[image: image1.png]

Update Package Requirements

Open System Solution

Revision 0.2

October 6, 2005

Revision History Table

	Date
	Version No.
	Description of Changes
	Who

	9/28/05
	0.1
	Initial Draft
	Angela Qian

	10/06/05
	0.2
	Updated the requirement section
	Angela Qian

	
	
	
	

	
	
	
	

Table of Contents

2Revision History Table

41.0
Introduction

41.1
Purpose and Scope

41.2
Problem Summary

41.3
Dell Update Package Background

62.0
High Level Use Cases

63.0
Update Package Requirements

63.1
Stand-alone Utility

63.2
Script-ability

73.3
Manageability

73.4
Consume-ability

73.5
Security

73.6
Aggregation

73.7
Globalization

73.8
Logging

74.0
Glossary

1.0 Introduction

1.1 Purpose and Scope

Updating Firmware and Device Drivers is a key element of the overall system life cycle management. This document provides the high level use cases and requirements to update Dell supplied system software (BIOS, firmware, device drivers etc.) to support system management for change management solution.

1.2 Problem Summary

The processes involved in managing the update changes are typically consist of the following steps:
1. Inventory the Firmware and Driver versions currently installed on the system.

2. Compare with a defined set of update packages to determine which one needs update.

3. Deploy changes using selected update packages.

The key to enable the step 2 of the above change management process is to programmatically figure out what packages is applicable to what components on the system as well as the version superseding of the underlining software components (Firmware/Driver). Some of the problems in this area are:

1. There are no industry standards on hardware update applicability. The applicability of the update package are varies from component to component and from vendor to vendor.

2. Hardware applicability rules are defined and implemented through programming which varies from vendor to vendor and it is very difficult to maintain.

3. The update applicability rules are handled differently across different layers of the software stack, e.g. Application, Device Driver and Firmware.
Also Customers want update packages with a consistent naming and versioning convention and behavior to update or install software include driver, application and hardware firmware. This consistency is required for automation. Currently there are too many update mechanisms. No standard is defined for updating/installing firmware, BIOS, drivers and application. There is no standard packaging mechanism for updating across the management stack. There are so many update utilities including online/offline flash utilities. There is a proliferation of update tools from vendor. Different manufacturers have a different update mechanism for the same hardware.
1.3 Dell Update Package Background

In an effort to bolster Dell Software Version Management capability for the enterprise customers Dell Update Package has been identified as the foundation to build a complete end-to-end Change Management solution in the area of version management. By building Dell Update Packages and releasing them to our customers, Dell Update Packages can be streamlined the software release process to provide a consistent software delivery vehicle and also enable our customer to integrate our infrastructure to their environment to fulfill their change management needs.

A Dell Update Package contains logic to determine what is presently installed on the system and will conduct the dependency checking required. They can be executed directly following an interactive user interface for attended installation and also supports unattended silent installation. Invoking the update also updates the system’s software installation log for auditing purposes.

Dell Update Packages are created with the following objectives:

· Self-contained (knows how to inventory, validate and apply)

· Management-ready (self-classified, consistent with support site)

· Standard package description

· Facilitate Dell qualified bundle releases

· Provide common infrastructure for software provisioning and change management solutions.

· Easy integration into customers’ existing solution and process. (scripting support)

2.0 High Level Use Cases

Update package needs to support following high level use cases for Change Management Solution:

· Element Update – Element Update capability refer to the functionality to update a system’s individual elements (i.e. software). Element are indivisible, atomic components that the customer is aware and needs the ability to update individually. Some examples of elements include system firmware (BIOS, BMC firmware), peripheral firmware, driver, OS component or an application.

· Standardized packages to support Change Management Solution based on customer’s choices – Customers want packages with a consistent naming and versioning convention and behavior. This consistency is required for automation and can be integrated into any of following CM solutions:

· OS Vendor – OS vendor supplied software update mechanism (e.g.. Radhat up2date or Windows Update).

· ISV – 3rd party software change management solution (e.g. Microsoft SMS, Altiris, Novell Zenworks, Symantec CCM).

· Customer Developed – Customer develops their own in-house solution

· Facilitate qualified bundle to support system update to update all or a subset of a system’s individual elements – Update package contains following meta data to support the creation of standardized sets of software bundle

· Name

· Version

· Applicability

· Dependencies

· Update Packages need to be installed in local or distributed environments including but not limited to removable media, and network location.

3.0 Update Package Requirements

In order to support above high level use cases, following requirements need to be met when design packaging standards.
3.1 Stand-alone Utility

An Update Package shall design to be a simple stand-alone utility that can perform a specific update on a system directly without any other dependencies other then OS dependency. The update procedure can be as simple as getting the desired Update Package and applying it locally by launching an interactive user interface. The interactive user interface will guide the user through the install/update process. During the update process, dependencies will be validated against the current inventory of the system where the Update Package is running.

Hardware updates shall be fully atomic and transit; nothing persisted aside from the flash or payload. Application update leaves files and may also leave environmental changes.
3.2 Script-ability

In addition to the interactive user interface Update Packages shall also support a command-line interface (CLI). This allows users to script automated batch install/update. The set of CLI options and return codes need to be standardized regardless of what type of package it is.

The command line interface of the Update Package is designed to enable its script-ability. It could be used to build scripted batch install/update in an unattended fashion. This provides easy integration into customer’s existing change management process.

3.3 Manageability

Update Packages shall provide manageability through their meta-date for the payload. It shall contain classification information, hardware applicability information, versioning information and dependencies information.
3.4 Consume-ability

An Update Package shall package into a well-defined zipping format for all OSes to make it transparent. It could be easily extracted by standard program on that OS. The subcomponents of the package could then be used by any software application to perform inventory, validation and install/update.

3.5 Security

Package needs to be signed to ensure the contents have not been tampered with before the package is deployed. The application of change management solution then can verify signed packages.

3.6 Aggregation

A package may aggregate other package to solve dependency problem.

3.7 Globalization

The user interfaces (GUI/CLI) exposed by Update Package shall support localization.

3.8 Logging

A standardized common private log shall be designed. The log shall capture success/failure and detailed warning/error message of each package transaction.

4.0 Glossary

