
[image: image1.png]OASIS)

Solution Deployment Architecture Specification v0.0 r10
Committee Draft, 27 June 2006
Artifact Identifier:

oasis-sdd-spec-draft-v0.0-10
Location:

Current: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] /latest

This Version: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] / MACROBUTTON NoMacro [version-id]
Previous Version: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] / MACROBUTTON NoMacro [version-id]
Artifact Type:

spec
Technical Committee:

OASIS Solution Deployment Descriptor (SDD) TC
Chair(s):

Brent Miller
Editor(s):

Julia McCarthy
Robert Dickau
OASIS Conceptual Model topic area:

 MACROBUTTON NoMacro [Topic Area]
Related work:

This specification replaces or supersedes:
· MACROBUTTON NoMacro [specifications replaced by this standard]
· MACROBUTTON NoMacro [specifications replaced by this standard]
This specification is related to:
· MACROBUTTON NoMacro [related specifications]
· MACROBUTTON NoMacro [related specifications]
Abstract:

The Solution Deployment Architecture defines a schema for XML documents called Solution Deployment Descriptors, or SDDs. SDDs define the characteristics of resources that are relevant for their creation, configuration, and maintenance. SDDs also define external metadata that is common across all resource types. The Solution Deployment Architecture defines the required characteristics of the context in which these XML documents are used.
Status:

This document was last revised or approved by the OASIS Solution Deployment Descriptor (SDD) Technical Committee on the above date. The level of approval is also listed above. Check the current location noted above for possible later revisions of this document. This document is updated periodically on no particular schedule.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send a Comment” button on the Technical Committee’s web page at www.oasis-open.org/committees/sdd.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (www.oasis-open.org/committees/sdd/ipr.php).
The non-normative errata page for this specification is located at www.oasis-open.org/committees/sdd.

Notices
Copyright © OASIS Open 2005, 2006. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS’ procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
Table of Contents
51
Introduction

51.1 Purpose

51.2 Scope

51.3 Audience

51.4 Notation

51.4.1 Normative Sections

51.4.2 Normative Terms

51.4.3 Namespaces

61.5 Diagram Conventions

61.6 Normative References

71.7 Non-Normative References

82
Solution Package Descriptor (normative)

82.1 packageIdentity (normative)

92.2 files (normative)

113
Solution Deployment Descriptor (normative)

113.1 topology (normative)

123.1.1 resource (normative)

15A.
Schema File List

17B.
Acknowledgements

19C.
Revision History

1 Introduction
The Solution Deployment Architecture defines a schema for XML documents called Solution Deployment Descriptors, or SDDs. SDDs define the characteristics of resources that are relevant for their creation, configuration, and maintenance. SDDs also define external metadata that is common across all resource types. The Solution Deployment Architecture defines the required characteristics of the context in which these XML documents are used.

1.1 Purpose

The purpose of this document is to provide an outline of the concepts and constructs of the Solution Deployment Architecture.

1.2 Scope

This is not a completed document. It is an outline of a full specification of the Solution Deployment Architecture. Some sections of the outline have been extensively augmented with diagrams and examples. The only text is the captions for these diagrams.

The document outline is intended to facilitate an understanding of the SDD schema. It can be used as a guide to understanding the schema with the caveat that it is not a full specification.
1.3 Audience

This document is intended to assist those who require an understanding of the nature and details of the Solution Deployment Architecture. This includes architects and developers who will use SDDs or develop tooling and applications for constructing and deploying SDDs. This document is not intended to be a tutorial.
1.4 Notation
1.4.1 Normative Sections

Normative sections of this specification are labeled as such. The title of a normative section will contain the word “normative” in parentheses, as in “Solution Package Descriptor (normative)”.

1.4.2 Normative Terms

This specification contains a schema that conforms to the W3C XML Schema and contains normative text that describes the syntax and semantics of XML-encoded policy statements.
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
These keywords are capitalized when used unambiguously to specify requirements or application features and behavior. When these words are not capitalized, they are meant in their natural-language sense.

1.4.3 Namespaces

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, regardless of whether a namespace declaration is present in the example:

· The prefix xsd: stands for the W3C XML Schema namespace [XSD].
· The prefix ds: stands for the digital signature namespace [XMLDSIG-CORE].
1.5 Diagram Conventions

This document contains graphs that illustrate types, elements, and groups in the SDD specification schema. These diagrams are literal, design-level representations of the schema. To emphasize different types and elements in the schema and to avoid undue repetition, different graphs expand the schema to different levels of detail. Where necessary, references to the definitions of shared data types are provided.

