
Service Data Objects For Java Specification
Version 2.1.0, November 2006

Authors
Matthew Adams Xcalia
Cezar Andrei BEA Systems, Inc.
Ron Barack SAP AG
Henning Blohm SAP AG
Christophe Boutard Xcalia
Stephen Brodsky IBM Corporation
Frank Budinsky IBM Corporation
Stefan Bünnig SAP AG
Michael Carey BEA Systems, Inc.
Blaise Doughan Oracle Corporation
Andy Grove Rogue Wave Software
Omar Halaseh Oracle Corporation
Larry Harris Oracle Corporation
Ulf von Mersewsky SAP AG
Shawn Moe IBM Corporation
Martin Nally IBM Corporation
Radu Preotiuc-Pietro BEA Systems, Inc.
Mike Rowley BEA Systems, Inc.
Eric Samson Xcalia
James Taylor BEA Systems, Inc.
Arnaud Thiefaine Xcalia

Copyright Notice
c© Copyright BEA Systems, Inc., International Business Machines Corp, Oracle,
Primeton Technologies Ltd, Rogue Wave Software, SAP AG., Software AG., Sun
Microsystems, Sybase Inc., Xcalia, Zend Technologies, 2005, 2006. All rights
reserved.
.

License
The Service Data Objects Specification is being provided by the copyright holders
under the following license. By using and/or copying this work, you agree that you
have read, understood and will comply with the following terms and conditions:
Permission to copy, display and distribute the Service Data Objects Specification
and/or portions thereof, without modification, in any medium without fee or
royalty is hereby granted, provided that you include the following on ALL copies of
the Service Data Objects Specification, or portions thereof, that you make:
1. A link or URL to the Service Data Objects Specification at this location:
http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
2. The full text of this copyright notice as shown in the Service Data Objects
Specification.
BEA, IBM, Oracle, Primeton Technologies, Rogue Wave Software, SAP, Software
AG, Sun Microsystems, Xcalia, Zend Technologies (collectively, the “Authors”)

1

agree to grant you a royalty-free license, under reasonable, non-discriminatory
terms and conditions to patents that they deem necessary to implement the Service
Data Objects Specification.
THE Service Data Objects SPECIFICATION IS PROVIDED ”AS IS,” AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, REGARDING THIS SPECIFICATION AND THE
IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT OR TITLE. THE AUTHORS WILL NOT BE
LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE SERVICE DATA OBJECTS
SPECIFICATION.
The name and trademarks of the Authors may NOT be used in any manner,
including advertising or publicity pertaining to the Service Data Objects
Specification or its contents without specific, written prior permission. Title to
copyright in the Service Data Objects Specification will at all times remain with the
Authors.
No other rights are granted by implication, estoppel or otherwise.
Status of this Document
This specification may change before final release and you are cautioned against
relying on the content of this specification. The authors are currently soliciting your
contributions and suggestions. Licenses are available for the purposes of feedback
and (optionally) for implementation.
BEA is a registered trademark of BEA Systems, Inc.
IBM is a registered trademark of International Business Machines Corporation in
the United States, other countries, or both.
Oracle is a registered trademark of Oracle USA, Inc.
Rogue Wave is a registered trademark of Quovadx, Inc
SAP is a registered trademark of SAP AG.
Software AG is a registered trademark of Software AG
Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
Sybase is a registered trademark of Sybase, Inc.
Zend is a trademark of Zend Technologies Ltd.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of
others.

Table of Contents

Contents

1 Introduction 3

2

1.1 Key Concepts . 3
1.2 Requirements . 4
1.3 Organization of this Document . 6

1 Introduction

Service Data Objects (SDO) is a data programming architecture and an API.
The main purpose of SDO is to simplify data programming, so that developers can
focus on business logic instead of the underlying technology.
SDO simplifies data programming by:

• unifying data programming across data source types

• providing support for common application patterns

• enabling applications, tools and frameworks to more easily query, view, bind,
update, and introspect data.

For a high-level overview of SDO, see the white paper titled “Next-Generation Data
Programming: Service Data Objects” [?] .

1.1 Key Concepts

The key concepts in the SDO architecture are the Data Object, the data graph
and the Data Access Services (DAS).
A Data Object holds a set of named properties, each of which contains either a
simple data-type value or a reference to another Data Object. The Data Object
API provides a dynamic data API for manipulating these properties.
The data graph provides an envelope for Data Objects, and is the normal unit of
transport between components. Data graphs can track changes made to the graph
of Data Objects. Changes include inserting Data Objects, deleting Data Objects
and modifying Data Object property values.
Usually, data graphs are constructed from one of the following:

• Data sources

– such as XML files, Enterprise JavaTM Beans (EJBs), XML databases and
relational databases.

• Services

– such as Web services, Java Connector Architecture (JCA) Resource Adapters
and Java Message Service (JMS) messages.

Components that can populate data graphs from data sources and commit changes
to data graphs back to the data source are called Data Access Services (DAS). The
DAS architecture and APIs are outside the scope of this specification.

3

1.2 Requirements

The scope of the SDO specification includes the following requirements:

1. Dynamic Data API. Data Objects often have typed Java interfaces. How-
ever, sometimes it is either impossible or undesirable to create Java interfaces
to represent the Data Objects. One common reason for this is when the data
being transferred is defined by the output of a query. Examples would be:

2. A relational query against a relational persistence store.

3. An EJBQL queries against an EJB entity bean domain model.

4. Web services.

5. XML queries against an XML source.

6. When deployment of generated code is not practical.

In these situations, it is necessary to use a dynamic store and associated
API. SDO has the ability to represent Data Objects through a standard
dynamic data API.

