PAGE
10

SDO – Enterprise Data Model

	Date
	Description
	Author(s)
	Reviewer(s)

	February 22, 2008
	Initial document
	Blaise Doughan
	

	March 4, 2008
	Proposed changes to SDO.
	Blaise Doughan
	David T

	March 7, 2008
	
	Blaise Doughan
	

	March 17. 2008
	Reorganized the document and added more content to the data source section.
	Blaise Doughan
	Dennis, Doug, Shaun, Mike K, Mike N & David T

	March 19, 2008
	Added the concept of orphaned elements and how to handle them.
	Blaise Doughan
	Mike K, Mike N & David T

	March 20, 2008
	Composite vs. Containment
	Blaise Doughan
	

	March 28, 2008
	Updated containment section, and added the identity section.
	Blaise Doughan
	Mike K & David T

	April 2, 2008
	Updates based on feedback from Mike K.
	Blaise Doughan
	Mike K & David T

	
	
	
	

1SDO – Enterprise Data Model

2What is an Enterprise Data Model?

2Example

3Enterprise Data Model – SDO Metadata

3Containment

5Identity

6Enterprise Data Model – Java Interfaces

6Example

8Enterprise Data Model – To XML Schema

8Root Type

8Traversal Path

8Orphan

8Examples

9Algorithm

12Example #1 – Root Type is Address

14Example #2 – Root Type is Employee

16Example #3 – Root Type is PhoneNumber

18Enterprise Data Model – From Data Source

18Example

19Relationship – One To One (Containment)

20Relationship – One To One (Non-Containment)

21Relationship – One To Many (Containment)

22Relationship – One To Many (Non-Containment)

What is an Enterprise Data Model?

“Service Data Objects (SDO) are designed to simplify and unify the way in which applications handle data. Using SDO, application programmers can uniformly access and manipulate data from heterogeneous data sources, including relational databases, XML data sources, Web services, and enterprise information systems.”

Although the goal for SDO is what’s stated above, it is gradually becoming yet another XML binding layer, closely resembling JAXB 1.0 (now obsolete). SDO 2.1 has attempted to make XML the common format and left the DAS group to solve what XML-isms such as containment mean when representing persistent data sources such as relational databases.

This document discusses what SDO would look like based on objects. This is a well-proven approach demonstrated by such industry standards as Java EE and the Common Warehouse Metamodel (OMG)
.

Example

The following logical data model will be used throughout this document.

Enterprise Data Model – SDO Metadata

Containment

SDO 2.1 Containment

Containment as it relates to SDO 2.1 is a mechanism to apply a tree structure to a graph of objects.
 This is a common strategy for XML binding solutions (such as SDO 2.1). When generating SDO metadata from the following XML schema fragment it is clear that department data contains employee data.

<xs:complexType name=”department”>

<xs:sequence>

<xs:element name=”member” type=”employee”

maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexType>

If SDO metadata were to be generated from other sources such as Java classes (or interfaces) then it is not clear what the containment relationships are. This necessitates the need for an object-to-tree binding strategy. For the Java language this means creating something that will closely resemble JAXB 2.0.

There is also a Data Access Service (DAS) specification under development by the Open Service Oriented Architecture (OSOA) group. This specification will describe how SDOs can be used with a persistent data source. Implementers of this specification will need to invent binding strategies relating to their supported data sources such as relational-to-tree.

SDO 3.0 Containment

Change the meaning of containment to represent a composite (privately owned) relationship
. Privately owned is a concept related to many data models and need not be used if it does not apply. This does not prevent using XML to represent the data, see Enterprise Data Model – To XML Schema.

Example

ChangeSummary

The scope of the ChangeSummary would still be based on containment.

Other Specification Changes

While the following statements would remain true if the metadata was generated from an XML schema, they would no longer be true in the general case.

· “All the DataObjects that can be reached by recursively traversing the containment Properties of the root DataObject.”

· “DataObjects in a data graph are arranged in a tree structure. One DataObject forms the root of the tree and the other DataObjects make up the nodes of the tree.”

