1 Java Types as Static SDOs
Data Objects may have a static interface in addition to the dynamic interface provided by the DataObject API. Whereas the dynamic interface is generally suitable for use by frameworks and generically programmed components, the static interface provides type safe data access in a more programmer friendly way. For instance, having a static interface means an IDE can provide code completion to the programmer that is writing the client code. Static DataObjects may be written by the user or generated automatically form another source of metadata, for instance from an XML schema. This chapter describes the rules for converting between SDO metadata and Java types. It is expected that most implementation will include some design time tooling or commands to generate static SDOs based on metadata coming from other sources, e.g., XML or database schema.
A static SDO may be defined through a Java interface, though a POJO JavaBean, or through a complex implementation class. The Java type becomes associated with the SDO type through a call to JavaHelper.define(Class), by setting the instanceClass property on a {commonj.sdo}Type objects before passing it to TypeHelper.define(DataObject), or by annotating the XML schema. Note, however, that when implementation classes instead of interfaces are used as the definition of static SDO’s, the static SDO will not be able to map to SDO metamodels that use multiple inheritance.
Once a Java type is associated with a SDO type, every API call that results in the instanciation of the SDO type will return an object that may be casted to either the DataObject interface or the static type. This applies to objects created through calls to JavaHelper.create(Class), calls to DataFactory.create(Type) and also to the graph created by parsing an XML document. No matter which API is used the resulting object MUST implement the DataObject interface and MUST also implement (or extend) the static SDO type, The implementation of the returned DataObject MAY be a dynamic proxy, the result of byte code enhancement or weaving of a POJO JavaBean or a class that was generated during the application’s build process.
When a Java class is the static SDO class associated with an SDO type, type.getInstanceClass() will return that java class, and type.isInstance() will return the same results as type.getInstanceClass().isInstance(). Static SDOs may only be defined for Types where type.dataType is false.
The Java to SDO metadata mapping algorithm described here is based on the Java Beans specification version 1.0.1, sections 8.3.1 and 8.3.2 http://java.sun.com/products/javabeans/docs/spec.html In simple cases, the information available from introspecting an unannotated java interface will be a sufficient source of SDO metadata. In such cases it will be possible that the static SDO’s Java type does not depend on SDO, it is possible to use the same interfaces in any context - a client of the generated interfaces does not need to be aware of SDO or have SDO on the classpath to compile against the generated interfaces. Software already using the bean pattern may be able to upgrade to SDOs without change. In more complex situations, for instance where the default value for containment needs to be overridden, it is possible to generate annotated interfaces. These interfaces would need the SDO API on the classpath in order to compile.
The mapping algorithm states a minimum of what must be included in the static SDO class. Static SDO implementations MAY contain additional methods or extra inheritance useful to an implementation or based on additional annotations, so long as the additional constructs do not interfere with the ability to invoke methods specified by the specified mapping. It is also valid for the interface inheritance to be factored so that a required method is in an inherited interface. Both of these cases do not interfere with the ability to invoke the methods specified by the patterns.

If a property’s type is one of SDO’s built in types, calling an accessor in the static interface must have the same behavior as the corresponding method on the DataObject interface. For example, the generated method void setQuantity(long) behaves the same as setLong("quantity", long) and set("quantity", Long) on DataObject. Type conversion is automatically performed by the DataObject implementation. Primitive Java Types map to the the commonj.sdo base datatypes and wrapper objects (e.g. Integer) map to the commonj.sdo/java datatypes. The supported data types are defined in the SDO DataTypes section. The supported conversions are specified in the DataType Conversions section of this document.
A set of annotations has been defined enabling the java class to be used as a repository for metadata comparable in richness to the metadata available through XSD. The annotations are interpreted when defining the type through TypeHelper.getType(Class) or implicitly through DataFactory.create(Class). When the java class is used a the sole source of metadata regarding a type, the designer of the class should pay special attention to assigning appropriate values to the containment attribute of each property. The concept of containment is as foreign to java as it is central to XML and to many of the functionalities of SDO, it is not feasible for an SDO implementation to “guess” the correct setting of this attribute. Of course, if the java class is generated from XSD, the SDO implementation must generate the java interface with the correct setting.
1.1 Mapping between Java and SDO Types

The following table is used to generate interfaces for types where isDataType returns false. The use of annotations is of course optional in cases where the default behavior is desired.