The following figure is an example of this type of schema graph.

[image: image2.png]Requirement

isplayElement

type = cons ResourceChect

check
type

alternal

e @

e
P

<anonymous>

resource @

@

A second type of figure used in this document is a table showing optional and required schema attributes and elements as they might appear when using an XML editor to design a specific XML file that follows the SDD schema. This type of figure is provided to illustrate how the types defined in the schema translate to an actual collection of elements in an example SDD.

The following table is an example of this type of figure. As in the following figure, elements are displayed without values in order to emphasize the structure, as opposed to sample contents, of the attribute or element.

[image: image3.png][¢] topology
(2] resource
¥ (&) resource

Design | Source

A third type of figure used in this diagram is an XML fragment, used to illustrate a specific usage of the schema in a sample XML file. The following figure is an example of this type of XML fragment.
<capacity>
 <propertyName>processorSpeed</propertyName>
 <value>1Gig</value>
</capacity>
The schema files (enumerated in Appendix A) are accompanied by several example XML files that illustrate various uses of the schema. When appropriate, the name of the example XML file is provided in brackets.

All diagrams were created with IBM Rational Software Architect.

1.6 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XMLDSIG-CORE]
Bartel et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, W3C Recommendation, February 2002.
[XSD]
W3C Schema Working Group, XML Schema, http://www.w3.org/TR/xmlschema‑1/, W3C Recommendation, October 2004.
[ISO639.2]
Library of Congress, Codes for the Representation of Names of Languages, http://www.loc.gov/standards/iso639-2/englangn.html.
[ISO3166]
International Organization for Standardization, English Country Names and Code Elements, http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html.

1.7 Non-Normative References

 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]
2 Solution Package Descriptor (normative)
A Solution Package Descriptor (SPD) describes the characteristics of a solution package. The following information can be provided.
Required attributes and elements
· The SPD conforms to the level of the SDD architecture identified in the schemaVersion attribute. schemaVersion is an instance of xsd:string with a fixed value of “1.0”. The schemaVersion attribute is included as a convenience.
· The packageIdentity element provides identity information about the package. See section 2.1 for a complete description.
· The files element defines a list of all files that are part of the package. See section 2.2 for a complete description.
Optional attributes and elements
· The descriptorID attribute is used to define a unique identifier for the package descriptor. This value must be unique within the scope that this package will be used. The size of this attribute enables use of a 128-bit IETF UUID. This allows the descriptor to be identified for updates (e.g., if the descriptor contains errors it may be replaced by an error-free version using the same descriptorID but different build information). descriptorID is an instance of xsd:hexbinary with length=16.
· The size attribute specifies the size of the descriptor in bytes. It is an instance of xsd:integer.
· A bundle file containing translations of human-readable text in the SPD itself can be specified in the language_bundle attribute. language_bundle is an instance of xsd:token. Language bundles are associated with specific locales at run time using Java-style resource bundle resolution: BundleName_locale, where locale consists of optional language, location (country), and variant codes, separated by an underscore character. Language codes consist of two lowercase letters ([ISO639.2]) and location codes consist of two uppercase letters ([ISO3166]). For example, “SampleStrings_en_US” refers to the United States English version of the SampleStrings bundle, and “SampleStrings_ja” identifies the Japanese version of the same bundle.
· The buildID attribute is a qualifier meaningful to developers that can be used to distinguish between versions of the descriptor. There may be multiple pre-ship versions and multiple shipped versions. Multiple shipped versions would indicate that errors in a shipped descriptor were fixed and the descriptor replaced without any other changes to the package. buildID is an instance of xsd:token.
· An instance of xsd:dateTime defines the buildDate attribute of the descriptor.

· The buildOrigin attribute is a reference to the build process that was used to create the descriptor. buildOrigin is an instance of xsd:anyURI.
· The ds:Signature element can be used to sign the package. ds:Signature is an instance of ds:SignatureType, which is defined in [XMLDSIG-CORE].
· The deploymentDescriptor element references a file element within the SPD which identifies a deployment descriptor for the solution. The document referenced MAY be compliant with the deployment descriptor specification described in this specification.
The deploymentDescriptor element is an instance of xsd:anyURI.
2.1 packageIdentity (normative)
The following information can be provided in the packageIdentity element to describe the solution package.