Identity

SDO 2.1 Identity

In SDO 2.1 identity corresponds to the ID/IDREF concept in XML schema. This is the most basic form of representing non-containment relationships in XML (XML schema also has a key/keyref concept which provides more flexibility).

SDO 3.0 Identity

A new property is needed on SDO Property to indicate that the property participates in uniquely identifying an instance of that Type. Types may have 0 or more key properties. The name “key” has been proposed by the DAS group.

When creating SDO metadata from an XML Schema, key properties must not be limited to those nodes of type xs:ID. Annotations should be added to allow nodes of other types.

<xs:complexType name=”employee”>

<xs:sequence>

<xs:element name=”contact-number” type=”phone-number”

maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute name=”e-id” type=”xs:integer” sdo:key=”true”/>

<xs:attribute name=”name” type=”xs:string”/>

</xs:complexType>

Other sources of SDO metadata (such as Java interfaces) will also require their own mechanisms for indicating key properties.

public interface Employee {

@Key;

public Integer getEId();

public void setEId(Integer eid);

}

ChangeSummary

The XML representation of ChangeSummary must be updated to make use of the new key information. If no key information is present then the mechanisms from SDO 2.1 are used (xs:ID property and XPath), preserving backwards compatibility.

Enterprise Data Model – Java Interfaces

Java interfaces are another possible source of SDO metadata.

Example

The following static interfaces could be generated to make the DataObjects easier to interact with. Annotations have been added to reflect the metadata in the corresponding Property objects.

public interface Employee {

@Key;

public Integer getEId();

public void setEId(Integer eid);

public String getName();

public void setName(String name);

@Containment

@Opposite(“resident”)

public Address getResidence();

public void setResidence(Address address);

@Containment

@Opposite(“contact”)

public List<PhoneNumber> getContactNumber();

public void setContactNumber(List<PhoneNumber> phoneNumbers);

@Opposite(“member”)

public List<Department> getTeam();

public void setTeam(List<Department> departments)

}

public interface Address {

@Key;

public Integer getEId();

public void setEId(Integer eid);

public String getStreet();

public void setStreet(String street);

public String getCity();

public void setCity(String city);

@Containment

@Opposite(“residence”)

public Employee getResident();

public void setResident(Employee employee);

}

public interface PhoneNumber {

@Key;

public Integer getPId();

public void setPId(Integer pid);

public String getNum();

public void setNum(String num);

@Opposite(“contactNumber”)

public Employee getContact();

public void setContact(Employee employee);

}

public interface Department {

@Key;

public Integer getDId();

public void setDId(Integer did);

@Opposite(“team”)

public List<Employee> getMember();

public void setMember(List<Employee> employees);

}

Enterprise Data Model – To XML Schema

Root Type

The root type corresponds to the SDO type that will serve as the root of the XML document.

Traversal Path

The traversal path is the direction in which relationships will be traversed.

Orphan

In the XML representation each Type must be reached through a containment relationship. An orphan is a SDO type that has not been reached through the traversal path by a containment relationship.

Examples

Multiple XML schemas can be generated for the same data model depending on the root type and traversal paths chosen. See the following examples.

· Example #1 – Root Type is Address
· Example #2 – Root Type is Employee
· Example #3 – Root Type is PhoneNumber
Algorithm

The following algorithm describes how to generate XML Schemas from the SDO type representing the root type.

Step #1 – XML Complex Type for SDO Type

If a global XML complex type has not been generated for this SDO type then create one. The complex type name is based on the name of the SDO type.

<xs:complexType name=”phone-number”/>

Step #2 – Generate XML Attribute for All Data Type Properties

For each data type property generate an XML attribute definition within the complex type definition for the owning SDO type. The name of the XML attribute is based on the name of the SDO property.

<xs:complexType name=”phone-number”>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

Step #3 – Non-Containment Properties

For each property representing a non-containment relationship (in the traversal path) generate an XML element definition within the complex type definition corresponding to the owning SDO type. The name of the XML element is based on the name of the SDO property. Within this element create an anonymous complex type definition. This complex type will contain the attributes corresponding to the key(s) of the target type.

