
[image: image26.wmf]Consumer

(

Presentation

Layer

,

Composite

...)

Data Access

Service

(

actually a

specific

business logic

encapsulation

,

e

.

g

.

the

Order service

)

call for update

Service Data Objects

Version 3.0

Committee Draft 02
13 November 2009
Specification URIs:

This Version:

http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec-cd02.html
http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec-cd02.doc
http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec-cd02.pdf (Authoritative)

Previous Version:

Latest Version:

http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec.html
http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec.doc
http://docs.oasis-open.org/opencsa/sdo/sd0-core-3.0-spec.pdf (Authoritative)

Technical Committee:

OASIS Service Data Objects TC
Chair(s):

Ron Barack

Frank Budinsky

Editor(s):

 MACROBUTTON NoMacro [Editor name]
 MACROBUTTON NoMacro [Editor name]
Related Work:

This specification replaces or supercedes:

· OSOA Service Data Objects for Java Specification, version 2.1
This specification is related to:

· Service Data Objects for Java Version 3.0
Declared XML Namespaces:

http://docs.oasis-open.org/ns/opencsa/sdo/200911
http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911
Abstract:

SDO provides a unifying API and architecture that allows SOA applications to handle data from heterogeneous sources, including relational databases, Web services, and enterprise information systems. This document describes the architecture and programming model for SDO.

Status:

This Working Draft is an editor’s draft. It does not necessarily represent the consensus of the committee.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at at http://www.oasis-open.org/committees/sdo/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page ((http://www.oasis-open.org/committees/sdo/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/sdo/.

Notices

Copyright © OASIS® 2003, 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS", is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents

81
Introduction

81.1 Terminology

81.2 Normative References

91.3 Non-Normative References

102
Overview

102.1 Key Concepts

102.2 Requirements

122.3 Organization of this Document

133
Architecture

154
Programming Model

164.1 DataObject

174.1.1 DataObject Concepts

174.1.2 DataObject Values and Properties

174.1.3 Type Conversion

184.1.4 Many-valued DataObject Properties

184.1.5 Determining whether a Property is Set

194.1.6 Containment

194.1.7 Creating and Deleting DataObjects

204.1.8 Sequenced DataObjects

204.1.9 Open Content DataObject Properties

214.1.10 Property Indexes

214.1.11 Current State for a DataObject

224.1.12 DataObject Interface

224.1.13 DataObject Accessor Exceptions

244.1.14 Validation of Facets and Constraints

244.2 ChangeSummary

244.2.1 Starting and Stopping Change Logging

254.2.2 ChangeSummary Root

254.2.3 ChangeSummary Scope

264.2.4 OrphanHolder Properties

264.2.5 Old Values

264.2.6 Sequenced DataObject

274.2.7 ChangeSummary Interface

274.3 Sequence

274.3.1 Unstructured Text

274.3.2 Using Sequences

284.3.3 Relationship between Sequences with DataObjects

284.3.4 Sequence Methods

294.3.5 Sequence Interface

294.4 Type

294.4.1 Mapping SDO Types to Programming and Data Modeling Languages

294.4.2 Type Contents

304.4.3 Name Uniqueness

304.4.4 Compatibility Between Types

314.4.5 Data Types

314.4.6 Data Type Wrappers

314.4.7 Multiple Inheritance

314.4.8 Type Instance Properties

324.4.9 Type Methods

334.4.10 Type Interface

334.5 Property

344.5.1 Property Index

344.5.2 Containment

344.5.3 Key Properties

354.5.4 Read-Only Properties

354.5.5 Nullable Properties

364.5.6 Open Content Properties

364.5.7 Property Instance Properties

374.5.8 Property Interface

374.6 HelperContext

374.6.1 Default HelperContext

374.6.2 Non-DefaultHelperContext

384.6.3 HelperContext Interface

384.6.4 Importing DataObjects from Other HelperContexts

394.6.5 Keys and Imported DataObjects

414.6.6 Importing ChangeSummaries

434.7 DataFactory

434.7.1 Default DataFactory

434.7.2 Creating DataObjects

444.7.3 DataFactory Interface

444.8 TypeHelper

444.8.1 Default TypeHelper

444.8.2 Defining SDO Types Dynamically

454.8.3 Using SDO Dynamic Types

464.8.4 Defining and Using Open Content Properties

464.8.5 TypeHelper Methods

474.8.6 TypeHelper Interface

474.9 CopyHelper

474.9.1 Default CopyHelper

474.9.2 Shallow Copies

474.9.3 Deep Copies

484.9.4 CopyHelper Methods

484.9.5 CopyHelper Interface

484.10 EqualityHelper

484.10.1 Default EqualityHelper

484.10.2 EqualityHelper Methods

484.10.3 EqualityHelper Interface

484.11 XMLHelper

494.11.1 Default XMLHelper

494.11.2 Loading and Saving XML Documents

494.11.3 Determining the Type of XML Elements

504.11.4 Creating DataObjects from XML

504.11.5 Creating DataObjects from XML documents

514.11.6 Creating XML without an XSD

524.11.7 XMLHelper Methods

524.11.8 Orphan Serialization

534.11.9 XMLHelper Interface

534.12 XMLDocument

534.12.1 Example XMLDocument

534.12.2 XMLDocument Methods

544.12.3 XMLDocument Interface

544.13 XSDHelper

554.13.1 Default XSDHelper

554.13.2 Generating XSDs

554.13.3 XSDHelper Methods

564.13.4 XSDHelper Interface

564.14 DataHelper

564.14.1 Default DataHelper

564.14.2 DataHelper Interface

624.15 SDO

624.15.1 Default HelperContext

624.15.2 HelperContext by Identifier

624.15.3 Default HelperContextFactory

624.15.4 Implementation Specific HelperContextFactory

624.15.5 SDO Class

624.16 HelperContextFactory

624.16.1 Creating a HelperContext

634.16.2 HelperContextFactory Interface

645
SDO Model for Types and Properties

645.1 API for DataObjects Representing Type and Properties

665.2 SDO Type and Property constraints

675.3 XML Representation of SDO Type and Property

716
Standard SDO Types

716.1 SDO Data Types

736.1.1 Conversion from SDO type Bytes to SDO type String

736.1.2 Conversion from SDO type String to SDO type Bytes

736.1.3 Conversion between Character and String

736.2 SDO Abstract Types

757
XML Schema to SDO Mapping

757.1 Mapping Principles

767.2 Generating static SDOs from an XSD

767.3 Mapping from XSD to SDO Types

777.3.1 XML Schemas

787.3.2 XML Simple Types

797.3.3 XML Complex Types

827.4 Mapping of XSD Attributes and Elements to SDO Properties

827.4.1 Mapping of XSD Attributes

847.4.2 Mapping of XSD Elements

887.5 Mapping of XSD Built in Data Types

907.5.1 Conversion between XSD QName and SDO URI

907.5.2 Dates

917.6 Examples of XSD to SDO Mapping

947.6.1 Example of SDO Annotations

957.7 XML use of Sequenced Data Objects

957.8 XSD Mapping Details

967.9 Compliance

967.10 Corner cases

967.11 XML without Schema to SDO Type and Property

988
Generation of XSD from SDO Type and Property

1028.1 Mapping of SDO DataTypes to XSD Built in Data Types

1038.2 Tuning the Default Mapping using Open Content Properties

1048.3 Generating XSD from Types using Keys

1058.4 Example Generated XSD

1068.5 Customizing Generated XSDs

1079
SDO Path Expression for DataObjects

11010
ChangeSummary XML format

11010.1 ChangeSummary Creation and Deletion Attributes

11010.2 Serialization Format for References

11210.3 Serialization Format for Sequenced DataObjects

11210.4 Serialization Format for DataObject Modifications

11410.5 Example Use of ChangeSummary on a DataObject

11611
DataType Conversions

11912
Conformance

11912.1 SDO Implemenation

11912.1.1 Optional Items

120A.
Complete Data Graph Examples

120A.1 Complete Data Graph Serialization

120A.2 Complete Data Graph for Company Example

121A.3 Complete Data Graph for Letter Example

121A.4 Complete WSDL for Web services Example

123B.
Conformance Items

134C.
Acknowledgements

135D.
Non-Normative Text

136E.
Revision History

1 Introduction

SDO provides a unifying API and architecture that allows SOA applications handle data from heterogeneous sources, including relational databases, Web services, and enterprise information systems. This document describes the architecture and programming model for SDO.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

The following standard namespace URIs are associated with this specification (These namespace URIs are reserved for use by the SDO specification):

· “http://docs.oasis-open.org/ns/opencsa/sdo/200911” contains the standard SDO types and properties. Previous implementations of SDO used “commonj.sdo” for this namespace. An SDO implementation MAY continue to support “commonj.sdo” as an alias URI for this namespace. [COR01010001]
· “http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911” contains XML specific SDO types and properties. Previous implementations of SDO used “commonj.sdo/xml” for this namespace. An SDO implementation MAY choose to continue to support “commonj.sdo/xml” as an alias URI for this namespace. [COR01010002]
When not explicitly stated, this specification uses a default mapping for each of the following XML namespace prefixes:

· “sdo” is mapped to namespace “http://docs.oasis-open.org/ns/opencsa/sdo/200911”

· “sdox” is mapped to namespace “http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911”

· “xsd” is mapped to namespace “http://www.w3.org/2001/XMLSchema (the default prefix can also be used when the context is clear)

· “xsi” is mapped to namespace “http://www.w3.org/2001/XMLSchema-instance

Although this specification is language-neutral, for simplicity we use the Java programming language to illustrate code patterns and for the examples. In cases where the language mapping is not obvious, some of these examples or patterns are reproduced in the language-specific specifications.,

1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[Schema1]
XML Schema Part 1: Structures, http://www.w3.org/TR/xmlschema-1
[Schema2]
XML Schema Part 2: Datatypes http://www.w3.org/TR/xmlschema-2
[XPath]
XPath 1.0 specification http://www.w3.org/TR/xpath
[SDOJava]
F. Budinsky, et al., Service Data Objects For Java Specification Version 3.0, http://docs.oasis-open.org/opencsa/sdo/sdo-java-3.0-spec.pdf, OASIS Service Data Objects For Java Specification Version 3.0, XXX 2008

1.3 Non-Normative References

[NextGen]
Next-Generation Data Programming with Service Data Objects,

Any one of:

· http://www.ibm.com/developerworks/library/specification/ws-sdo/

· http://oracle.com/technology/webservices/sca

· https://www.sdn.sap.com/

2 Overview

Service Data Objects (SDO) is a data programming architecture and an API.

The main purpose of SDO is to simplify data programming, so that developers can focus on business logic instead of the underlying technology.

SDO simplifies data programming by:

· unifying data programming across data source types

· providing support for common application patterns

· enabling applications, tools and frameworks to more easily query, view, bind, update, and introspect data.

For a high-level overview of SDO, see the white paper titled “Next-Generation Data Programming: Service Data Objects” [NextGen].

2.1 Key Concepts

The key concepts in the SDO architecture are the Data Object and the data graph.

A Data Object holds a set of named properties, each of which contains either a simple data-type value or a reference to another Data Object. The Data Object API provides a dynamic data API for manipulating these properties.

The data graph provides an envelope for Data Objects, and is the normal unit of transport between components. Data graphs can track changes made to the graph of Data Objects. Changes include inserting Data Objects, deleting Data Objects and modifying Data Object property values.

In most cases, data graphs are ultimately derived from a data source, such as XML files, language structures, XML databases and relational databases. Within a Service Oriented Architecture (SOA) data graphs can be passed between and used by services that are unaware of the original source of the data.