When [propertyName] and [typeName] appear, the first letter is capitalized. [javaType] is property.getType().getInstanceClass(). Each row specifying a method is generated when the expression for the property in the left column is true. The package is specified using sdoJava:package when generating from XML Schema and is implementation-dependent otherwise. List is java.util.List. Boolean is the Java primitive boolean java.lang.Boolean.TYPE.

	Type
	Java

	For each Property in type.getProperties():
	@SdoTypeMetaData([typeMetaAnnotations])

public interface [typeName]

{

	many = false &&

[javaType] != boolean
	 @SdoPropertyMetaData([propMetaAnnotations])

 [javaType] get[propertyName]();

	many = false &&

[javaType] = boolean
	 @SdoPropertyMetaData([propMetaAnnotations])

 [javaType] is[propertyName]();

	many = false &&

readOnly = false
	 void set[propertyName]([javaType]);

	many = true
	 List<[javaType]> get[propertyName]();

 void set[propertyName](List<[javaType]>);

where

· [typeName] = type.name with the first character Character.toUpperCase(). A more flexible mapping between the type name and the name of the java interface class may be achieved using the @SdoTypeMetaData annotation, described below.
· [propertyName] = property.name with the first character Character.toUpperCase(). A more flexible mapping between the type name and the name of the java interface class may be achieved using the @SdoTypeMetaData annotation, described below.

· [javaType] = property.getType().getInstanceClass()

· List = java.util.List

For convenience, code generators may at their discretion use the following pattern for a typed create method when a containment property's type is a DataObject type:

· [javaType] create[propertyName]()

This method is identical in behavior to DataObject.create([propertyName]).

For convenience, code generators may at their discretion use the following pattern for isSet/unset methods:

· boolean isSet[propertyName]()

· void unset[propertyName]()

These methods are identical in behavior to DataObject.isSet([propertyName]) and DataObject.unset([propertyName]).

These convenience options are not required to be offered by compliant SDO Java code generators. An implementation is required to provide an option that will generate SDO interfaces without content additional to SDO.

When generating code, it is possible for the accessor names to collide with names in the DataObject interface if the model has property names in the following set and their type differs from the return type in DataObject: changeSummary, container, containmentProperty, dataGraph, rootObject, sequence, or type.
1.1.1 @SdoTypeMetaData
The @SdoTypeMetaData annotation is used to enrich the java interface with additional metadata regarding the SDO type.
	SDO Type
	Java

	Type

 open=[bool]

	@SdoTypeMetaData(open=[bool])

Otherwise, the type will be created with isOpen()= false

	Type

 abstract=[bool]

	@SdoTypeMetaData(abstractDataObject=[bool])

Otherwise, the type will be created with isAbstract()= false

	Type

 sequenced=[bool]

	@SdoTypeMetaData(sequenced=[bool])

Otherwise, the type will be created with isSequenced()= false

	Type

 uri=[string]

	@SdoTypeMetaData(uri=[string])

Otherwise, the type will be created in a namespace determined by an implementation-dependant algorithm based on the package name.

	Type

 name=[string]

	@SdoTypeMetaData(name=[string])

Otherwise, the type will be with a name equal to the name of the java interface class.

	For each open content property prop, defined in URI type.getURI() with prop.getType() = type.
	@SdoTypeMetaData(openContentProperties=
 {@OpenContentProperty(

 name=”prop.getName()”,

 many=prop.isMany()

 containment=prop.isContainment()

 })

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface SdoTypeMetaData {

boolean open() default false;

boolean sequenced() default false;

String sdoName() default "";

String uri() default "";

boolean noNamespace() default false;

boolean abstractDataObject() default false;

OpenContentProperty[] openContentProperties() default {};

 boolean elementFormDefault() default false;

 boolean attributeFormDefault() default false;

 boolean mixed() default false;

}
OpenContentProperty.java
@Retention(RetentionPolicy.RUNTIME)

public @interface OpenContentProperty {

String name();

boolean many() default false;

boolean containment() default true;

}
1.1.2 @SchemaInfo

In cases where the XSD description of a type is available and should be used as primary source of metadata, the @SchemaInfo annotation is used to associate an XSD document with the class definition, and instruct the SDO implementation to retrieve the type’s metadata from the associated URL. Effectively, this annotation is equivalent to using the sdoJava:javaClass schema annotation in the XSD.

