification [JAVACAA] for a definition of how policy annotations on Java interfaces and
methods of Java interfaces are handled.

• binding child element is omitted
• callback child element is omitted

A <property/> element exists for each @Property annotation:

• name attribute has the value of the name parameter of the @Property annotation, if present,
otherwise it is the name of the field or the JavaBeans property name [JAVABEANS]
corresponding to the setter method name, depending on what element of the class is annotated
by the @Property (note: for a constructor parameter, the @Property annotation needs to have a
name parameter)

• value attribute is omitted
• type attribute which is set to the XML type implied by the JAXB mapping of the Java type of the

field or the Java type defined by the parameter of the setter method. Where the type of the field
or of the setter method is an array, the element type of the array is used. Where the type of the
field or of the setter method is a java.util.Collection, the parameterized type of the Collection or its
member type is used. If the JAXB mapping is to a global element rather than a type (JAXB
@XMLRootElement annotation), the type attribute is omitted.

• element attribute is omitted unless the JAXB mapping of the Java type of the field or the Java
type defined by the parameter of the setter method is to a global element (JAXB
@XMLRootElement annotation). In this case, the element attribute has the value of the name of
the XSD global element implied by the JAXB mapping.

• many attribute is set to “false” unless the type of the field or of the setter method is an array or a
java.util.Collection, in which case it is set to "true".

• mustSupply attribute is set to "true" unless the @Property annotation has required=false, in which
case it is set to "false"

An <implementation.java/> element exists if the service implementation class is annotated with general or
specific intent annotations or with @PolicySets:

• requires attribute is omitted unless the service implementation class is annotated with general or
specific intent annotations - in this case, the requires attribute is present with a value equivalent
to the intents declared by the service implementation class.

• policySets attribute is omitted unless the service implementation class is annotated with
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy
sets declared by the @PolicySets annotation.

8.1 Component Type of an Implementation with no @Service 453
Annotations

The section defines the rules for determining the services of a Java component implementation that does
not explicitly declare them using the @Service annotation. Note that these rules apply only to
implementation classes that contain no @Service annotations.
If there are no SCA services specified with the @Service annotation in an implementation class, the class
offers:

• either: one Service for each of the interfaces implemented by the class where the interface is
annotated with @Remotable.

• or: if the class implements zero interfaces where the interface is annotated with @Remotable,
then by default the implementation offers a single local service whose type is the
implementation class itself

A <service/> element exists for each service identified in this way:

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 17 of 34

466
467
468
469
470
471
472
473
474
475
476
477
478

480

481
482
483
484
485

486
487
488
489
490

491

492

493
494

495
496

497
498

499
500
501

502
503
504

505
506
507
508

509
510
511

• name attribute is the simple name of the interface or the simple name of the class
• requires attribute is omitted unless the service implementation class is annotated with general or

specific intent annotations - in this case, the requires attribute is present with a value equivalent
to the intents declared by the service implementation class.

• policySets attribute is omitted unless the service implementation class is annotated with
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the policy
sets declared by the @PolicySets annotation.

• <interface.java> child element is present with the interface attribute set to the fully qualified name
of the interface class or to the fully qualified name of the class itself. See the Java Common
Annotations and APIs specification [JAVACAA] for a definition of how policy annotations on Java
interfaces, Java classes, and methods of Java interfaces are handled.

• binding child element is omitted
• callback child element is omitted

8.2 ComponentType of an Implementation with no @Reference or 479
@Property Annotations

The section defines the rules for determining the properties and the references of a Java component
implementation that does not explicitly declare them using the @Reference or the @Property
annotations. Note that these rules apply only to implementation classes that contain no @Reference
annotations and no @Property annotations.