2.2 Requirements

The scope of the SDO specification includes the following requirements:

1. Dynamic Data API. DataObjects often have typed interfaces. Typed interface provide type-safe, programmer friendly access to the data, and are appropriate when programming business logic in the target language. The Dynamic API, on the other hand, is more appropriate to generically programmed framework components, such as mapping and rules engines. Furthermore, sometimes it is either impossible or undesirable to create typed interfaces to represent the DataObjects. One common reason for this is when the data being transferred is defined by the output of a query. Examples would be:

· A relational query against a relational persistence store.

· An JPQL queries against an JPA entity bean domain model.

· Web services.

· XML queries against an XML source.

· When deployment of generated code is not practical.

In these situations, it is necessary to use a dynamic store and associated API. SDO has the ability to represent Data Objects through a standard dynamic data API.

2. Support for Static Data API. In cases where metadata is known at development time (for example, the XML Schema definition or the SQL relational schema is known), SDO supports code-generating interfaces for Data Objects. When static data APIs are used, the dynamic data APIs are still available. SDO enables static data API code generation from a variety of metamodels, including:

· Popular XML schema languages.

· Relational database schemas with queries known at the time of code generation.

· Web services, when the message is specified by an XML schema.

· JCA connectors.

· JMS message formats.

· UML models

While code-generation rules for static data APIs is outside the scope of this core SDO specification, it is the intent that SDO supports code-generated approaches for Data Objects.

3. Complex Data Objects. It is common to have to deal with “complex” or “compound” Data Objects. This is the case where the Data Object is the root of a tree, or even a graph of objects. An example of a tree would be a Data Object for an Order that has references to other Data Objects for the Line Items. If each of the Line Items had a reference to a Data Object for Product Descriptions, the set of objects would form a graph. When dealing with compound data objects, the change history is significantly harder to implement because inserts, deletes, adds, removes and re-orderings have to be tracked, as well as simple changes. Service Data Objects support arbitrary graphs of Data Objects with full change summaries.

4. Change Summary. It is a common pattern for a client to receive a Data Object from another program component, make updates to the Data Object, and then pass the modified Data Object back to the other program component. To support this scenario, it is often important for the program component receiving the modified Data Object to know what modifications were made. In simple cases, knowing whether or not the Data Object was modified can be enough. For other cases, it can be necessary (or at least desirable) to know which properties were modified. Some standard optimistic collision detection algorithms require knowledge not only of which columns changed, but what the previous values were. Service Data Objects support full change summary.

5. Navigation through graphs of data. SDO provides navigation capabilities on the dynamic data API. All Data Objects are reachable by breadth-first or depth-first traversals, or by using a subset of XPath 1.0 expressions.

6. Metadata. Many applications are coded with built-in knowledge of the shape of the data being returned. These applications know which methods to call or fields to access on the Data Objects they use. However, in order to enable development of generic or framework code that works with Data Objects, it is important to be able to introspect on Data Object metadata, which exposes the data model for the Data Objects. As Java reflection does not return sufficient information, SDO provides APIs for metadata. SDO metadata can be derived from:

· XML Schema

· Language structures

· Relational databases

· Other structured representations.

Applications that run on application servers commonly share memory with other applications. In such environments, it is essential that each application can define its own type system and be assured that the metadata is protected from influence from other applications that potentially have conflicting definitions for some types. This concept of a registry of types that is local to each application is supported by SDO's HelperContext.

7. Validation and Constraints.
· Supports validation of the standard set of constraints captured in the metadata. The metadata captures common constraints expressible in XML Schema and relational models (for example, occurrence constraints).

· Provides an extensibility mechanism for adding custom constraints and validation.

8. Relationship integrity.

· An important special case of constraints is the ability to define relationships between objects and to enforce the integrity of those constraints, including cardinality, ownership semantics and inverses. For example, consider the case where an employee has a relationship to its department and a department inversely has a list of its employees. If an employee’s department identifier is changed then the employee should be removed, automatically, from the original department’s list. Also, the employee should be added to the list of employees for the new department. Data Object relationships use regular Java objects as opposed to primary and foreign keys with external relationships.

· Support for containment tree integrity is also important.

NOTE the following areas are out of scope:

9. Complete metamodel and metadata API. SDO includes a minimal metadata access API for use by Data Object client programmers. The intention is to provide a very simple client view of the model. For more complete metadata access, it is possible to use SDO in conjunction with common metamodels and schema languages, such as XML Schema [Schema1] [Schema2].

10. Data Access Service (DAS) specification. Service Data Objects can be used in conjunction with “data accessors”. Data accessors can populate data graphs with Data Objects from back-end data sources, and then apply changes to a data graph back to a data source. A data access service framework is out of scope but will be included in a future Data Access Service specification.

2.3 Organization of this Document

This specification is organized as follows:

Architecture: Describes the overall SDO system.

Programming Model: Defines and describes the programming model for SDO.

SDO Model for Types and Properties: Shows the SDO Type and Property in model form.
Standard SDO Types: Defines and describes the Standard SDO Types.
XML Schema to SDO Mapping: Defines and describes how XML Schema declarations (XSD) are mapped to SDO Types and Properties.

Generation of XSD from SDO Type and Property: Describes how to generate XSDs from SDO Types and Properties.
SDO Path Expression for DataObjects: Defines an augmented subset of XPath that can be used with SDO for traversing through Data Objects.

ChangeSummary XML format: Describes how change summary information is represented in an XML message.

DataType Conversion Tables: Shows the set of defined datatype conversions.

Examples: Provides a set of examples showing how SDO is used.