<xs:complexType name=”phone-number”>

<xs:sequence>

<xs:element name=”contact”>

<xs:complexType>

<xs:attribute name=”e-id” type=”xs:integer”/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

If the property represents isMany=true then specify maxOccurs=”unbounded” on the element declaration. If a complex type has not been created for the non-containment property’s type then create one starting with step #1.

Until a containment property of this SDO type is processed then the SDO type of the non-containment SDO property must be tracked as an orphan.

Step #4 – Generate Nested XML Elements for Containment Properties

For each property representing a containment relationship (in the traversal path)
generate an XML element definition within the complex type definition corresponding to the owning SDO type. The name of the XML element is based on the name of the SDO property. If a complex type has not been created for the property’s type then create one starting with step #1.

<xs:complexType name=”employee”>

<xs:sequence>

<xs:element name=”residence” type=”address”/>

</xs:sequence>

</xs:complexType>

If the property represents isMany=true then specify maxOccurs=”unbounded” on the element declaration.

If the type of this property is currently being tracked as an orphan then remove it from that list.

Step #5 – Add Orphans to Root Type’s XML Complex Type

For each SDO type that is still an orphan
add an XML element to the XML complex type corresponding to the root type. The name of these XML elements is based on the name of the SDO types. The elements should be added in the order in the orphan SDO types were encountered. Metadata could be added to the XML Schema to indicate that these orphan elements do not correspond to properties on the root type.

<xs:complexType name=”phone-number”>

<xs:sequence>

<xs:element name=”contact”>

<xs:complexType>

<xs:attribute name=”e-id” type=”xs:integer”/>

</xs:complexType>

</xs:element>

<xs:element name=”employee” type=”employee”

sdo:orphan=”true”/>

</xs:sequence>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

Step #6 – Consolidate Non-Containment Properties & Orphans

If an XML reference was created in step #3 and the corresponding SDO type was added as an element as a result of adding the orphans in step #5, then these two concepts should be merged as demonstrated below:

<xs:complexType name=”phone-number”>

<xs:sequence>

<xs:element name=”contact” type=”employee”

sdo:containment=”false”/>

<xs:complexType>

<xs:attribute name=”e-id” type=”xs:integer”/>

</xs:complexType>

</xs:element>

<xs:element name=”employee” type=”employee”/>

</xs:sequence>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

Metadata could be added to the XML schema to ensure that SDO recognizes that the property represents a non-containment relationship.

Example #1 – Root Type is Address

Traversal Path

XML Schema

The following XML schema represents the portion of the data model shown above. To fully represent the original data model annotations could be added to the XML schema.

<xs:complexType name=”address”>

<xs:sequence>

<xs:element name=”resident” type=”employee”/>

</xs:sequence>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”street” type=”xs:string”/>

<xs:attribute name=”city” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”employee”>

<xs:sequence>

<xs:element name=”contact-number” type=”phone-number”

maxOccurs=”unbounded”/>

</xs:sequence>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”name” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”phone-number”>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

Running the following code would generate this XML Schema:

List<Type> types = new ArrayList<Type>();

types.add(Address);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

This schema could also be generated by the following code:

List<Type> types = new ArrayList<Type>();

types.add(Address);

types.add(Employee);

types.add(PhoneNumber);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

XML Document

<root e-id=”2” street=”1 A St.” city=”A City”>

<resident e-id=”2” name=”Jane”>

<contact-number p-id=”3” num=”555-1111”/>

<contact-number p-id=”4” num=”555-2222”/>

</resident>

</root>

Running the following code would generate this XML Document:

XMLHelper.INSTANCE.save(anAddressDO, null, “root”, System.out);

Example #2 – Root Type is Employee

Traversal Path

XML Schema

The following XML schema represents the portion of the data model shown above. To fully represent the original data model annotations could be added to the XML schema.