In the absence of any @Property or @Reference annotations, the properties and references of an
implementation class are defined as follows:
The following setter methods and fields are taken into consideration:

1. Public setter methods that are not part of the implementation of an SCA service (either
explicitly marked with @Service or implicitly defined as described above)

2. Public or protected fields unless there is a public setter method for the same name

An unannotated field or setter method is a reference if:
• its type is an interface annotated with @Remotable

• its type is an array where the element type of the array is an interface annotated with
@Remotable

• its type is a java.util.Collection where the parameterized type of the Collection or its member
type is an interface annotated with @Remotable

The reference in the component type has:
• name attribute with the value of the name of the field or the JavaBeans property name

[JAVABEANS] corresponding to the setter method name

• multiplicity attribute is (1..1) for the case where the type is an interface
multiplicity attribute is (1..n) for the cases where the type is an array or is a
java.util.Collection

• <interface.java> child element with the interface attribute set to the fully qualified name of
the interface class which types the field or setter method. See the Java Common Annotations
and APIs specification [JAVACAA] for a definition of how policy annotations on Java interfaces
and methods of Java interfaces are handled.

• requires attribute is omitted unless the field or setter method is also annotated with general or
specific intent annotations - in this case, the requires attribute is present with a value
equivalent to the intents declared by the Java reference.

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 18 of 34

512
513
514
515

516
517
518
519
520

521
522

523

524
525

526

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

• policySets attribute is omitted unless the field or setter method is also annotated with
@PolicySets - in this case, the policySets attribute is present with a value equivalent to the
policy sets declared by the @PolicySets annotation.

• all other attributes and child elements of the reference are omitted

An unannotated field or setter method is a property if it is not a reference following the rules above.
For each property of this type, the component type has a property element with:

• name attribute with the value of the name of the field or the JavaBeans property name
[JAVABEANS] corresponding to the setter method name

• type attribute and element attribute set as described for a property declared via a @Property
annotation

• value attribute omitted

• many attribute set to “false” unless the type of the field or of the setter method is an array or
a java.util.Collection, in which case it is set to "true".

• mustSupply attribute set to true

8.3 Component Type Introspection Examples 527

Example 8.1 shows how intent annotations can be applied to service and reference interfaces and
methods as well as to a service implementation class.

// Service interface
package test;
import org.oasisopen.sca.annotation.Authentication;
import org.oasisopen.sca.annotation.Confidentiality;

@Authentication
public interface MyService {
 @Confidentiality
 void mymethod();
}

// Reference interface
package test;
import org.oasisopen.sca.annotation.Integrity;

public interface MyRefInt {
 @Integrity
 void mymethod1();
}

// Service implementation class
package test;
import static org.oasisopen.sca.Constants.SCA_PREFIX;
import org.oasisopen.sca.annotation.Confidentiality;
import org.oasisopen.sca.annotation.Reference;
import org.oasisopen.sca.annotation.Service;
@Service(MyService.class)
@Requires(SCA_PREFIX+"managedTransaction")
public class MyServiceImpl {
 @Confidentiality
 @Reference
 protected MyRefInt myRef;

 public void mymethod() {...}

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 19 of 34

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

}

Example 8.1. Intent annotations on Java interfaces, methods, and implementations.
Example 8.2 shows the introspected component type that is produced by applying the component type
introspection rules to the interfaces and implementation from example 8.1.

<componentType xmlns:sca=
 "http://docs.oasis-open.org/ns/opencsa/sca/200903">
 <implementation.java class="test.MyServiceImpl"
 requires="sca:managedTransaction"/>
 <service name="MyService" requires="sca:managedTransaction">
 <interface.java interface="test.MyService"/>
 </service>
 <reference name="myRef" requires="sca:confidentiality">
 <interface.java interface="test.MyRefInt"/>
 </reference>
</componentType>

Example 8.2. Introspected component type with intents.