3 Architecture

The core of the SDO framework is the DataObject, which is a generic representation of a business object and is not tied to any specific data source.
A data graph is a set of interrelated DataObjects. Data graphs are often enclosed in envelope objects. These envelopes are in fact normal DataObjects but have special technical properties, for instance, to enable change tracking. Such properties are termed “technical” because they do not represent business data.
The relationship between DataObjects can be through containment and non-containment references. Containment references are special in that a DataObject is contained by at most one other DataObject. DataObjects related through containment form a tree having a single root DataObject that directly or indirectly contains all the other DataObjects in the tree. A closed data graph is a data graph having such a tree-like form, where even the non-containment references refer only to DataObjects in the tree. Earlier versions of SDO viewed closure as the normative state for data graphs and several fundamental operations were defined only for closed graphs In SDO version 3, envelopes can be given technical properties that enable SDO operations to work even if the embedded data graph is not closed.
Most DataObjects come directly or indirectly from some persistent storage. The persistence mechanism is typically exposed as a service. SDO supports the use of a disconnected interaction model, in which changes made by the client are not written back onto the persistent storage unless some explicit service call is made to the storage mechanism. During both read and update operations, potentially large and complex data graphs are transmitted between the persistence mechanism and the client application. Thus, a typical scenario for using a data graph involves the following steps:

[image: image2]
1. The client application sends a request to a service to load a data graph.

2. The service retrieves data and creates a data graph that represents the data.

3. The service returns the data graph to a client application.

4. The client application processes and modifies the data graph.

5. The client application calls the service, passing it the modified data graph.

6. The service updates the data in the persistent store.

One way that SDO supports the disconnected model is by providing a mechanism though which the server can find the client's modifications to the graph and retrieve old values. All the changes made by the client, including creations, deletions and modifications of DataObjects are contained in the ChangeSummary.
This document specifies minimum functionality for implementations. An SDO implementation can provide additional functionality so that valid results would be returned where this specification would indicate an error, provided raising an error is not specifically indicated by a normative statement, the additional functionality is a strict superset and all valid uses of the SDO specification operate correctly. Specifically, incorrect input data can be detected at various points of processing: at the point when the data is introduced via an API, when the data causes a subsequent processing error, when the data is serialized and potentially other points. This specification defines neither when this sort of validation occurs nor how the error notification is done. An implementation is free to use a data validation approach that meets the needs of its users.

4 Programming Model

The SDO programming model includes interfaces that relate to instance data:

· DataObject – A business data object.

· ChangeSummary – Summary of changes to the DataObjects in a data graph.

· Sequence – A sequence of settings.

The SDO also contains a lightweight metadata API that can be used for introspecting the model of DataObjects:

· Type – The Type of a DataObject or Property.

· Property – A Property of a DataObject.
SDO has a number of helper interfaces:
· DataFactory
· TypeHelper
· CopyHelper
· EqualityHelper
· XMLHelper
· XMLDocument
· XSDHelper
· DataHelper
Instances of the helpers can be accessed from context objects:

· SDO

· HelperContextFactory

· HelperContext
The APIs are shown in Figure 1 below.

The UML API representations in the following sections define base functionality. The UML representation as classes does not prohibit a language specification from providing the functionality as a collection of functions. Since it is the objective of a language specification to present the SDO functionality in a manner that is appropriate to the language, a language specification might add additional methods or functions to any of the interfaces or modify the names, parameters and return types of the methods to fit the language, provided that the equivalent functionality is maintained. Unless otherwise specified, all public attributes in the UML representations of the interfaces are read only.

The notation <T> in a method name designates that a set of methods or functions for the following base types is provided:

· Boolean

· Byte

· Char

· Double

· Float

· Integer

· Long

· Short

· Bytes

· DataObject

· Date

· String

Individual language specifications might add additional types to this list. If a language provides a mechanism for the various types to be treated as a single type, then the set of methods could be replaced with a single one.

Note that unless an SDO API explicitly states that null is a legal value for a parameter, passing null results in an implementation-dependent runtime exception.

[image: image3.png]Eiype |«

= changesummary

Figure 1: SDO Core Interfaces

4.1 DataObject

DataObjects represent business data. They hold their data in properties.

The DataObject interface is designed to make programming easier because it provides access to business data of all the common types and access patterns, such as name, index, and path.

The DataObject interface includes methods that:

· Get and set the properties of a DataObject.

· Query whether a Property is set.

· Create a new instance of a contained DataObject.

· Delete a DataObject from its container.

· Detach a DataObject from its container.

· Get the container of a DataObject and the containing property.

· Get the root DataObject.
· Get the DataObject’s Type.

· Get the DataObject’s Sequence (if present).

· Get the DataObject’s additional Properties (if present).

For many applications, the DataObject interface is the only part of SDO that is used to write applications. Other applications primarilly use the type safe, programmer friendly static APIs, casting to DataObject only for specific operations, e.g., serialization to XML. Which SDO APIs are used will vary based on the needs of the application. For example, if XML is part of an application, then the XMLHelper is valuable, but otherwise might never be used.

4.1.1 DataObject Concepts

DataObjects can be thought of as falling into the following categories. The open and sequenced concepts can be used independently or together.

11. Basic. A DataObject is similar to a class with a field for each Property. The set of allowed Properties is defined by getType().getProperties(). Values are accessed through get(property). Order within Properties is maintained but not across Properties.

12. Open. A DataObject is similar to a class plus it has tolerance for additional Properties. In XML this is equivalent to open (wildcard) content. The extra Properties are not part of getType().getProperties(). The Properties actually set in a specific DataObject are available through getInstanceProperties(). Values are accessed through get(property). Order within Properties is maintained but not across Properties.

13. Sequenced. A DataObject is similar to a class plus it has order within and across Properties. In XML this is equivalent to a DOM. When using XML, a Sequence (see Sequence) represents the order of all the XML elements in the DataObject. Values are available through get(property) but order across Properties is maintained through the Sequence interface. getSequence() returns a Sequence of the XML elements for the case of XML. XML Attributes do not have the concept of order and are accessed through get(property).

4.1.2 DataObject Values and Properties

DataObjects have data values assigned to Properties. For example, a DataObject representing a purchase order could have the value “2005-06-30” assigned to a property named “orderDate”. Values for the orderDate property can be returned or changed using the get("orderDate") and set("orderDate", …) accessors on the DataObject. When using static APIs, values can also be accessed through getOrderDate() and setOrderDate() methods on a PurchaseOrder interface.