<xs:complexType name=”employee”>

<xs:sequence>

<xs:element name=”residence” type=”address”/>

<xs:element name=”contact-number” type=” phone-number”/>

</xs:sequence>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”name” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”address”>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”street” type=”xs:string”/>

<xs:attribute name=”city” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”phone-number”>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

Running the following code would generate this XML Schema:

List<Type> types = new ArrayList<Type>();

types.add(Employee);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

This schema could also be generated by the following code:

List<Type> types = new ArrayList<Type>();

types.add(Employee);

types.add(Address);

types.add(PhoneNumber);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

XML Document

<root e-id=”2” name=”Jane”>

<residence e-id=”2” street=”2 A St.” city=”A City”/>

<contact-number p-id=”3” num=”555-1111”/>

<contact-number p-id=”4” num=”555-2222”/>

</root>

Running the following code would generate this XML Document:

XMLHelper.INSTANCE.save(anEmployeeDO, null, “root”, System.out);

Example #3 – Root Type is PhoneNumber

Traversal Path

XML Schema

The following XML schema represents the portion of the data model shown above. To fully represent the original data model annotations could be added to the XML schema.

<xs:complexType name=”phone-number”>

<xs:sequence>

<xs:element name=”contact” type=”employee”

sdo:containment=”false”/>

</xs:sequence>

<xs:attribute name=”p-id” type=”xs:integer”/>

<xs:attribute name=”num” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”employee”>

<xs:sequence>

<xs:element name=”residence” type=”address”/>

</xs:sequence>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”name” type=”xs:string”/>

</xs:complexType>

<xs:complexType name=”address”>

<xs:attribute name=”e-id” type=”xs:integer”/>

<xs:attribute name=”name” type=”xs:string”/>

<xs:attribute name=”city” type=”xs:string”/>

</xs:complexType>

Running the following code would generate this XML Schema:

List<Type> types = new ArrayList<Type>();

types.add(PHONE_NUMBER);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

This schema could also be generated by the following code:

List<Type> types = new ArrayList<Type>();

types.add(PhoneNumber);

types.add(Employee);

types.add(Address);

String xmlSchema = XSDHelper.INSTANCE.generate(types);

XML Document

<root p-id=”3” num=”555-1111”>

<contact e-id=”2” name=”Jane”>

<residence e-id=”2” street=”2 A St.” city=”A City”/>

</contact>

</root>

Running the following code would generate this XML Document:

XMLHelper.INSTANCE.save(aPhoneNumberDO, null, “root”, System.out);

Enterprise Data Model – From Data Source

A Data Access Service specification is currently under development by the Open Service Oriented Architecture (OSOA) group
. The goal of this group is to standardize the way data objects are accessed from a data source.

This document does not address data access, but instead how types can be derived. Instead of being based on the physical model (i.e. database schema) it is based on the logical model (entity-relationship model). This prevents the type generation from being specifically linked to a specific data source type (i.e. relational database).

This document introduces the ability to derive multiple XML schemas from the same data model. The advantage of this from a DAS perspective is the ability to have per type messages. Instead of defining the XML schemas for each of the “find by type” operations you can derive them from the logical model. For a demonstration of this see the following examples (in this document):

· Example #1 – Root Type is Address
· Example #2 – Root Type is Employee
· Example #3 – Root Type is PhoneNumber
Example

The logical model used throughout this document could correspond to the physical model below. This model represents a relational database schema. The purpose of this section is not to introduce a new object-relational mapping specification. Instead this section is a proof of concept demonstrating how containment may be specified when deriving SDO metadata from sources other than an XML schema.

Relationship – One To One (Containment)

This relationship applies when an object privately owns another data object.

Physical Model

This can occur in a relational database if the primary key of the target table is also a foreign key to the source table.

The following demonstrates how this relationship might be represented in a relational database.

Logical Model

In the logical model we identify that the Employee type has a containment relationship to the Address type. This is because instances of Employee do not share references to instances of Address.

Relationship – One To One (Non-Containment)

This relationship applies when an object references but does not privately own another data object.

Physical Model

This can occur in a relational database if the foreign key is on the source table.

Since the foreign key is on the source table, many entries in the source table can reference the same entry in the target table.

Logical Model

In the logical model we identify that the PhoneNumber type has a non-containment relationship to the Employee type. This is because instances of PhoneNumber can share references to instances of Employee.

Relationship – One To Many (Containment)

This relationship applies when an object privately owns a collection of data objects.