8.4 Java Implementation with Conflicting Setter Methods 580

If a Java implementation class, with or without @Property and @Reference annotations, has more than 581
one setter method with the same JavaBeans property name [JAVABEANS] corresponding to the setter 582
method name, then if more than one method is inferred to set the same SCA property or to set the same 583
SCA reference, the SCA runtime MUST raise an error and MUST NOT instantiate the implementation 584
class. [JCI80002] 585

586
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

The following are examples of illegal Java implementation due to the presence of more than one setter
method resulting in either an SCA property or an SCA reference with the same name:

/** Illegal since two setter methods with same JavaBeans property name
 * are annotated with @Property annotation. */
public class IllegalImpl1 {
 // Setter method with upper case initial letter 'S'
 @Property
 public void setSomeProperty(String someProperty) {...}

 // Setter method with lower case initial letter 's'
 @Property
 public void setsomeProperty(String someProperty) {...}
}

/** Illegal since setter methods with same JavaBeans property name
 * are annotated with @Reference annotation. */
public class IllegalImpl2 {
 // Setter method with upper case initial letter 'S'
 @Reference
 public void setSomeReference(SomeService service) {...}

 // Setter method with lower case initial letter 's'
 @Reference
 public void setsomeReference(SomeService service) {...}
}

/** Illegal since two setter methods with same JavaBeans property name
 * are resulting in an SCA property. Implementation has no @Property
 * or @Reference annotations. */
public class IllegalImpl3 {

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 20 of 34

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635
636
637

638

639
640
641
642
643
644
645
646
647
648
649
650
651

 // Setter method with upper case initial letter 'S'
 public void setSomeOtherProperty(String someProperty) {...}

 // Setter method with lower case initial letter 's'
 public void setsomeOtherProperty(String someProperty) {...}
}

/** Illegal since two setter methods with same JavaBeans property name
 * are resulting in an SCA reference. Implementation has no @Property
 * or @Reference annotations. */
public class IllegalImpl4 {
 // Setter method with upper case initial letter 'S'
 public void setSomeOtherReference(SomeService service) {...}

 // Setter method with lower case initial letter 's'
 public void setsomeOtherReference(SomeService service) {...}
}

The following is an example of a legal Java implementation in spite of the implementation class having
two setter methods with same JavaBeans property name [JAVABEANS] corresponding to the setter
method name:

/** Two setter methods with same JavaBeans property name, but one is
 * annotated with @Property and the other is annotated with @Reference
 * annotation. */
public class WeirdButLegalImpl {
 // Setter method with upper case initial letter 'F'
 @Property
 public void setFoo(String foo) {...}

 // Setter method with lower case initial letter 'f'
 @Reference
 public void setfoo(SomeService service) {...}
}

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 21 of 34

9 Specifying the Java Implementation Type in an 652

Assembly 653

654
655

656

The following pseudo-schema defines the implementation element schema used for the Java
implementation type:.

<implementation.java class="xs:NCName" 657
 requires="list of xs:QName"? 658

policySets="list of xs:QName"?/> 659
660

661

662

663
664

665
666

667

The implementation.java element has the following attributes:

• class : NCName (1..1) – the fully qualified name of the Java class of the implementation

• requires : QName (0..n) – a list of policy intents. See the Policy Framework specification
[POLICY] for a description of this attribute.

• policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification
[POLICY] for a description of this attribute.

The <implementation.java> element MUST conform to the schema defined in sca-implementation-668
java.xsd. [JCI90001]

669
670

The fully qualified name of the Java class referenced by the @class attribute of 671
<implementation.java/> MUST resolve to a Java class, using the artifact resolution rules defined in 672
Section 10.2, that can be used as a Java component implementation. [JCI90002] 673

The Java class referenced by the @class attribute of <implementation.java/> MUST conform to Java 674
SE version 5.0. [JCI90003] 675

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 22 of 34

10 Java Packaging and Deployment Model 676

The SCA Assembly Model Specification [ASSEMBLY] describes the basic packaging model for SCA
contributions in the chapter on Packaging and Deployment. This specification defines extensions to the
basic model for SCA contributions that contain Java component implementations.

677
678
679
680
681
682
683
684

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

The model for the import and export of Java classes follows the model for import-package and export-
package defined by the OSGi Service Platform Core Specification [OSGi Core]. Similar to an OSGI
bundle, an SCA contribution that contains Java classes represents a class loader boundary at runtime.
That is, classes are loaded by a contribution specific class loader such that all contributions with
visibility to those classes are using the same Class Objects in the JVM.