On the DataObject interface, values can be accessed using the name of the property with get(String path), with the index of the property, or directly with a Property object. Similarly, values can be set on the DataObject using the set(String path, Object value) methods, the index of the property or a Property object. The get(String path) and set(String path, Object value) methods on DataObject work with the alias names as well as the property names in the path. The path can be just the name of the property, or it can be a path expression based on a subset of XPath (see section 9: SDO Path Expression for DataObjects) .

4.1.3 Type Conversion

Sometimes the type of a property is different than the most convenient type for use in an application program. For example, when displaying an integer quantity in a user interface, the string representation is more useful than the int. The SDO API provides methods for accessing a property value using as something other than its internal representation. The exact signature of the conversion methods are language dependent. SDO’s Java API uses a generic signature to allow the application program to determine the target type. In other languages, a set of static signatures (getString, getDate, getInt, etc.) are provided. This specification uses a language independent terminology when referring to the converting accessors, referring to get<T> and set<T> methods. For instance, the Java specification maps this specification’s get<String> notation to a method of the form get(String.class,…).
When a DataObject’s typed accessors get<T>() are invoked, a type conversion is necessary if the value is not already an instance of the requested type T. Similarly, when calling set<T>() methods, type conversion is necessary if the specified property is not of type T.

An SDO implementation MUST convert between the data type of the property and the requested data type for all conversions defined in Chapter 11: DataType Conversions. [COR04010301] Some conversions can lose information. The details of the conversions are left to the individual language specifications.

Wrapper objects (see Section 4.4.6: Data Type Wrappers) provides a sort of “auto-boxing” in which DataObjects can be used as holders for simple values. An SDO implementation MUST allow conversion between DataType values and Data Type Wrappers. [COR04010302] For example, get<DataObject>() on a String-type property returns a wrapper DataObject for the string value, and get<String>() on a DataObject property does the reverse. Generated wrapper DataObjects contain disconnected copies of their corresponding converted property values. When converting from DataWrappers to DataTypes, an SDO implementation MUST support all conversions specified in Chapter 11: DataType Conversions. [COR04010303] For example, an integer wrapper can be used when setting a string property
4.1.4 Many-valued DataObject Properties

A Property can have one or many values. If a Property is many-valued then property.many is true.

An SDO implementation MUST return an empty list, rather than a null value, for all property accessors that have a return type of List, whether in the DataObject interface or in a static API, even if the property has no value. [COR04010401]

The getList(property) accessor is especially convenient for many-valued properties. If property.many is true then set(property, value) and setList(property, value) require that “value” be a Collection and List respectively, as defined for the implementation language.

For many-valued Properties, get() and getList() return a List containing the current values. An SDO implementation MUST make all modifications to a returned List visible in the DataObject, so that all operations, reflect the updated list contents. [COR04010402] An SDO implementation MUST make updates to the DataObject visible though a returned List object. [COR04010403]

A multi-valued property whose elements are DataObjects (i.e., property.type.dataType is false) can not contain null values. The behavior of an SDO implementation is undefined if an attempt is made to set the value of the property to a list containing null, or to append a null value to an existing list.

A multivalued property that is bidirectional (i.e., has an opposite property, or is indicated as the opposite of another property) cannot cannot contain duplicates. The behavior of an SDO implementation is undefined if an attempt is made to set the value of the property to a list containing duplicates, or to append a element to a list that already contains the value.

4.1.5 Determining whether a Property is Set

For many-valued properties, isSet(property) MUST return:

· True, if the List is not empty.

· False, if the List is empty. [COR04010501]

For single-valued properties, isSet(property) MUST return:

· True, if the Property has been set(), and not unset().

· False, if the Property has not been set(), or has been unset(). [COR04010502]

For single valued properties, isSet MUST return true if set() has been called after the last call to unset() , regardless of the value being set. [COR04010503] For example, after calling set(property, property.getDefault()) on a previously unset property, isSet(property) returns true, even though the value of get(property) is unchanged.

The unset(property) accessors can be thought of as clearing out a single property. After unset() has been called on a single-valued property, get(property) MUST return the property’s default value. [COR04010504] After unset() has been called on a many-valued property, get(property) MUST return an empty List. [COR04010505]

An SDO implementation MUST raise an error if an attempt is made to modify read-only properties (using set, unset or delete) .[COR04010509]

Since setting an open content property to an empty list is the equivalent of unset, setting an unknown property to an empty list is conceptually equivalent to creating an on-the-fly instance property and then immediately unsetting it (see Open Content DataObject Properties). Setting an unknown property to an empty list MUST NOT have any effect on a DataObject’s state.[COR04010507]

If the last value of an existing open content property list is removed and then another value is added, an SDO implementation MUST put the same Property instance in the instance properties of the containing DataObject. [COR04010508]
4.1.6 Containment

DataObjects in a closed data graph are arranged in a tree structure. One DataObject forms the root of the tree and the other DataObjects make up the nodes of the tree.

The tree structure is created using containment references which start at the root DataObject. The root DataObject refers to other DataObjects, which can refer to further DataObjects. Each DataObject in the data graph, except for the root DataObject, is pointed to by a containment reference from another node in the tree. Each DataObject in the graph keeps track of its containment reference, of which there can be at most one..

It is possible for a data graph to have non-containment references. These are references to DataObjects that do not affect the tree structure of the data graph imposed by the containment structure. A DataObject can be referenced by many non-containment references, but by at most one containment reference.

Both containment and non-containment references are Properties of a DataObject. The Type of the Properties is any DataObject Type.