When the @SchemaInfo annotation is used, the specified XSD is taken to be the definitive source of all non-java specific metadata. Conflicting annotations in the java class are ignored. If the type’s javaClass or the javaNames of any properties are left unspecified in the XSD, the information in the annotated java class is used to supplement the XSD.
Implementations may also define vendor specific means for adding in XML specific mapping information. For instance, and implementation may choose to reuse JAXB annotations. This is allowed, but non portable, and the relationship between the JAXB and SDO metadata is out-of-scope for this specification.

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface SchemaInfo {

 /**

 * The schema location must be resolvable at runtime.

 * A schema location can be an absolute URL.

 * Example: "http://www.w3.org/2001/XMLSchema.xsd"

 * If the schema location is relative, the schema is searched by the class loader.

 * If the relative schema location starts with '/' the search starts at the

 * root package, otherwhise the search starts at the current package.

 * Example: Annotation in class com.sap.example.SdoBean

 * "bean.xsd" -> "com/sap/example/bean.xsd"

 * "/bean.xsd" -> "bean.xsd"

 * "/com/sap/example/schemas/bean.xsd" -> "com/sap/example/schemas/bean.xsd"

 * "schemas/bean.xsd" -> "com/sap/example/schemas/bean.xsd"

 * "../bean.xsd" -> "com/sap/bean.xsd"

 */

String schemaLocation();

}
1.1.3 @SdoPropertyMetaData

The @SdoPropertyMetaData annotation is used to enrich the property’s getter method with addition metadata regarding the SDO property. Annotations placed on setter methods are ignored.

	SDO Property
	Java

	Property

 type=[Type]

where

Type [Type]
 uri=[type.uri]

 name=[type.name]

	@SdoPropertyMetaData(sdoType=[type.URI]#[type.name])

Otherwise, the property will be created with the type returned TypeHelper.getType(javaType). This annotation is primarily useful for primitive data types having a string instance class, as it is the only way to create a property which is not itself of type {commonj.sdo}String, but rather, for instance {commonj.sdo}URI.

	Property

 name=[string]

	@SdoPropertyMetaData(sdoName=[string])

Otherwise, the property will be created with a name derived from the method name.

	Property

 containment=[bool]

	@SdoPropertyMetaData(containment=[bool])

Otherwise, the property will be created with isContainment()= true. Applies only to properties having a type for which isDataType returns false.

	Property

 opposite=[string]

	@SdoPropertyMetaData(opposite=[string])

Otherwise, the property will be created without an opposite. Applies only to properties having a type for which isDataType returns false.

	Type.getProperties()

 .get([index]) == Property

	@SdoPropertyMetaData(propertyIndex=[index])

Allows the user to specify the position of the property with the containing type. Note that in the case of multiple inheritance, the index of a property will not be fixed across all derived Types, therefore, in these cases, the index should be considered as giving only the index relative to the other properties in the same declaring class.
The index must be give for all properties in a type, or for none of the properties. If the index is not given, the order of the properties within the SDO type should be considered “random”. In particular, an implementation is not required to maintain the order specified in the Java interface.

	Property

 default=[object]

	@SdoPropertyMetaData(defaultValue=[string])
Where DataHelper.convert([string], property.getType()) returns [object]. Otherwise the default value will be null for properties where the instanceClass of the type extends java.lang.Object, or the default value defined by java if the instanceClass is a primitive type.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface SdoPropertyMetaData {

String sdoType() default "";

String sdoName() default "";

String opposite() default "";

String defaultValue() default "";

boolean containment() default false;

Bool nullable() default Bool.UNSET;
 String[] aliasNames() default {};
 int propertyIndex() default -1;

XmlPropertyMetaData xmlInfo() default @XmlPropertyMetaData;
}
1.1.4 Inner Classes and Anonymous Types
Static SDO types may define inner classes. When static SDO classes are generated from types that come from XSD, and the XSD includes an anonymous type that is defined as the type of a complex type’s attribute or element, an inner class must be used to represent the anonymous type.
Question: and what about global elements?