10.1 Contribution Metadata Extensions 685

SCA contributions can be self contained such that all the code and metadata needed to execute the
components defined by the contribution is contained within the contribution. However, in larger
projects, there is often a need to share artifacts across contributions. This is accomplished through
the use of the import and export extension points as defined in the sca-contribution.xml document.
An SCA contribution that needs to use a Java class from another contribution can declare the
dependency via an <import.java/> extension element, contained within a <contribution/> element, as
defined below:

<import.java package="xs:string" location="xs:anyURI"?/>

The import.java element has the following attributes:

• package : string (1..1) – The name of one or more Java package(s) to use from another
contribution. Where there is more than one package, the package names are separated by a
comma ",".

The package can have a version number range appended to it, separated from the package
name by a semicolon ";" followed by the text "version=" and the version number range, for
example:
package="com.acme.package1;version=1.4.1"
package="com.acme.package2;version=[1.2,1.3]"

Version number range follows the format defined in the OSGi Core specification [OSGi Core]:

[1.2,1.3] - enclosing square brackets - inclusive range meaning any version in the range from
the lowest to the highest, including the lowest and the highest
(1.3.1,2.4.1) - enclosing round brackets - exclusive range meaning any version in the range
from the lowest to the highest but not including the lowest or the highest.
1.4.1 - no enclosing brackets - implies any version at or later than the specified version
number is acceptable - equivalent to [1.4.1, infinity)

If no version is specified for an imported package, then it is assumed to have a version range
of [0.0.0, infinity) - ie any version is acceptable.

• location : anyURI (0..1) – The URI of the SCA contribution which is used to resolve the java
packages for this import.

Each Java package that is imported into the contribution MUST be included in one and only one 720
import.java element. [JCI100001] Multiple packages can be imported, either through specifying
multiple packages in the @package attribute or through the presence of multiple import.java
elements.

721
722
723

The SCA runtime MUST ensure that the package used to satisfy an import matches the package name, 724
the version number or version number range and (if present) the location specified on the import.java 725
element [JCI100002] 726

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 23 of 34

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

An SCA contribution that wants to allow a Java package to be used by another contribution can
declare the exposure via an <export.java/> extension element as defined below:

<export.java package="xs:string"/>

The export.java element has the following attributes:

• package : string (1..1) – The name of one or more Java package(s) to expose for sharing by
another contribution. Where there is more than one package, the package names are
separated by a comma ",".
The package can have a version number appended to it, separated from the package name
by a semicolon ";" followed by the text "version=" and the version number:
package="com.acme.package1;version=1.4.1"

The package can have a uses directive appended to it, separated from the package name by
a semicolon ";" followed by the text "uses=" which is then followed by a list of package names
contained within single quotes "'" (needed as the list contains commas).

The uses directive indicates that the SCA runtime MUST ensure that any SCA contribution that 743
imports this package from this exporting contribution also imports the same version as is used by 744
this exporting contribution of any of the packages contained in the uses directive. [JCI100003]
Typically, the packages in the uses directive are packages used in the interface to the package
being exported (eg as parameters or as classes/interfaces that are extended by the exported
package). Example:

package="com.acme.package1;uses='com.acme.package2,com.acme.package3'"

745
746
747
748
749
750
751
752
753
754

If no version information is specified for an exported package, the version defaults to 0.0.0.

If no uses directive is specified for an exported package, there is no requirement placed on a
contribution which imports the package to use any particular version of any other packages.