Required attributes and elements
· The name element uniquely identifies the resource created by the solution package
. name is an instance of type xsd:NMTOKEN.
Optional attributes and elements
· The manufacturer’s official name of the package can be provided by the displayName element. This is a translatable element
.
· A verbose description of the package can be provided by the description element. This is a translatable element.

· A limited description of the package can be provided by the shortDescription element. This can be used by tools where limited text is allowed, e.g., fly-over help. This is a translatable element.
· The level of this package can be described by the version element. If this package represents a fix to software, then the fix element is used in lieu of the version. The version element is
 an instance of xsd:string with pattern value=”([0-9]{1,9})(\.[0-9]{1,9}){1,3}”. The fix element consists of a required name attribute that is an instance of xsd:NMTOKEN; and an optional type attribute that is an instance of xsd:NCNAME. name is the name of the fix. type is a potentially vendor-specific value intended only to be understood by that vendor and its customers. Examples of possible values for type are “interim fix” and “emergency fix”.
· Information about the manufacturer of this package can be provided in the manufacturer element. If defined, the manufacturer element must contain a displayName used to provide a translatable name of the manufacturer. It may optionally contain a description and shortDescription describing the manufacturer. The country and address of the manufacturer can also be defined in human-readable, translatable text by including the country and address elements, each of which allows definition of a displayName, description, and shortDescription.
· The content of the solution package is associated with a manufacturer’s identification number described by the softwareID. softwareID is an instance of xsd:string with a maximum length of 32.
· The contentType attribute is an instance of xsd:NCName. Its value is a potentially vendor-specific indication of the nature of the package content. Examples of possible values for contentType include “component” and “offering”.
· The packageType attribute is an instance of xsd:NCNAME. Its value is potentially vendor-specific. Examples of possible values for packageType are “base install” and “manufacturing refresh”.
· Build information about this package can be provided by supplying the date of the build, buildDate; unique identification of the build, buildID; and a unique reference into the build system, buildOrigin
.

2.2 files (normative)
A packageDescriptor always contains a files element that is a list of one or more file elements. Each file element defines the following information.
Required attributes and elements
· The pathname attribute is an instance of xsd:anyURI that specifies the path of the file. This can be an absolute path or relative to the root of the package.
Optional attributes and elements
· The length attribute is an instance of xsd:integer that specifies the length of the file in bytes.

· A true value in the compression attribute indicates that the file is compressed. It is an instance of type xsd:boolean.
· The charEncoding attribute is used to specify the character encoding of the contents of the file. It is an instance of xsd:string with a maximum length of 40.
· The purpose attribute enables the manufacturer to associate a classification with a file, which identifies it as having a specific purpose. Examples are deploymentDescriptor, ReadMe, EULA, ResponseFile, and so forth. The values for this attribute are not defined by this specification. It is an instance of xsd:NCNAME.
· Elements ds:DigestMethod and ds:DigestValue xxx
. The types ds:DigestMethodType and ds:DigestValueType are defined in [XMLDSIG-CORE].
3 Solution Deployment Descriptor (normative)
A Solution Deployment Descriptor (SDD) provides the necessary information for one to make the necessary decisions in order to deploy the contents of the package. The following information can be provided:
Required attributes and elements
· The SDD conforms to the level of the SDD architecture identified in the schemaVersion attribute. schemaVersion is an instance of xsd:string with a fixed value of “1.0”. The schemaVersion attribute is included as a convenience.
· Every SDD defines the resources that may play a role in deployment in its topology element. See section 3.1 for the details of topology definition.
· Every SDD defines its contents
in the content element. See section 3.2 for details of content definition.
Optional attributes and elements
· The descriptorID attribute is used to define a unique identifier for the package descriptor. This value must be unique within the scope that this package will be used. The size of this attribute enables use of a 128-bit IETF UUID. This allows the descriptor to be identified for updates (e.g., if the descriptor contains errors it may be replaced by an error-free version using the same descriptorID but different build information). descriptorID is an instance of xsd:hexbinary with length=16.
· The size attribute is an instance of xsd:integer that specifies the size of the descriptor in bytes.

