The following is a description of how the virtual, logical infoset would be constructed for a domain. If we can agree on this, then we can 

specify how External Policy Attachment works over this infoset.

1. The root of the infoset is a composite element that stands in for the domain. This composite can have all the attributes of a normal 

composite. The values of the attributes are domain-specific and 

implementation dependent.

DAB1
: I believe that any scheme we come up with will avoid the need for tools.  We are talking about creating general policies that apply to specific situations domain-wide.  Figuring out how to write them and what the result is going to look like can’t be easily done with just text files.
MJE2: That last sentence should read: “The mechanism for setting the values of the attributes of the domain composite is implementation-defined.”

(Detail: The constrainingType attribute should not be set)

2. The children of this domain-composite are all the domain-level 

components within the domain
. Note that this loses the contribution 

where the components come from. To remedy this we add a new attribute: 

installedFrom="contribution_uri/of/the/deployment/composite"



MJE3: I believe they should be.

DAB4: It should be true of any domain-level element, but when you are under some composite hierarchy (under <implementation.composite> elements) the domain-level component that you are under should be sufficient.

The infoset will also contain the result of deployment time processing. 

Some detail below:

- The results of autowire processing and explicit <wire> elements will 

both be represented in the infoset as explicit values for the 

appropriate reference/@target attributes
.

MJE5: The semantics of wire changes are not effected by this representation of the logical infoset.  It is, after all, only a logical infoset.

- Inherited required intents and policySets will be explicitly 

represented on any element that inherits
 them.

DAB6 & MJE7: We meant inherits, with a loose definition of inherits.  The first few steps of the policy algorithm pulls intents and policySets from ancestor elements and from the component type – this is what we mean (obviously needs better wording).



- PolicySets that that are chosen by the policySet selection algorithm 

will be represented as values of @policySet attributes.

- All components will have @uri 
attributes (not just domain-level 

components), which contain the URI of the component. The URI will 

contain path elements from all of the composites
 that the component is 

embedded under. This makes it possible to write XPath expressions that 

target a single buried component.



DAB9: No.
MJE10: It is indeed possible to write the XPath expression without the URI, but it would basically mean writing the algorithm for construction of the URI using XPath, which is a pain.  One of the points of this logical-infoset is to have an infoset that has some of the SCA processing already applied to it so you don’t have to do it yourself inside of your XPath expressions.

* The following binding processing happens _/after/_ the bindings have 

been moved, as described in (4), (5) and (6) below.

- Explicit binding.sca elements will be present rather than just implied.

- Bindings will all have @uri attributes, whose value is the absolute 

URI that the runtime is using (or possibly multiple URI in the case of 

references).

MJE12: Yes, that will have to be accounted for in the language.  



3. For each <implementation.composite> include all of the contents of 

the named composite as child elements of <implementation.composite>. 

This is done recursively.

This gets us all SCDL elements within the domain. There is, however, a 

requirement to attach policies to interface elements such as "operation" 

and "message". Since the interface is identified in the SCDL by a URI, 

we can use the Document function in XPath to open the file and then 

navigate down it starting from the root element. This is certainly 

possible, but some find it awkward. It also doesn’t allow us to do 

post-processing on the port-type, for things such as inserting policySet attributes.

So, we propose an alternate method by which the interface elements are 

included directly within the virtual, logical infoset.
 This requires a 

bit of work.

MJE13: We may need to have some restrictions for local interfaces, but I don’t think the restrictions would make the model unusable.  I expect that most policies will apply to remotable, rather than local interfaces.

4. Remove the <binding> elements from the infoset.

5. Include the contents of the interface file below the appropriate 

<service> or <reference> elements. Note that the WSDL port type that is 

included may need to be generated, based on whatever interface language 

is actually used for the service or reference.

6. Reinstate the <binding> elements that were removed as child elements 

of each <input>, <output> or <error> element of the interface.

MJE14: So that you can still say @appliesTo=”binding.ws”.  Or, so that you can say you want it to apply to a web service binding for the “foo” operation (@appliesTo=”binding.ws[../../@name=’foo’]”).  What would be a simpler way to state that scenario in an expression?



The result of the above 3 steps may look like:

<service> or <reference>

 <portType name="StockQuotePortType">

  <operation name="GetLastTradePrice">

   <input message="tns:GetLastTradePriceInput">

    <binding ... />

   </input>

   <output message="tns:GetLastTradePriceOutput">

    <binding ... />

   </output>

  </operation>

 </portType>

</service> or </reference>

We will also have to change the @name attribute of the port type to be a QName. In WSDL, it is assumed to be a local name for the targetNamespace of the WSDL.

�Does this description ultimately end up in the assembly spec? You’re gonna need tools to work with this thing.  That’s not good.


�This is contradictory – the normal composite attributes all have closely defined values and cannot be implementation dependent.


�This raises another question: are artifacts like services and references allowed as children?


�This is true of any component, not just Domain components?


�I don't think this is a good idea – it does not handle the process of changes very well.  Change has a very different impact depending on the way in which the wire was originally specifiec.


�Do you mean inherits or @constrains?  I would have thought it would be the latter.  Intents/policySets from componentTypes would be merged in also?


�Inherited from where?


�I can’t remember where we are with service names.  Should we spell them out also so that they can uniquely be addressed by an XPath?


�Is the composite name included in the path? I hope not.


�How does having the URI help with the XPath expression – surely I can write the XPath without the URI?


�Do promoted services and references disappear?  Is there a componentType notion in the infoset?


�This cannot work for some binding types – some binding types can only express targets as specialized binding attributes.


�You're setting quite a challenge here for non-WSDL interfaces, which may not be WSDL translatable in the case of local interfaces.


�WOW ! Why are you doing this???  I really need some help understanding the reason for what looks complex and confusing.