Each Java package that is exported from the contribution MUST be included in one and only one 755
export.java element. [JCI100004] Multiple packages can be exported, either through specifying
multiple packages in the @package attribute or through the presence of multiple export.java
elements.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

For example, a contribution that wants to:

• use classes from the some.package package from another contribution (any version)
• use classes of the some.other.package package from another contribution, at exactly version

2.0.0

• expose the my.package package from its own contribution, with version set to 1.0.0
would specify an sca-contribution.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<contribution xmlns=http://docs.oasis-open.org/ns/opencsa/sca/200903>
 …
 <import.java package="some.package"/>
 <import.java package="some.other.package;version=[2.0.0] "/>
 <export.java package="my.package;version=1.0.0"/>
</contribution>

A Java package that is specified on an export element MUST be contained within the contribution 774
containing the export element. [JCI100007] 775

776

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 24 of 34

10.2 Java Artifact Resolution 777

The SCA runtime MUST ensure that within a contribution, Java classes are resolved according to the 778
following steps in the order specified: 779

1. If the contribution contains a Java Language specific resolution mechanism such as a classpath 780
declaration in the archive’s manifest, then that mechanism is used first to resolve classes. If the 781
class is not found, then continue searching at step 2. 782

2. If the package of the Java class is specified in an import declaration then: 783
a) if @location is specified, the location searched for the class is the contribution declared by 784

the @location attribute. 785
b) if @location is not specified, the locations which are searched for the class are the 786

contribution(s) in the Domain which have export declarations for that package. If there is 787
more than one contribution exporting the package, then the contribution chosen is SCA 788
Runtime dependent, but is always the same contribution for all imports of the package. 789

If the Java package is not found, continue to step 3. 790
3. The contribution itself is searched using the archive resolution rules defined by the Java 791
Language. 792

793 [JCI100008]

10.3 Class Loader Model 794

The SCA runtime MUST ensure that the Java classes used by a contribution are all loaded by a class 795
loader that is unique for each contribution in the Domain. [JCI100010] The SCA runtime MUST ensure 796
that Java classes that are imported into a contribution are loaded by the exporting contribution’s class 797
loader [JCI100011], as described in the section "Contribution Metadata Extensions" 798

799
800
801
802

For example, suppose contribution A using class loader ACL, imports package some.package from
contribution B that is using class loader BCL then the expression:

ACL.loadClass(importedClassName) == BCL.loadClass(importedClassName)

evaluates to true.

The SCA runtime MUST set the thread context class loader of a component implementation class to the 803
class loader of its containing contribution. [JCI100009] 804

805

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 25 of 34

11 Conformance 806

The XML schema pointed to by the RDDL document at the namespace URI, defined by this
specification, are considered to be authoritative and take precedence over the XML schema defined in
the appendix of this document.

807
808
809
810
811
812
813

815
816
817
818
819

821
822
823
824
825

827
828
829
830

831
832

833
834

835
836

837
838
839
840

841
842
843

844

There are three categories of artifacts that this specification defines conformance for: SCA Java
Component Implementation Composite Document, SCA Java Component Implementation Contribution
Document and SCA Runtime.

11.1 SCA Java Component Implementation Composite Document 814

An SCA Java Component Implementation Composite Document is an SCA Composite Document, as
defined by the SCA Assembly Model Specification Section 13.1 [ASSEMBLY], that uses the
<implementation.java> element. Such an SCA Java Component Implementation Composite Document
MUST be a conformant SCA Composite Document, as defined by [ASSEMBLY], and MUST comply with
the requirements specified in Section 9 of this specification.

11.2 SCA Java Component Implementation Contribution Document 820

An SCA Java Component Implementation Contribution Document is an SCA Contribution Document, as
defined by the SCA Assembly Model specification Section 13.1 [ASSEMBLY], that uses the contribution
metadata extensions defined in Section 10. Such an SCA Java Component Implementation
Contribution document MUST be a conformant SCA Contribution Document, as defined by
[ASSEMBLY], and MUST comply with the requirements specified in Section 10 of this specification.

11.3 SCA Runtime 826

An implementation that claims to conform to this specification MUST meet the following conditions:

1. The implementation MUST meet all the conformance requirements defined by the SCA
Assembly Model Specification [ASSEMBLY].