· A bundle file containing translations of human-readable text in the SDD can be specified in the language_bundle attribute. language_bundle is an instance of xsd:token.

· Build information about this descriptor can be provided by supplying the date of the build, buildDate; a unique identification of the build, buildID; and a unique reference into the build system, buildOrigin.

· The groups element defines useful groupings of features. See section 3.3 for details of groups definition.
· The features element defines selection choices when the SDD contains selectable content. See section 3.4 for details of features definition.
· The requisites element. See section 3.5 for details of requisites definition.
3.1 topology (normative)
Topology declares a set of resource types that play a role in solution deployment. In addition to the type of resource, the resource specifications in topology can declare constraints such as name, version, and resources that will be hosted by or are components of the defining resource. Additional constraints can be included in the resource declaration under topology or in content elements. The resources declared in topology include those that may be required for solution deployment. Constraints on required resources must be met before deployment. topology may also declare resources that result from solution deployment. Constraints specified on resulting resources are satisfied as a result of deployment. A resource defined in the topology may result from some portion of the content and also be required by another portion. In this case, constraints declared in topology result from deployment of some portion of the content and must be met for deployment of another portion of the content.

The declaration of resources in topology does not include an indication of whether that resource is required, resulting, or both. The content declared in the SDD identifies specific resources as required or resulting for specific parts of the content. Because content can be selectable, not all resources declared in topology will necessarily be in scope
for a particular deployment. When a resource results from optional content it should not
be required by required content.

Resource constraints declared in topology apply to the resource in all cases. Resource constraints declared in content apply to the resource only when the part of the content making the declaration is deployed.
Required attributes and elements
· A list of one or more resource elements. See section 3.1.1 for a complete description of resource.
3.1.1 resource (normative)
The resource element declares the resource type of one resource that may participate in the solution deployment. In addition to type, the resource element may specify hosted and component resources, name, version, and other constraints used to identify real resources in the environment. The following attributes and elements make up the resource element:
Required attributes and elements
· The id attribute uniquely identifies the resource element within the SDD. This id value is used by other elements in the SDD to refer to this resource. This value must be unique within the SDD.
· The type attribute defines the class of resource. The values for type are not defined by this specification.
A shared understanding of resource types and all their characteristics is essential is a core assumption of this specification. Creators of SDDs must use resource types that are understood by supporting infrastructure in the target environment. The deploying infrastructure must be able to discover the existence of resources of a given type used in the SDD; the values of the resource’s properties; and the existence and type of resource relationships. It must understand how to use the artifact types associated with the resource type to create, modify, and delete the resource.
Optional attributes and elements
· DisplayElement, displayName, description, shortDescription refer to the resource.

· scope attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
· selections attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
· singleton attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
· dedicated attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
· full attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
·

name
· A resource can define zero or more component resources in componentResource elements. Each componentResource element is an instance of Resource
and so is identical to the top-level resource elements. If both the resource and its declared component resource participate in a given solution deployment, then they must have a component relationship. (Participating in a solution means the resource is either required for or results from solution deployment. The content elements of the SDD determine whether or not a given resource will participate in a given solution deployment.) If only the parent resource is identified by the SDD content as participating in the solution, there is no assumption that the component resource must also participate. If only the component resource is identified as participating, it is assumed that the parent resource will also participate as a required resource even though no content element has explicitly identified it as required.

· A resource can define zero or more hosted resources in hostedResource elements. Each hostedResource element is an instance of Resource
and so is identical to the top level resource elements. If both the resource and its declared hosted resource participate in a given solution deployment, then they must have a host relationship. If only the host resource is identified by the SDD content as participating in the solution, there is no assumption that the hosted resource must also participate. If only the hosted resource is identified as participating, it is assumed that the host resource will also participate as a required resource even though no content element has explicitly identified it as required.

· To define that a resource must host a specific resource in its environment, one would use a hostedResource element. A hostedResource element can have the same constraints specified as a resource element.