1. Support for Static Data API. In cases where metadata is known at devel-
opment time (for example, the XML Schema definition or the SQL relational
schema is known), SDO supports code-generating interfaces for Data Objects.
When static data APIs are used, the dynamic data APIs are still available.
SDO enables static data API code generation from a variety of metamodels,
including:

2. Popular XML schema languages.

3. Relational database schemas with queries known at the time of code generation.

4. Web services, when the message is specified by an XML schema.

5. JCA connectors.

6. JMS message formats.

7. UML models

While code-generation rules for static data APIs is outside the scope of this
core SDO specification, it is the intent that SDO supports code-generated
approaches for Data Objects.

4

1. Complex Data Objects. It is common to have to deal with “complex” or
“compound” Data Objects. This is the case where the Data Object is the
root of a tree, or even a graph of objects. An example of a tree would be a
Data Object for an Order that has references to other Data Objects for the
Line Items. If each of the Line Items had a reference to a Data Object for
Product Descriptions, the set of objects would form a graph. When dealing with
compound data objects, the change history is significantly harder to implement
because inserts, deletes, adds, removes and re-orderings have to be tracked, as
well as simple changes. Service Data Objects support arbitrary graphs of Data
Objects with full change summaries.

1. Change Summary. It is a common pattern for a client to receive a Data
Object from another program component, make updates to the Data Object,
and then pass the modified Data Object back to the other program component.
To support this scenario, it is often important for the program component
receiving the modified Data Object to know what modifications were made. In
simple cases, knowing whether or not the Data Object was modified can be
enough. For other cases, it can be necessary (or at least desirable) to know
which properties were modified. Some standard optimistic collision detection
algorithms require knowledge not only of which columns changed, but what the
previous values were. Service Data Objects support full change summary.

1. Navigation through graphs of data. SDO provides navigation capabilities
on the dynamic data API. All Data Objects are reachable by breadth-first or
depth-first traversals, or by using a subset of XPath 1.0 expressions.

1. Metadata. Many applications are coded with built-in knowledge of the shape
of the data being returned. These applications know which methods to call
or fields to access on the Data Objects they use. However, in order to enable
development of generic or framework code that works with Data Objects, it is
important to be able to introspect on Data Object metadata, which exposes the
data model for the Data Objects. As Java reflection does not return sufficient
information, SDO provides APIs for metadata. SDO metadata may be derived
from:

2. XML Schema

3. EMOF (Essential Meta Object Facility)

4. Java

5. Relational databases

6. Other structured representations.

1. Validation and Constraints.

5

2. Supports validation of the standard set of constraints captured in the metadata.
The metadata captures common constraints expressible in XML Schema and
relational models (for example, occurrence constraints).

3. Provides an extensibility mechanism for adding custom constraints and valida-
tion.

1. Relationship integrity.

2. An important special case of constraints is the ability to define relationships
between objects and to enforce the integrity of those constraints, including
cardinality, ownership semantics and inverses. For example, consider the case
where an employee has a relationship to its department and a department
inversely has a list of its employees. If an employee’s department identifier is
changed then the employee should be removed, automatically, from the original
department’s list. Also, the employee should be added to the list of employees
for the new department. Data Object relationships use regular Java objects as
opposed to primary and foreign keys with external relationships.

3. Support for containment tree integrity is also important.

NOTE the following areas are out of scope:

1. Complete metamodel and metadata API. SDO includes a minimal meta-
data access API for use by Data Object client programmers. The intention is
to provide a very simple client view of the model. For more complete metadata
access, SDO may be used in conjunction with common metamodels and schema
languages, such as XML Schema [?] and the EMOF compliance point from the
MOF2 specification [?] . Java annotations in JSR 175 may be a future source
of metadata.

2. Data Access Service (DAS) specification. Service Data Objects can be
used in conjunction with “data accessors”. Data accessors can populate data
graphs with Data Objects from back-end data sources, and then apply changes
to a data graph back to a data source. A data access service framework is out
of scope but will be included in a future Data Access Service specification .

1.3 Organization of this Document

This specification is organized as follows:

• Architecture: Describes the overall SDO system.

• Java API: Defines and describes the Java API for SDO.

• Generating Java from XML Schemas: Shows how Java is generated from
XML Schemas (XSD).

6

• Java Interface Specification: Defines how Java interfaces are generated and
used.

• Java Serialization of DataObjects: Defines how to serialize DataObjects.

• SDO Model for Types and Properties: Shows the SDO Type and Property
in model form.

• Standard SDO Types: Defines and describes the Standard SDO Types.

• XML Schema to SDO Mapping: Defines and describes how XML Schema
declarations (XSD) are mapped to SDO Types and Properties.

• Generation of XSD from SDO Type and Property: Describes how to
generate XSDs from SDO Types and Properties.

• XPath Expression for DataObjects: Defines an augmented subset of XPath
that can be used with SDO for traversing through Data Objects.

• Examples: Provides a set of examples showing how SDO is used.

• DataType Conversion Tables: Shows the set of defined datatype conver-
sions.

7