2. The implementation MUST reject an SCA Java Composite Document that does not conform to
the sca-implementation-java.xsd schema.

3. The implementation MUST reject an SCA Java Contribution Document that does not conform to
the sca-contribution-java.xsd schema.

4. The implementation MUST meet all the conformance requirements, specified in 'Section 11
Conformance', from the SCA Java Common Annotations and APIs Specification [JAVACAA].

5. This specification permits an implementation class to use any and all the APIs and annotations
defined in the Java Common Annotations and APIs Specification [JAVACAA], therefore the
implementation MUST comply with all the statements in Appendix B: Conformance Items of
[JAVACAA], notably all mandatory statements have to be implemented.

6. The implementation MUST comply with all statements related to an SCA Runtime, specified in
'Appendix B: Conformance Items' of this specification, notably all mandatory statements have
to be implemented.

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 26 of 34

A. XML Schemas 845

A.1 sca-contribution-java.xsd 846

<?xml version="1.0" encoding="UTF-8"?> 847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved.
 OASIS trademark, IPR and other policies apply. -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903"
 elementFormDefault="qualified">

 <include schemaLocation="sca-core-1.1-schema-200803.xsd"/>

 <!-- Import.java -->
 <element name="import.java" type="sca:JavaImportType"/>
 <complexType name="JavaImportType">
 <complexContent>
 <extension base="sca:Import">
 <attribute name="package" type="NCName" use="required"/>
 <attribute name="location" type="anyURI" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

 <!-- Export.java -->
 <element name="export.java" type="sca:JavaExportType"/>
 <complexType name="JavaExportType">
 <complexContent>
 <extension base="sca:Export">
 <attribute name="package" type="NCName" use="required"/>
 </extension>
 </complexContent>
 </complexType>

</schema>

A.2 sca-implementation-java.xsd 879

<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright(C) OASIS(R) 2005,2009. All Rights Reserved.
 OASIS trademark, IPR and other policies apply. -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200903"
 targetNamespace="http://docs.oasis-open.org/ns/opencsa/sca/200903"
 elementFormDefault="qualified">

 <include schemaLocation="sca-core-1.1-cd03.xsd"/>

 <!-- Java Implementation -->
 <element name="implementation.java" type="sca:JavaImplementation"
 substitutionGroup="sca:implementation"/>
 <complexType name="JavaImplementation">
 <complexContent>
 <extension base="sca:Implementation">

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 27 of 34

896
897
898
899
900
901
902
903
904
905
906
907

 <sequence>
 <any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="class" type="NCName" use="required"/>
 <anyAttribute namespace="##other" processContents="lax"/>
 </extension>
 </complexContent>
 </complexType>

</schema>

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 28 of 34

B. Conformance Items 908

This section contains a list of conformance items for the SCA Java Component Implementation
specification.

909
910
911

Conformance ID Description

[JCI20001] The services provided by a Java-based implementation MUST have an interface
defined in one of the following ways:

• A Java interface
• A Java class
• A Java interface generated from a Web Services Description Language

[WSDL] (WSDL) portType.

[JCI20002] Java implementation classes MUST implement all the operations defined by the
service interface.

[JCI50001] A Java implementation class MUST provide a public or protected constructor that
can be used by the SCA runtime to create the implementation instance.

[JCI50002] The @Constructor annotation MUST only be specified on one constructor; the
SCA container MUST raise an error if multiple constructors are annotated with
@Constructor.

[JCI50003] Cyclic references between components MUST be handled by the SCA runtime in
one of two ways:

• If any reference in the cycle is optional, then the container can inject a null
value during construction, followed by injection of a reference to the target
before invoking any service.

• The container can inject a proxy to the target service; invocation of
methods on the proxy can result in a ServiceUnavailableException

[JCI50004] The constructor to use for the creation of an implementation instance MUST be
selected by the SCA runtime using the sequence:

1. A declared constructor annotated with a @Constructor annotation.
2. A declared constructor, all of whose parameters are annotated with either

@Property or @Reference.
3. A no-argument constructor.