· A resource can define one or more capacity constraint elements. A capacity constraint tests a numeric value representing a bound on a quantifiable property of the resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) bound. This constraint differs from a consumption constraint in that it is comparative, not cumulative. When multiple capacity constraints apply to the same property, the most restrictive constraint must be met. The capacity constraint element contains a required property element, which is an instance of xsd:string. This names the property to be tested. It also contains a required value element of type VariableExpression,
which specifies the bound on the property. A type attribute on capacity constraint indicates whether value represents an upper or lower bound. type is a restricted instance of xsd:NCNAME with enumerated values of “minimum” and “maximum”. Optional displayName, description, and shortDescription
elements can be included in a capacity constraint to provide human-readable information about the constraint.
· One or more consumption constraints can be defined to indicate a required quantity of a consumable resource property. An example of a consumable resource property is the disk space property of a file system resource. The consumption constraint is cumulative rather than comparative. When multiple consumption constraints are defined for the same resource, the total of all requirements must be met by the resource. A consumption constraint includes an instance of xsd:string named property, which contains the name of the property to be tested, and an instance of VariableExpression
named value, which contains the required numeric value.
· One or more property constraints can be defined to indicate that specific resource properties must have specific values. Each property constraint contains a propertyName element, which is an instance of xsd:string. The value of propertyName is the name of the resource property being constrained. A property constraint also contains either a value element or a listOfValues element. These elements specify the required value or values of the property. A value is an instance of PatternOrValue
, which resolves to xsd:string. A listOfValues is a sequence of value elements. The value elements in listOfValues are instances of VariableExpression
.

· A version constraint defines a required resource version or a range of versions. version contains an optional propertyName element, an instance of xsd:string, which contains the name of the resource property that holds the resource’s version. version also contains an optional value element used to specify a version or range of versions. version can be an instance of VariableExpression
or a sequence containing optional minVersion and maxVersion elements. minVersion and maxVersion are also instances of VariableExpression
. The resource version must be equal to or greater than the value of minVersion and equal to or less than the value of maxVersion. When minVersion is not defined, there is no lower bound to the version range. When maxVersion is not defined, there is no upper bound to the version range.
Standard versions are of the form V.R.M.L, with each part being numeric. Generic versions may include alphabetic characters in the version parts. Equality is tested by testing the equality of each part. Least significant parts may be omitted if they are “0”, e.g., 1.1 is equivalent to 1.1.0.0; 4a.1.2 is equivalent to 4a.1.2.0.
To compare versions, each version part is evaluated from left to right using either numeric or alphabetic comparison (alphabetic comparison MUST use a non-Unicode
, locale-insensitive, case-insensitive collating sequence). For version parts that consist of a number followed by a letter, the numeric part is compared first: a version part “4a” is greater than a version part “4”; a version part of “40” is greater than “4a”. Comparison stops when the version parts are different (in this case, the greater version is the one with the greater version part), when no corresponding version part exists in one of the versions being compared (in this case, the greater version is the one with remaining non-zero version part(s)) or when the versions are equal.
exactRange element of version - PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.

· One or more relationship constraints can be included to define the specific relationships that must exist between the declaring resource and other resources defined in the topology. The required type attribute specifies the relationship type. It is an instance of RelationshipTypes
. The optional relatedResourceRef attribute provides a reference to the other resource element that participates in the relationship. If relatedResourceRef is not defined, then the required relationship can be to an arbitrary resource. relatedResourceRef is an instance of ResourceIDRef
.
· One or more connectivity constraints can be included to define the required connectivity between resources. The direction of the connectivity – inbound, outbound, or both

– is specified by the required attribute direction, which is an instance of ConnectionDirection
. The declaring resource is at one end of the connection. The optional attribute connectionTargetRef identifies the resource that is at the other end of the connection. If connectionTargetRef is not specified, the connection can be with an arbitrary resource. connectionTargetRef is an instance of ResourceIDRef
. A connection may have protocol-specific properties, such as the protocol version and port. Zero or more constraints on connection properties can be included in the connectivity constraint by including zero or more property elements. A property is an instance of NameValuePair
.

·
 Custom
 constraint
· Instead of defining constraints directly, a resource element can include a set of two or more alternative elements. Each alternative element can define zero or more of the constraints defined in ConstraintSet
. In addition to constraint definitions, each alternative can define a DisplayElement
describing the alternative.

· Checks - PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.

A. Schema File List

The SDD schema is implemented by twenty
 schema files. Types defined in each file are identified by a specific namespace prefix, as indicated in the following list:
· artifact.xsd (prefix: ar)

Contains definitions for InstallArtifactPackage and Artifact. Note that InstallArtifactPackage includes artifacts for uninstall, config, verify, etc.