Physical Model

This can occur in a relational database if the foreign key is on the target table.

Since the foreign key is on the target table it can only be associated with one entry in the source table.

Logical Model

In the logical model we identify that the Employee type has a containment relationship to the PhoneNumber type. This is because instances of Employee do not share references to instances of PhoneNumber.

Relationship – One To Many (Non-Containment)

This relationship applies when an object references but does not privately own a collection of data objects.

Physical Model

This relationship can occur in a relational database if the tables are related through a join table.

The join table allows instances of DEPARTMENT to share instances of EMPLOYEE. In the example below both the “Eng” and “QA” departments have the employee “Bob” as a member.

Logical Model

In the logical model we identify that the Department type has a non-containment relationship to the Employee type. This is because instances of Department can share references to instances of Employee.

B Town

5

5 B Rd.

A City

2

2 A St.

CITY

E_ID

STREET

ADDRESS

5

Bob

2

Jane

E_ID

NAME

EMPLOYEE

*

contactNumber

CITY

STREET

E_ID

PK, FK

ADDRESS

9

QA

5

9

5

8

Bob

5

2

E_ID

8

D_ID

DEPT_EMP

Jane

2

NAME

E_ID

EMPLOYEE

8

Eng

NAME

NAME

E_ID

PK

D_ID

DEPARTMENT

E_ID

D_ID

PK, FK

PK, FK

DEPT_EMP

5

7

eId: Integer

street: String

city: String

Address

555-4444

5

eId: Integer

name: String

*

PhoneNumber

NAME

E_ID

PK

EMPLOYEE

Employee

NAME

*

team

*

member

D_ID

PK

Employee

6

NAME

Employee

555-3333

contactNumber

pId: Integer

num: String

PhoneNumber

pId: Integer

num: String

1

resident

eId: Integer

street: String

city: String

Address

pId: Integer

num: String

PhoneNumber

eId: Integer

street: String

city: String

Address

eId: Integer

name: String

name = “resident”

type = Employee

containment = true

isMany = false

opposite =

containingType =

 Address

: Property

EMPLOYEE

E_ID

eId: Integer

name: String

DEPARTMENT

eId: Integer

name: String

Employee

D_ID

name = “residence”

type = Address

containment = true

isMany = false

opposite =

containingType =

 Employee

: Property

name = “contact”

type = Employee

containment = false

isMany = false

opposite =

containingType =

 PhoneNumber

: Property

name = “contactNumber”