[JCI50005] The SCA runtime MUST raise an error if there are multiple constructors that are
not annotated with @Constructor and have a non-empty parameter list with all
parameters annotated with either @Property or @Reference.

[JCI60001] The SCA runtime MUST support the STATELESS and COMPOSITE
implementation scopes.

[JCI80001] An SCA runtime MUST introspect the componentType of a Java implementation
class following the rules defined in the section "Component Type of a Java
Implementation".

[JCI80002] If a Java implementation class, with or without @Property and @Reference
annotations, has more than one setter method with the same JavaBeans property
name [JAVABEANS] corresponding to the setter method name, then if more than

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 29 of 34

one method is inferred to set the same SCA property or to set the same SCA
reference, the SCA runtime MUST raise an error and MUST NOT instantiate the
implementation class.

[JCI90001] The <implementation.java> element MUST conform to the schema defined in sca-
implementation-java.xsd.

[JCI90002] The fully qualified name of the Java class referenced by the @class attribute of
<implementation.java/> MUST resolve to a Java class, using the artifact resolution
rules defined in Section 10.2, that can be used as a Java component
implementation.

[JCI90003] The Java class referenced by the @class attribute of <implementation.java/>
MUST conform to Java SE version 5.0.

[JCI100001] Each Java package that is imported into the contribution MUST be included in one
and only one import.java element.

[JCI100002] The SCA runtime MUST ensure that the package used to satisfy an import
matches the package name, the version number or version number range and (if
present) the location specified on the import.java element.

[JCI100003] The uses directive indicates that the SCA runtime MUST ensure that any SCA
contribution that imports this package from this exporting contribution also imports
the same version as is used by this exporting contribution of any of the packages
contained in the uses directive.

[JCI100004] Each Java package that is exported from the contribution MUST be included in
one and only one export.java element.

[JCI100007] A Java package that is specified on an export element MUST be contained within
the contribution containing the export element.

[JCI100008] The SCA runtime MUST ensure that within a contribution, Java classes are
resolved according to the following steps in the order specified:

1. If the contribution contains a Java Language specific resolution
mechanism such as a classpath declaration in the archive’s manifest,
then that mechanism is used first to resolve classes. If the class is not
found, then continue searching at step 2.

2. If the package of the Java class is specified in an import declaration then:
a) if @location is specified, the location searched for the class is the

contribution declared by the @location attribute.
b) if @location is not specified, the locations which are searched for the

class are the contribution(s) in the Domain which have export
declarations for that package. If there is more than one contribution
exporting the package, then the contribution chosen is SCA Runtime
dependent, but is always the same contribution for all imports of the
package.

If the Java package is not found, continue to step 3.
3. The contribution itself is searched using the archive resolution rules

defined by the Java Language.

[JCI100009] The SCA runtime MUST set the thread context class loader of a component
implementation class to the class loader of its containing contribution.

[JCI100010] The SCA runtime MUST ensure that the Java classes used by a contribution are
all loaded by a class loader that is unique for each contribution in the Domain.

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 30 of 34

 [JCI100011] The SCA runtime MUST ensure that Java classes that are imported into a
contribution are loaded by the exporting contribution’s class loader

 912

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 31 of 34

C. Acknowledgements 913

The following individuals have participated in the creation of this specification and are gratefully
acknowledged:

914
915
916 Participants:

