
Declarative Progress Info in
SDD

James Falkner, Sun Microsystems
Chris Robsahm, SAP

Progress Reporting Characteristics

• Progress reporting is reporting the fraction of the job that
is complete (and possibly time remaining)

• Progress reporting does not report where you are in an
operation
– E.g. Shouldn’t go backwards

• Progress will never be continuous
• Showing progress is easy
• Showing smooth, granular progress is more difficult
• Showing accurate time remaining is even more difficult

Problem Statement(s)
• There is a general desire in user interfaces to

provide progress or heartbeat indications during
periods of no user interaction

• Time-to-completion estimates are also useful
for longer operations (e.g. do I have time for
coffee, or should I come back tomorrow?)

• Even in simple SDDs (e.g. single IU, single
artifact), the install still may take a long time

• Aggregating disparate SDDs, each taking
variable time, increases the need for feedback

Design Issues

• Declarative information only provides hints to a
runtime
– Runtime is free to ignore any and all progress info, or

calculate differently
• Declarations must be very simple and intuitive
• Declarations must be useful even in

aggregations
• Spec must offer guidance to runtimes on how to

use declarations when calculating progress

Design Issues (con’t)
• Weighting systems are useful but issues lurk

– What is the weight relative to?
– Does the weight pertain to time, or percent complete?
– How can weights be compared between two or more unrelated

developers
• Weighting within a single SDD, or within a single

aggregated SDD makes sense
– Developer can measure relative weights through testing
– Has nothing to do with reference hardware configs

• Overhead of install runtimes and deployment operations
adds to the perceived time to deploy

• Some atomic operations take a long time (e.g. initializing
DB, installing RPM).

Runtime Issues

• Progress reporting can be done in any
number of ways, including using SDD
hints

• Progress declarations in SDD can be used
for progress, time remaining, or both

• Overhead of runtime, or low-level
operations can be included in progress
reporting (e.g. copying files to a remote
host, or adding 10,000 registry entries)

Generic Aggregation Example
A1

A2 1.0

C6 1.0

C5 2.0

C4 1.0

A3 3.0

A4 10.0

C1 1.0

C2 11.0

C3 11.0

Relative weighting
within this region

C1

A1 Aggregation

Component

No weight required here,
except possibly in CL1

After A2, we are
25% complete (not
50%). If A2 takes 1
minute, then A3 will
take ~3 minutes.

After A4, we are
48.4% complete. If
A4 takes 1 minute,
then C2 will take
~1m6s (110%)

If C6 takes 1 minute, you cannot use this
to estimate how long C2 will take

Proposal
• Runtimes have enough information to show

crude progress already (e.g. operations
performed / total operation count).

• Proposal is to add a weighting to artifacts and to
contained package references, to allow SDD
author to assign weight within scope of their
SDD

• Weighting can be used to improve progress
accuracy, and estimate time to completion.

• Open question: are there other actions (not
associated with artifacts) that an SDD author
should assign a weight?

CL1 SDD Solution

• Single Artifacts can be assigned a weight,
but only makes sense in a CL1-style
“Aggregation”

xsd:decimal

CL1 SDD Solution

<Artifacts>
<InstallArtifact type="executable" packageFileRef="sapinst" weight="1.0">

<Parameters>
<Parameter value="SAPINST_CONTROL_URL=CONTROL_FLOW/control.xml" name="sapinst.controlscript"/>
<Parameter value="SAPINST_START_COMPONENT=scsinstall" name="sapinst.startcomponent"/>

</Parameters>
<AdditionalFile packageFileRef="CONTROL_FLOW/control.xml"/>

</InstallArtifact>
<UninstallArtifact type="executable" packageFileRef="sapinst" weight="1.0">

<Parameters>
<Parameter value="SAPINST_CONTROL_URL=CONTROL_FLOW/control.xml" name="sapinst.controlscript"/>
<Parameter value="SAPINST_START_COMPONENT=scsuninstall" name="sapinst.startcomponent"/>

</Parameters>
<AdditionalFile packageFileRef="CONTROL_FLOW/control.xml"/>

</UninstallArtifact>
</Artifacts>

• Example using SAP example
– Weights make sense only in CL1-style “aggregation”

CL2 SDD Solution
• CL2 has possibility of aggregation of external

packages. Weight must be assigned at point of
reference
– Presumption is the SDD being “imported” is read-

only, i.e. not being inlined
• For inlining of existing SDDs, or creation of new

IUs/Artifacts, weights are assigned as per CL1
• All weights within the scope of a a given SDD

are assumed to be relative to one another
– But not to external SDDs

• Missing weights are assumed to be equal to the
average

SDD CL2 Solution

	Declarative Progress Info in SDD
	Progress Reporting Characteristics
	Problem Statement(s)
	Design Issues
	Design Issues (con’t)
	Runtime Issues
	Generic Aggregation Example
	Proposal
	CL1 SDD Solution
	CL1 SDD Solution
	CL2 SDD Solution
	SDD CL2 Solution

