8.1.1 Conversion from SDO type Date to SDO type String

This conversion happens automatically when calling DataObject.setDate() on a property of type String or DataObject.getString() on a property of type Date. The Date value is converted using the xs:dateTime Schema type canonical String representation for the "Z" timezone. Null Date will be converted to a null String.

8.1.2 Conversion from SDO type String to SDO type Date

This conversion happens automatically when calling DataObject.setString() on a property of type Date or DataObject.getDate() on a property of type String; same rules apply for the DataHelper.toDate(String) method. The String value has to be a valid lexical representation for one of the following SDO types: DateTime, Time, YearMonthDay, Year, YearMonth, Month, MonthDay, Day. The conversion happens as per section 8.1.3 according to which of the datatypes the String value represents and then calling getTime() on the resulting Calendar. There are no constraints on the behavior of the getTime() method other than applying the reverse conversion (as per section 8.1.5) must return the original value.

Example: converting "--02-29" to Date and back: DataHelper.toMonthDay(DataHelper.toDate("--02-29")) must return "--02-29" or "--02-29Z".

Null String will be converted to a null Date.

8.1.3 Conversion from a String-based SDO Date/Time type to Calendar

This conversion is performed by methods in the DataHelper class: DataHelper.toCalendar(String) and DataHelper.toCalendar(String, Locale). The String value has to be a valid lexical representation for one of the following SDO types: DateTime, Time, YearMonthDay, Year, YearMonth, Month, MonthDay, Day. Based on the type that the String represents, the corresponding fields in the Calendar are set. The rest of the fields are unset. If the timezone is not set in the String representation, then "Z" is assumed unless specifically passed in via the Locale.

8.1.4 Conversion from Calendar to a String-based SDO Date/Time type

This conversion is performed by methods in the DataHelper class: DataHelper.toDateTime(Calendar), DataHelper.toTime(Calendar), DataHelper.toDay(Calendar calendar), DataHelper.toMonth(Calendar), DataHelper.toMonthDay(Calendar), DataHelper.toYear(Calendar), DataHelper.toYearMonth(Calendar), DataHelper.toYearMonthDay(Calendar). The fields implied by each of the methods are extracted from the given Calendar and then a valid lexical representation for the corresponding SDO datatype (DateTime, Time, Day, Month, MonthDay, Year, YearMonth, YearMonthDay respectively) is created using those fields.

8.1.5 Conversion from Date to a String-based SDO Date/Time type

This conversion is performed by methods in the DataHelper class: DataHelper.toDateTime(Date), DataHelper.toDuration(Date), DataHelper.toTime(Date), DataHelper.toDay(Date), DataHelper.toMonth(Date), DataHelper.toMonthDay(Date), DataHelper.toYear(Date), DataHelper.toYearMonth(Date), DataHelper.toYearMonthDay(Date). The Date is converted into a Calendar first using the setTime() method on the Calendar with the timezone set to "Z". Then. the conversion proceeds as per section 8.1.4.

8.1.6 Conversion from SDO type String to a String-based SDO Date/Time type

This conversion is performed when calling setString() on a property of one of the SDO Date/Time types. If the String value is a valid lexical representation of that type, then the conversion leaves the value unchanged. Otherwise, the conversion is implementation-dependednt.

8.1.7 Conversion between Calendar/Date and Duration

The methods DataHelper.toDuration(Date) and DataHelper.toDuration(Calendar) are deprecated. Calling setDate() or getDate() on a property of type Duration is undefined.