Participant Name Affiliation
Bryan Aupperle IBM
Ron Barack SAP AG*
Michael Beisiegel IBM
Henning Blohm SAP AG*
David Booz IBM
Martin Chapman Oracle Corporation
Graham Charters IBM
Shih-Chang Chen Oracle Corporation
Chris Cheng Primeton Technologies, Inc.
Vamsavardhana Reddy Chillakuru IBM
Roberto Chinnici Sun Microsystems
Pyounguk Cho Oracle Corporation
Eric Clairambault IBM
Mark Combellack Avaya, Inc.
Jean-Sebastien Delfino IBM
Mike Edwards IBM
Raymond Feng IBM
Bo Ji Primeton Technologies, Inc.
Uday Joshi Oracle Corporation
Anish Karmarkar Oracle Corporation
Michael Keith Oracle Corporation
Rainer Kerth SAP AG*
Meeraj Kunnumpurath Individual
Simon Laws IBM
Yang Lei IBM
Mark Little Red Hat
Ashok Malhotra Oracle Corporation
Jim Marino Individual
Jeff Mischkinsky Oracle Corporation
Sriram Narasimhan TIBCO Software Inc.
Simon Nash Individual
Sanjay Patil SAP AG*
Plamen Pavlov SAP AG*
Peter Peshev SAP AG*
Ramkumar Ramalingam IBM
Luciano Resende IBM
Michael Rowley Active Endpoints, Inc.
Vladimir Savchenko SAP AG*
Pradeep Simha TIBCO Software Inc.
Raghav Srinivasan Oracle Corporation

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 32 of 34

917

Scott Vorthmann TIBCO Software Inc.
Feng Wang Primeton Technologies, Inc.
Robin Yang Primeton Technologies, Inc.

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 33 of 34

D. Non-Normative Text 918

sca-javaci-1.1-spec-cd01 4th May 2009
Copyright © OASIS® 2005,2009. All Rights Reserved. Page 34 of 34

E. Revision History 919

[optional; should not be included in OASIS Standards] 920
921

Revision Date Editor Changes Made

1 2007-09-26 Anish Karmarkar Applied the OASIS template + related changes
to the Submission

wd02 2008-12-16 David Booz * Applied resolution for issue 55, 32
* Editorial cleanup to make a working draft
 - [1] style changed to [ASSEMBLY]
 - updated namespace references

wd03 2009-02-26 David Booz • Accepted all changes from wd02
• Applied 60, 87, 117, 126, 123

wd04 2009-03-20 Mike Edwards Accepted all changes from wd03
Issue 105 - RFC 2119 Language added -
covers most of the specification.
Accepted all changes after RFC 2119 language
added.
Editorial fix to ensure the term "class loader" is
used consistently

wd05 2009-03-24 David Booz Applied resolution for issues: 119, 137

wd06 2009-03-27 David Booz Accepted all previous changes and applied
issues 145,146,147,151

wd07 2009-04-06 David Booz Editorial cleanup, namespace changes,
changed XML encoding to UTF-8 in examples,
applied 144

wd08 2009-04-27 David Booz Applied issue 98, 152

wd09 2009-04-29 David Booz Editorial fixes throughout (capitalization,
quotes, fonts, spec references, etc.)

wd10 2009-04-30 David Booz Editorial fixes, indention, etc.

cd01 2009-05-04 David Booz Final editorial fixes for CD and PRD

 922
923

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References

	2 Service
	2.1 Use of @Service
	2.2 Local and Remotable Services
	2.3 Introspecting Services Offered by a Java Implementation
	2.4 Non-Blocking Service Operations
	2.5 Callback Services

	3 References
	3.1 Reference Injection
	3.2 Dynamic Reference Access

	4 Properties
	4.1 Property Injection
	4.2 Dynamic Property Access

	5 Implementation Instance Creation
	6 Implementation Scopes and Lifecycle Callbacks
	7 Accessing a Callback Service
	8 Component Type of a Java Implementation
	8.1 Component Type of an Implementation with no @Service Annotations
	8.2 ComponentType of an Implementation with no @Reference or @Property Annotations
	8.3 Component Type Introspection Examples
	8.4 Java Implementation with Conflicting Setter Methods

	9 Specifying the Java Implementation Type in an Assembly
	10 Java Packaging and Deployment Model
	10.1 Contribution Metadata Extensions
	10.2 Java Artifact Resolution
	10.3 Class Loader Model

	11 Conformance
	11.1 SCA Java Component Implementation Composite Document
	11.2 SCA Java Component Implementation Contribution Document
	11.3 SCA Runtime