Whether a particular DataObject reference Property is a containment reference or a non-containment reference is defined by the metadata, for example the XSD which defines the data types for an XML document. This cannot be changed once the data model has been defined. Whether a particular reference is a containment reference can be queried by accessing property.containment.
Simple navigation, up and down the DataObject containment tree, is provided by getContainer() and getContainmentProperty(). The getContainer() method returns the parent DataObject and the getContainmentProperty() method returns the Property of the container that contains this object. A DataObject can be removed from its container, without making any other changes, using the detach() method.

Containment is managed. When a DataObject is set or added to a containment Property, the SDO implementation MUST remove it from any previous containment Property. [COR04010601]

4.1.7 Creating and Deleting DataObjects

The DataObject.create methods create an appropriately typed DataObject and add the created object to the Property specified. If the DataObject's Type is a sequenced type (that is, if getType().isSequenced() is true) then the DataObject.create method MUST place the created DataObject at the end of the Sequence. [COR04010701] If the Property is single-valued, an SDO implementation MUST set the value of the Property, to the object created by DataObject.create(). [COR04010702] If the Property is multi-valued, an SDO implementation MUST add the object created by DataObject.create() as the last object in the value list. [COR04010703] Only containment properties may be specified for creation. A created object begins with all its properties unset.

The delete() method MUST unset all the DataObject’s non-readonly properties. [COR04010704] If the containment Property is not read-only, the delete() method MUST also remove the DataObject from its containing DataObject. [COR04010705] The delete() method MUST delete all DataObjects directly or indirectly contained by containment properties of the DataObject. [COR04010706]

If other DataObjects have one-way, non-containment properties that refer to deleted DataObjects, then these references MUST NOT be modified. [COR04010707] However, it will probably be necessary to change these properties in order to restore closure to the data graph. A deleted DataObject can be used again, have its values set, and again be added into the data graph.

4.1.8 Sequenced DataObjects

A DataObject can be of a sequenced or unsequenced type (see Sequence). The getType().isSequenced() method determines whether the DataObject's Type is sequenced or not.

If a DataObject's Type is not sequenced then getSequence() MUST return null. [COR04010801].

The Sequence of a DataObject corresponds to the XML elements representing the values of its properties. Updates through DataObject, and the Lists or Sequences returned from DataObject, operate on the same data. Returned Sequences actively represent any changes to the DataObject's values.
4.1.9 Open Content DataObject Properties

DataObjects can have two kinds of properties:

14. Those specified by their type (see Type)

15. Those not specified by their type. These additional properties are called open content.

Properties which are specific to a DataObject’s Type are returned in a List by getType().getProperties().

DataObjects can have Properties beyond those specified by their Type when either:

16. Handling XML open content.

17. Encountering new Properties dynamically.

Open content Properties are allowed only when Type.open is true. Some Types set open to false so they do not have to accept additional Properties.

A Property of a DataObject can be identified as open content if Property.isOpenContent() returns true.

All Properties currently in a DataObject are returned, in a read-only List, by getInstanceProperties(). This includes properties that are open content. The order of the Properties begins with the Properties specified by the DataObject’s Type whether set or not; the order of the remaining Properties is implementation dependent. The isSet() method invoked on an open content property in the list of instance properties MUST return true. [COR04010901].
The property name can be used to find the corresponding Property active on the DataObject within the instance properties by calling getInstanceProperty(String name).

In order to set an open content value when that Property is not set (it does not appear in getInstanceProperties()), a set or create accessor on DataObject, or add on List or Sequence, with a Property parameter can be used, typically found by accessing the TypeHelper or XSDHelper.

Open content properties can also be created automatically (on-demand) by setting an undefined property on a DataObject of a Type that isOpen. For example, when a client calls:

openTypeDataObject.set("someProperty", value);

or:

sequencedOpenTypeDataObject.getSequence().add("someProperty", value);

If the specified property name does not already exist in a DataObject an SDO Implementaion MUST dynamically define the open content property and add it as an instance property of the DataObject. [COR04010902] A demand-created property created by an SDO Implemention MUST be equivalent to an open content property explicitly created by calling TypeHelper.defineOpenContentProperty(null, property) according to the following rules:

· The property name is the name passed to the DataObject.set<T>() or Sequence.add<T>() method.

· The property type is derived from <T>, or the type of the List of values, being set.

· If the value is a DataObject that is not contained, the new property has isContainment set to true, false otherwise.

· The property's isMany value is true for DataObject.setList() or Sequence.addList(), false otherwise.

· The created property's containing type (Property.getContainingType()) is not specified by SDO.

· The property has the value of xmlElement in the http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911 namespace set to true.

[COR04010903]

When deriving a property type from a value that is an instance of DataObject or a List containing DataObject's, an SDO implementation MUST create a property of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataObject. [COR04010907] If the value is not a DataObject or List of DataObjects, an SDO implementation MUST create a DataType property of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Object. [COR04010904] Passing a List value containing a mixture of DataObject's and non DataObject's is an error case and will produce implementation dependent results.

If getList() is called on an undefined property, an SDO implemenation MAY return a value of null or an empty list. [COR04010906]

Clients do not need to pass metadata for this kind of open-content property when serializing instances. An SDO implementation MUST automatically serialize sufficient metadata along with the instance so that an equivalent instance property is reconstituted on de-serialization. [COR04010905]

4.1.10 Property Indexes

When a DataObject has multiple Properties, each of the Properties can be referenced by an index number, starting at 0 for the first Property.

The Property index used in get(int property), is the position in the List returned by getInstanceProperties().

Using index parameter accessors for open content is discouraged if the data is being modified, unless the index is used in coordination with getInstanceProperties(). This is because the index of properties for open content in getInstanceProperties() can change if the values of several open content properties are set and unset repeatedly.