1.1.5 Code generation template for DataType types

If Java interfaces are to be used as an alternative to XSD, as a form in which Type metadata can be persisted and transmitted, then it is necessary that not only complex data objects, but also simple data types can be represented. Note, however, that unlike the java interface for data objects, the java representation of a simple type is never used for data access; it is not a façade through which a value can be reached. Its purpose is simply to serve as a provider of metadata.

TODO: I’d like to consider using package annotations as an alternative to this approach.

Simple types are characterized in that they extend (in XSD terminology, restrict) either one of the standard basis types, or another defined simple type. In order to express this using generated interfaces, it is necessary to have predefined java classes corresponding to each of the standard data types defined in SDO. The java class representing each standard type in the commonj.sdo namespace is located in the java package commonj.sdo.types, per the following table. Note that the class in commonj.sdo.types is not the instanceClass.
	Base Type for Code Generation
	SDO Type
	Java instance Class

	commonj.sdo.types.Object
	Object
	java.lang.Object

Values must support

 toString() for String value

	commonj.sdo.types.DataObject
	DataObject
	DataObject

	commonj.sdo.types.URI
	URI

 (override with sdo:propertyType)
	String

	commonj.sdo.types.Bytes
	Bytes
	byte[]

	commonj.sdo.types.Boolean
	Boolean
	boolean or java.lang.Boolean

	commonj.sdo.types.Byte
	Byte
	byte or java.lang.Byte

	commonj.sdo.types.YearMonthDay
	YearMonthDay

	String

	commonj.sdo.types.DateTime
	DateTime

	String

	commonj.sdo.types.Decimal
	Decimal
	java.math.BigDecimal

	commonj.sdo.types.Double
	Double
	double or java.lang.Double

	commonj.sdo.types.Duration
	Duration
	String

	commonj.sdo.types.Strings
	Strings
	List<String>

	commonj.sdo.types.String
	String
	String

	commonj.sdo.types.Float
	Float
	float or java.lang.Float

	commonj.sdo.types.Day
	Day
	String

	commonj.sdo.types.Month
	Month
	String

	commonj.sdo.types.MonthDay
	MonthDay
	String

	commonj.sdo.types.Year
	Year

	String

	commonj.sdo.types.YearMonth
	YearMonth

	String

	commonj.sdo.types.Int
	Int
	int or java.lang.Integer

	commonj.sdo.types.Integer
	Integer
	java.math.BigInteger

	commonj.sdo.types.Long
	Long
	long or java.lang.Long

	commonj.sdo.types.Short
	Short
	short or java.lang.Short

	commonj.sdo.types.Time
	Time
	String

	SDO Type
	Java

	Type

 name = [typeName]
 baseType = [BaseType]

	public interface [typeName] extends [JavaBaseType]

where

[JavaBaseType] is the java class corresponding to the SDO Type [BaseType]. If [BaseType] is a standard SDO type, then [JavaBaseType] is given in the above table.

1.1.6 @SdoFacets
The most common use-case for defining simple types is to express restrictions (in XSD terminology “facets”) on the type. The @SdoFacets annotation allows restrictions to be expressed as annotations on the java class.

	XSD Restriction
	Java

	<xs:length=[value]/>

	@SdoFacet(length=[value])

	<xs:minLength=[value]/>

	@SdoFacet(minLength=[value])

	<xs:maxLength=[value]/>

	@SdoFacet(maxLength=[value])

	<xs:minInclusive=[value]/>

	@SdoFacet(minInclusive=[value])

	<xs:maxInclusive=[value]/>

	@SdoFacet(maxInclusive=[value])

	<xs:minExclusive=[value]/>

	@SdoFacet(minExclusive=[value])

	<xs:maxExnclusive=[value]/>

	@SdoFacet(maxExclusive=[value])

	<xs:emumeration=[option1]/>
<xs:emumeration=[option2]/>

<xs:emumeration=[option3]/>

…

	@SdoFacet(enumeration={[option1],[option2],[option3]…})
Note: the type of the enumeration facet is an array of strings.

1.2 Generation of Java interfaces from XSD

The package is specified using sdoJava:package when generating from XML Schema and is implementation-dependent otherwise. List is java.util.List. Boolean is the Java primitive boolean java.lang.Boolean.TYPE.