· artifactTypes.xsd (prefix: atype)

Provides a definition of artifact type. The enumeration of specific artifact type values is not an integral part of the SDD specification.

· base.xsd (prefix: base)

Contains definitions of basic types, such as identity, variables, and check types, as well as types that are re-used by several derived types.

· constraint.xsd (prefix: cons)

Contains constraint type definitions, including, for example, consumption constraints and version constraints.

· descriptorInfo.xsd (prefix: di)

Contains types that identify descriptors.

· display.xsd (prefix: display)

Contains types and groups that identify display text.

· feature.xsd (prefix: feat)

Contains definitions for features, install groups, and related elements.

· fixTypes.xsd (prefix: fixt)

Provides a definition of fix type. The enumeration of fix type values is not an integral part of the SDD specification.

· identity.xsd (prefix: id)

Contains definitions for base identity, identity, fix identity, and supporting types.

· iu.xsd (prefix: iu)

Defines RootIU, RootCU, RootLIU, CompositeIU, ContainedPackage, and supporting types.

· liu.xsd (prefix: liu)

Defines types supporting localization.

· pkg.xsd
 (prefix: pkg)

Defines types related to package and package content, including the Deployment Descriptor type.

· pkgTypes.xsd (prefix: pkgt)

Contains the definition of package type. The enumeration of package type values is not an integral part of the SDD specification.

· relationships.xsd (prefix: rel)

Contains an enumeration of relationships defined between resources.

· requirement.xsd (prefix: reqt)

Defines requirement and related types. The operation type is also defined here.

· resources.xsd (prefix: res)

Contains type definitions for topology, resource, and other related types. It also defines the topology element.

· resourceTypes.xsd (prefix: rtype)

Contains the definition of resource type names. The enumeration of specific resource type values is not an integral part of the SDD specification.

· sdd.xsd (prefix: dd)
Contains the definition of the DeploymentDescriptor type, along with basic content types: RootIUContent, RootCUContent, LocalizationContent, and RootSIUContent.
· siu.xsd (prefix: siu)

Contains definitions of the CU, IU, SIU, SCU, and supporting types.

· spd.xsd (prefix: spd)

The main schema file. Contains the definition of the PackageDescriptor type.
· version.xsd (prefix: vsn)

Defines normalized string formats for version information.
B. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
C.
D. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	 MACROBUTTON NoMacro [Rev number]
	 MACROBUTTON NoMacro [Rev Date]
	 MACROBUTTON NoMacro [Modified By]
	 MACROBUTTON NoMacro [Summary of Changes]

�artifact ID still in flux...

�Issue 14

�Issue 15

�[Note to Editors] Modify all DisplayElement-related bullets after resolution of Issue 20. (DisplayElement may end up described in a separate section if the xsd is normative.)

�Issue 22

�[Note to Editors] Modify all BuildInfo-related bullets after resolution of Issue 21.

�Issue 23

�It doesn’t seem good to me to use contents to define content…

�Is “in scope” the correct description here? You use the term “participating in” below to describe a similar concept.

�shall not?

�But should we have some examples in the non-normative section?

�Issue 21

�Issue 24

�Issue 16

�Issue 21

�Issue 21

�Issue 21

�Issue 21

� Issue 21

�Issue 21

�Is PatternOrValue a strict subset of VariableExpression?

�Issue 26

�Issue 21

�Issue 21

�Why specify non-unicode? Isn’t the definition of a defined collating sequence sufficient? If we are going to define a standard sequence don’t we have to define it, if we’re not doing that, then why constrain the collating sequence at all?

�Issue 24

�Issue 21

�Issue 21

�Issue 28

�No, there shouldn’t be a default.

�Issue 21

�Issue 21

�Issue 21

�Issue 29

�Do you mean how is the connectivity validated?

�Issue 21

�Issue 27

�Issue 21

�Issue 21

�Can we put into a comment the rationale for not including items in the first conformance level?

�Issue 24

�update as needed

�delete?

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 9
oasis-sdd-spec-draft-v0.0-r9.doc

27 June 2006

Copyright © OASIS Open 2005, 2006. All Rights Reserved.

Page 13 of 19