type = PhoneNumber

containment = true

isMany = true

opposite =

containingType =

 Employee

: Property

1

residence

2

1

2

1

2

NUM

4

555-2222

E_ID

2

3

555-1111

E_ID

P_ID

NUM

PHONE_NUMBER

5

Bob

2

Jane

E_ID

NAME

EMPLOYEE

1

contact

1

residence

FK

P_ID

PK

PHONE_NUMBER

NAME

E_ID

PK

EMPLOYEE

pId: Integer

num: String

PhoneNumber

1

contact

1

residence

eId: Integer

street: String

city: String

Address

eId: Integer

name: String

Employee

pId: Integer

num: String

PhoneNumber

eId: Integer

name: String

eId: Integer

street: String

city: String

Address

Employee

*

contactNumber

pId: Integer

num: String

PhoneNumber

eId: Integer

name: String

Employee

1

2

E_ID

PK

EMPLOYEE

dId: Integer

name: String

Department

*

team

*

member

PK, FK

PK, FK

dId: Integer

name: String

Department

1

residence

*

contactNumber

1

resident

pId: Integer

num: String

PhoneNumber

eId: Integer

street: String

city: String

Address

eId: Integer

name: String

Employee

contact

1

DEPT_EMP

NAME

D_ID

PK

DEPARTMENT

member

*

eId: Integer

name: String

Employee

dId: Integer

name: String

Department

5

7

555-4444

5

6

555-3333

2

4

555-2222

2

3

555-1111

E_ID

P_ID

NUM

PHONE_NUMBER

5

Bob

2

Jane

E_ID

NAME

EMPLOYEE

eId: Integer

name: String

Employee

NUM

E_ID

FK

P_ID

PK

PHONE_NUMBER

NAME

E_ID

PK

EMPLOYEE

*

1

*

1

1

1

1

*

NUM

E_ID

FK

P_ID

PK

PHONE_NUMBER

CITY

STREET

E_ID

PK, FK

ADDRESS

NAME

E_ID

PK

EMPLOYEE

E_ID

D_ID

PK, FK

PK, FK

DEPT_EMP

NAME

D_ID

PK

DEPARTMENT

� � HYPERLINK "http://www.osoa.org/display/Main/Service+Data+Objects+Home" ��http://www.osoa.org/display/Main/Service+Data+Objects+Home�

� � HYPERLINK "http://www.omg.org/technology/cwm/" ��http://www.omg.org/technology/cwm/�

� Service Data Objects For Java Specification (Version 2.1.0, November 2006), section “3.1.6 Containment”

� � HYPERLINK "http://jcp.org/en/jsr/detail?id=222" ��http://jcp.org/en/jsr/detail?id=222�

� Service Data Objects For Java Specification (Version 2.1.0, November 2006), section “2 Architecture”

� Service Data Objects For Java Specification (Version 2.1.0, November 2006), section “3.1.6 Containment”

� � HYPERLINK "http://www.osoa.org/display/DAS/Data+Access+Service+Home+Page" ��http://www.osoa.org/display/DAS/Data+Access+Service+Home+Page�

�How does this differ from the UML concept of aggregation.

�Address has “eId”, is that because there is a 1:1 relationship between employee and address. But if that’s the case, I wouldn’t expect an SDO representation to give them both keys, the reference to the “main” object should be enough…

�You have a bi-directional relationship, that is containment in both directions. In 2.1 this is not allowed (since it would result in an endless loop when serializing). How would we ever find the “root” of a datagraph? Would we have to check for cycles?

�Wouldn’t it be possible to take the document structure you define later and apply it here? What would be the effect? Would this be equivalent to the transitive closure? I’m asking because when we’re coming from unannotated classes, there is default no containment, and therefore no meaningful change summary. It would be good if we could apply your algorithm to solve this problem.

�I like this. But it’s rather besides the point for the containment proposal, isn’t it. Unless you require that all non-containment properties have keys, which you’re not doing, right?

�It’s interesting that you have non-containment as the default case, exactly the opposite of what JAXB does. How does this proposal relate to the topic of JAXB alignment. Are we defining new annotations?

�In your definition of containment, Address is exclusively owned by employee, right?

�In your example the traversal path is always clear, but I don’t believe this is generally true. Especially if we are coming from Java interfaces, where the order of the properties is undefined.

�I believe there is a conceptual problem here. It is not Types that are “orphaned”, but objects. A type could still have some containment relationship to another type, but instances of that type used someplace else, in a non-containment relationship.

�I’m trying to imagine your use-case. Is it something like this? You have something like a DAS with methods like getAddress(), getEmployee(), etc. And even though the SDO representation of the results are the same, you want to have a different schemas for each result type. Is that correct?

This is an extremely cool idea!

�Traversal path is not sufficiently defined. It seems to mean, if I’ve already seen the type, I don’t generate the element. Is this right? In your examples, every time a reference is thrown out based on this rule it happens to be the back-pointer to a containment relation. I agree that in this case, we can throw the data out of the XML. However, this does not hold in general.

Imagine a node that has a containment relationship to itself (say, Person.children). That’s of course, a trivial example, but you could have more complex models, where this would be impossible to analyse.

I think this algorithm makes the fundamental mistake of thinking that containment is a feature of the metadata, where it’s really a part of the data.

See also the following comments.

�Lets imagine adding “Department” to this model. Department has a relationship to Employee, and has a non-containement relationship to address.

The type “Address” won’t be an orphan, but the XML would contain unresolved references.

�Same problem. In a general case, the list of employees that is property of this object might not be the complete list that you want to have in your orphans. In such cases, this is broken.

�How do we know when to apply this algorithm, and when to apply the algorithm specified in SDO 2.1? I think there might be backwards compatibility issues here. Maybe we need a flag to determine this.