Java code generation when the SDO source comes from an XSD uses the sdo and sdoJava annotations to determine the Java mapping. Because the names used are the same as in the XSD, it is often important to annotate the XSD with sdo:name to produce valid Java code, as explained in the section on XSD, SDO, and Java names. In particular, sdo:name, sdoJava:instanceClass, and sdoJava:package annotations set the name, instance class, and package used when generating Java. All SDO Java generators using the same annotated XSD as input will produce the same Java interfaces when measured by invocation compliance above.

The sdoJava:package value will be used as the Java package name for generated classes. If "sdoJava:package" is not specified, a SDO-aware code generator tool will generate a new Java package name, virtually adding sdoJava:package annotation to the original XSD. Then, the tool will use the annotated schema to generate SDO. Such tool must be able to serialize the annotated schema at user request.

If the XSD will be available at runtime, and not just during source code generation, it may be desirable to combine metadata coming from XSD with that coming from inspection of the java interface. This is done using the @schemaLocation annotation on the interface. When using this approach, the metadata in the XSD is considered to have precedence for all metadata other than that specifically having to do with java: the java names of the properties, the java name of the type, and the java package name.
1.3 Example of generated interfaces

For the purchase order XSD without any annotations, the following are the minimal Java interfaces generated:

File PurchaseOrderType.java:

package com.example.myPackage;

@SdoTypeMetaData(

 uri = "http://www.example.com/IPO",

 openContentProperties = {

 @com.sap.sdo.api.OpenContentProperty(

 name = "purchaseOrder"

)}

)

public interface PurchaseOrderType {

 @SdoPropertyMetaData(

 containment = true

)

 Address getShipTo();

 void setShipTo(Address pShipTo);

 @com.sap.sdo.api.SdoPropertyMetaData(

 containment = true

)

 Address getBillTo();

 void setBillTo(Address pBillTo);

 String getComment();

 void setComment(String pComment);

 @com.sap.sdo.api.SdoPropertyMetaData(

 containment = true

)

 Items getItems();

 void setItems(Items pItems);

 @SdoPropertyMetaData(

 sdoType = "http://www.example.com/IPO:MyGregorianDate

)

 com.sap.xml.datatype.GregorianCalendar getOrderDate();

 void setOrderDate(com.sap.xml.datatype.GregorianCalendar pOrderDate);

}
File Address.java:

package com.example.myPackage;

@com.sap.sdo.api.SdoTypeMetaData(

 uri = "http://www.example.com/IPO"

)

public interface Address {

 String getName();

 void setName(String pName);

 String getStreet();

 void setStreet(String pStreet);

 String getCity();

 void setCity(String pCity);

 String getState();

 void setState(String pState);

 java.math.BigDecimal getZip();

 void setZip(java.math.BigDecimal pZip);

 @SdoPropertyMetaData(

 defaultValue = "US"

)

 String getCountry();

 void setCountry(String pCountry);

}
File Items.java:

package com.example.myPackage;

@SdoTypeMetaData(

 uri = "http://www.example.com/IPO"

)

public interface Items {

 @SdoPropertyMetaData(

 containment = true

)

 java.util.List<Item> getItem();

 void setItem(java.util.List<com.example.myPackage.Item> pItem);

}
File Item.java

package com.example.myPackage;

@SdoTypeMetaData(

 uri = "http://www.example.com/IPO"

)

public interface Item {

 String getProductName();

 void setProductName(String pProductName);

 @SdoPropertyMetaData(

 sdoType = "http://www.example.com/IPO:quantity"

)

 BigInteger getQuantity();

 void setQuantity(BigInteger pQuantity);

 @SdoPropertyMetaData(

 sdoName = "USPrice"

)

 BigDecimal getUsPrice();

 void setUsPrice(BigDecimal pUsPrice);

 String getComment();

 void setComment(String pComment);

 String getShipDate();

 void setShipDate(String pShipDate);

 @SdoPropertyMetaData(

 sdoType = "http://www.example.com/IPO:SKU"

)

 com.example.SKU getPartNum();

 void setPartNum(com.example.SKU pPartNum);

}
File Quantity.java

package com.example.myPackage;

@SdoFacets(

 maxExclusive = 100

)

@SdoTypeMetaData(

 sdoName = "quantity",

 uri = "http://www.example.com/IPO"

)

public interface Quantity extends commonj.sdo.types.Integer {}