The following example is acceptable because the index is used in coordination with getInstanceProperties(). Note that DataObjects are not synchronized so the user should not have updates going on at the same time as reads. This example shows a common pattern, looping through all instance properties and printing the property name and value:
for (int i=0; i<myDo.getInstanceProperties().size(); i++)

{

 Property p = (Property) myDo.getInstanceProperties().get(i);

 System.out.println(p.getName()+"="+myDo.get(String.class,i));

}

Names and alias names for Properties earlier in getInstanceProperties() take precedence over those with a higher index, meaning that open content Properties can have their name hidden by names defined in the Type's Properties since those Properties are at the beginning of the list. The order of precedence is the order in getInstanceProperties().

In the event of a duplicate name, the open content Property can be accessed through its alias name if that does not conflict with any names, or alias names, in the previous Properties.

4.1.11 Current State for a DataObject

The current state for a DataObject are all the values that distinguish it from a newly created object from the DataFactory, since newly created objects from a DataFactory have no properties set and no container. The current state for a DataObject are all the properties in getInstanceProperties() where isSet() returns true. The container and containment property are part of the state of the containing DataObject. This program prints the current state of the DataObject myDO.

for (int i=0; i<myDo.getInstanceProperties().size(); i++)

{

 Property p = (Property) myDo.getInstanceProperties().get(i);

 if (myDo.isSet(p))

 {

 System.out.println(p.getName()+"="+myDo.get(String.class, i));

 }

}

4.1.12
DataObject Interface

[image: image4.png]Hproperty | |

+ containmentProperty

i Sequence

+ sequence

+ changeSummary.

£l ChangeSummary | 01

= Databject

@3 5et (name : Sting) Boolkan
 isset (index : Integer) : Bookean
& isset (property : Property) : Boolean
& unset (name : String)

& unset (index : Integer)

& unset (property : Property)

€ get (mame : string) : Object

£ get (index : Integer) : Object

42 get (property : Property) : Object
3 set (name : Sting, value : Object)
set (index: Integer, value : Object)

£ 9et<T> (name : String) : <T>
£ 9et<T> (index : Integer) : <T>

.igsekn(ndex : Integer, value : <T>)

3 set<T> (property : Property, value : <T>)
3 createDataObject (name : String) : DataObject
3 createDataObject (index : Integer) : DataObject
 createDataObiect (property : Property) : DataOby
3 createDataObject (name : String, U
G createDataObiect (index : Integer, URI : Strng, type : Type) : DataObject
3 createDataObject (property : Property, URI : String, type : Type) : DatzObject
4 delete ()

4 clear ()

g detach ()

3 getinstanceProperty (name : String) : Property

 getinstanceProperties () : Lt

€ getProperty (ndex : Integer) : Property

| getPropteryIndex (property : Property) : Integer

+ container | 1

4.1.13 DataObject Accessor Exceptions

The following exceptions are defined for DataObject accessors. The actual manifestation of the exceptions is language specific.

The get(String path) method MUST return null instead raising an error for error conditions, for example if “path” refers to a non-existing property. [COR04011301] This avoids the need for defensive programming and helps simple programs access data that has a flexible structure.

The get<T>(String path) methods MAY raise a conversion-related error if it is impossible to convert between the actual and expected types. [COR04011305] These methods MUST NOT raise any other error. [COR04011302]

The isSet(path) method MUST return the value of false in the case where the path does not exist. [COR04011303]

Open content DataObjects MUST NOT raise an error for accessing properties which are not set on the DataObject. [COR04011304]

The following table lists the conditions where an error is raised when a property is improperly accessed

	Condition
	Exception

	For Types without open content (open=false), Property is not a member of getInstanceProperties() in get<T>(Property property) or get<T>(int propertyIndex).

· getInstanceProperties().contains(property) == false

· propertyIndex < 0 or >= getInstanceProperties().size()

· Example: getInteger(null)

· Example: get(String.class,-1)

· Example: isSet(property)
	IllegalArgumentException

	Index out of range on a multi-valued Property (defined by the List interface)

· index < 0 or >= getList(Property property).size()

· Example: getList(employee).get(-1)

· Example: getList(employee).get(1000) where there are less than 1000 values
	IndexOutOfBoundsException

	Modification of a read-only property

· Example: set(employeeNumber, 123) where employeeNumber.isReadOnly() == true

· Example: unset(employeeNumber) where employeeNumber.isReadOnly() == true

· Example: getList(employees).remove(anEmployee) or

· Example: anEmployee.detach() or

· Example: anEmployee.delete() where employees.isReadOnly()==true and anEmployee.getContainmentProperty()==employees.
	UnsupportedOperationException

	Cannot convert between value and requested Type
· Example: get(Date.class, property) where property.Type is float

· Example: getList(property) where property.many == false and property.type.instanceClass is not List.
	Conversion-related exception (for example,

ClassCastException, NumberFormatException etc.)

	Mixing single-valued and multi-valued Property access

· Except as described in section 11: DataType Conversions
· Example: getList(property) where property.many == false
	ClassCastException

	Circular containment

· Example: a.setDataObject("child", b); b.setDataObject("child", c); c.setDataObject("child", a) where child is a containment Property.
	IllegalArgumentException

4.2 ChangeSummary

A ChangeSummary provides access to the changes made to the DataObjects in a data graph, comparing the data graph’s “before” state to its “after” state. The “before” state is the state of the data graph at the time when logging was activated. If logging is no longer active, the “after” state is the state of the graph when logging was deactivated. This means that only changes that were made up to the point when logging was deactivated are included in the ChangeSummary. Otherwise, the ChangeSummary includes all changes up to the point at which it is interrogated. The ChangeSummary contains only net changes, transient values that are assigned to properties after logging begins, but which are overwritten before logging is deactivated are not visible throught the change summary. Although change information is only gathered when logging is on, the ChangeSummary can be queried whether logging is on or off. All of the information returned is read-only.
The ChangeSummary interface has methods that:

· Activate and deactivate logging.

· Restore a tree of DataObjects to the state it was in when logging began and clear the log.

· Query the logging status.

· Get the ChangeSummary’s root DataObject.

· Get the list of changed DataObjects.

· Indicate whether a DataObject in the list of changed DataObjects has been created, deleted or modified.

