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Progress Reporting Characteristics

• Progress reporting is reporting the fraction of the job that 
is complete (and possibly time remaining)

• Progress reporting does not report where you are in an 
operation
– E.g. Shouldn’t go backwards

• Progress will never be continuous
• Showing progress is easy
• Showing smooth, granular progress is more difficult
• Showing accurate time remaining is even more difficult



Problem Statement(s)
• There is a general desire in user interfaces to 

provide progress or heartbeat indications during 
periods of no user interaction

• Time-to-completion estimates are also useful 
for longer operations (e.g. do I have time for 
coffee, or should I come back tomorrow?)

• Even in simple SDDs (e.g. single IU, single 
artifact), the install still may take a long time

• Aggregating disparate SDDs, each taking 
variable time, increases the need for feedback



Design Issues

• Declarative information only provides hints to a 
runtime
– Runtime is free to ignore any and all progress info, or 

calculate differently
• Declarations must be very simple and intuitive
• Declarations must be useful even in 

aggregations
• Spec must offer guidance to runtimes on how to 

use declarations when calculating progress



Design Issues (con’t)
• Weighting systems are useful but issues lurk

– What is the weight relative to?
– Does the weight pertain to time, or percent complete?
– How can weights be compared between two or more unrelated 

developers
• Weighting within a single SDD, or within a single 

aggregated SDD makes sense
– Developer can measure relative weights through testing
– Has nothing to do with reference hardware configs

• Overhead of install runtimes and deployment operations 
adds to the perceived time to deploy

• Some atomic operations take a long time (e.g. initializing 
DB, installing RPM). 



Runtime Issues

• Progress reporting can be done in any 
number of ways, including using SDD 
hints

• Progress declarations in SDD can be used 
for progress, time remaining, or both

• Overhead of runtime, or low-level 
operations can be included in progress 
reporting (e.g. copying files to a remote 
host, or adding 10,000 registry entries)



Generic Aggregation Example
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within this region

C1

A1 Aggregation

Component

No weight required here, 
except possibly in CL1

After A2, we are 
25% complete (not 
50%).  If A2 takes 1 
minute, then A3 will 
take ~3 minutes.

After A4, we are 
48.4% complete.  If 
A4 takes 1 minute, 
then C2 will take 
~1m6s (110%)

If C6 takes 1 minute, you cannot use this 
to estimate how long C2 will take



Proposal
• Runtimes have enough information to show 

crude progress already (e.g. operations 
performed / total operation count).

• Proposal is to add a weighting to artifacts and to 
contained package references, to allow SDD 
author to assign weight within scope of their 
SDD

• Weighting can be used to improve progress 
accuracy, and estimate time to completion.

• Open question: are there other actions (not 
associated with artifacts) that an SDD author 
should assign a weight?



CL1 SDD Solution

• Single Artifacts can be assigned a weight, 
but only makes sense in a CL1-style 
“Aggregation”

xsd:decimal



CL1 SDD Solution

<Artifacts>
<InstallArtifact type="executable" packageFileRef="sapinst" weight="1.0">

<Parameters>
<Parameter value="SAPINST_CONTROL_URL=CONTROL_FLOW/control.xml" name="sapinst.controlscript"/>
<Parameter value="SAPINST_START_COMPONENT=scsinstall" name="sapinst.startcomponent"/>

</Parameters>
<AdditionalFile packageFileRef="CONTROL_FLOW/control.xml"/>

</InstallArtifact>
<UninstallArtifact type="executable"  packageFileRef="sapinst" weight="1.0">

<Parameters>
<Parameter value="SAPINST_CONTROL_URL=CONTROL_FLOW/control.xml" name="sapinst.controlscript"/>
<Parameter value="SAPINST_START_COMPONENT=scsuninstall" name="sapinst.startcomponent"/>

</Parameters>
<AdditionalFile packageFileRef="CONTROL_FLOW/control.xml"/>

</UninstallArtifact>
</Artifacts>

• Example using SAP example
– Weights make sense only in CL1-style “aggregation”



CL2 SDD Solution
• CL2 has possibility of aggregation of external 

packages.  Weight must be assigned at point of 
reference
– Presumption is the SDD being “imported” is read-

only, i.e. not being inlined
• For inlining of existing SDDs, or creation of new 

IUs/Artifacts, weights are assigned as per CL1
• All weights within the scope of a a given SDD 

are assumed to be relative to one another
– But not to external SDDs

• Missing weights are assumed to be equal to the 
average



SDD CL2 Solution
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