· Get a DataObject’s container DataObject at the point when logging began.

· Get a DataObject’s containment property at the point when logging began.

· Get a DataObject’s Sequence at the point when logging began.
· Get a specific old value.

· Get a list of old values.
4.2.1 Starting and Stopping Change Logging

ChangeSummary.beginLogging() clears the ChangeSummary’s list of changed DataObjects and starts change logging. ChangeSummary.endLogging() stops change logging. ChangeSummary.undoChanges() restores the data graph to its state when logging began. ChangeSummary.undoChanges() also clears the log, but does not affect isLogging().
NOTE: The beginLogging(), endLogging() and undoChanges() methods are intended primarily for the use of service implementations since services define how the processing of a ChangeSummary relates to external resources. Making changes that are not captured in the ChangeSummary cause services that drive updates from a ChangeSummary to act on incomplete information. The results of calling undoChanges() after endLogging() are similarly unpredictable.
4.2.2 ChangeSummary Root

When a DataObject includes a Property with type ChangeSummaryType, the DataObject is called a ChangeSummary root. ChangeSummary.getRootObject() returns the ChangeSummary root. DataObject.getChangeSummary() invoked on the ChangeSummary root, or on any DataObject contained, directly or indirectly, by the ChangeSummary root, MUST return the same ChangeSummary object. [COR04020201] DataObject.get(“changeSummaryProperty”) where “changeSummaryProperty” is the name of a property whose Type is ChangeSummaryType MUST return the same ChangeSummary object as DataObject.getChangeSummary(). [COR04020202] The following rules and restrictions apply to ChangeSummary properties:
18. An SDO implementation MUST raise an error if a Type is defined that contains more than one property with type ChangeSummaryType. [COR04020204]

19. An SDO implementation MUST raise an error if a Type is defined with a property with type ChangeSummaryType that has many=true and readOnly=false. [COR04020205]

20. The scope of ChangeSummaries never overlap. An SDO implementation MUST raise an error if a DataObject has a property of type ChangeSummary is directly or indirectly contained or otherwised referenced by any other DataObject that has a property of type ChangeSummary. [COR04020206]
21. When an SDO implementation creates a DataObject containing a ChangeSummary, the logging state MUST be off. [COR04020203] Changes are logged only after ChangeSummary.beginLogging() is called.

22. The ChangeSummary will not contain the creation or deletion of its containing DataObject.

23. Using the ChangeSummaryType to define an open content property is not supported.

4.2.3 ChangeSummary Scope
The scope of a ChangeSummary is defined as the set of DataObjects reachable from the ChangeSummary root either through containment or over any orphanHolder properties. In other words the scope of the change summary is the same set of DataObjects that would be in the sub-tree whose root node is ChangeSummary root, if the graph were serialized to XML.
An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that were in the ChangeSummary scope when logging was activated but are not in the scope when logging was deactivated (or when ChangeSummary.getChangedObjects() was called, if logging is still active) and which are not themselves contained by a deleted DataObject; the implementation MUST return true when such an object is passed to ChangeSummary.isDeleted. [COR04020301] An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that were not in the ChangeSummary scope when logging was activated, but are in scope when logging was deactivated (or when ChangeSummary.getChangedObjects() was called, if logging is still active) and which are not themselves contained by a created DataObject; the implementation MUST return true when such an object is passed to ChangeSummary.isCreated. [COR04020302] An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that remained in the ChangeSummary scope and whose property values changed during the time that logging was activated; the implementation MUST return true when such an object is passed to ChangeSummary.isModified. [COR04020303]. The changeObject MUST NOT contain any objects other than those meeting the defined criteria. [COR04020304].
4.2.4 OrphanHolder Properties
Although orphanHolder properties play a role in determining the scope of the ChangeSummary, changes to the orphanHolder properties themselves are not tracked. If the only change to a DataObject is to the contents of its orphanHolder properties, an SDO implementation MUST not include the DataObject in the ChangeSummary as a modified. [COR04020401]
An SDO implementation MUST NOT include OrphanHolder properties in the getOldValues or getOldSequence lists. [COR04020402]
The following restrictions apply to the use of orphanHolder properties together with ChangeSummaries.

24. If an orphan DataObject is referenced from within the scope of a ChangeSummary, and if an object with a matching orphanHolder property is contained, either directly or indirectly, then the object is in scope of the ChangeSummary then when the change summary root is serialized using XMLHelper.save, an SDO implementation MUST serialze the orphan DataObject as being “contained” by the orphanHolder property. [COR04020403]
25. Orphan Holder properties are intended to be declared on envelopes and other technical DataObjects, rather than on DataObjects that are used to represent business entities. An SDO implemenation MAY ignore orphanHolder properties defined on DataObjects that themselves are orphans, or that are contained by orphans. [COR04020404].

26. ChangeSummary properties are intended to be declared on envelopes and other technical DataObjects, rather than on DataObjects that are used to represent business entities. An SDO implemenation MAY ignore ChangeSummary defined on DataObjects that themselves are orphans, or that are contained by orphans. [COR04020405]

4.2.5 Old Values
A List of old values can be retrieved using the getOldValues(DataObject dataObject) method. The order of old values returned is implementation dependent. For a deleted DataObject, an SDO implementation MUST include all the properties of the DataObject in the old values List. [COR04020501] For a DataObject that has been modified, an SDO implementation MUST include only the modified properties in the the old values List. [COR04020502]. For a DataObject that has not been deleted or modified, getOldValues() MUST return an empty List. [COR04020503].
The elements of the list returned by getOldValue will be appropriate to the individual language. Depending on the individual language characteristics, this method will return either a list of changed properties or a list of objects which contain the old value, the property, and possibly additional information If a list of objects is returned, then getOldValue and isOldSet are methods on the returned objects.
4.2.6 Sequenced DataObject
getOldSequence(DataObject dataObject) returns the entire value that a DataObject’s Sequence had at the point when logging began. If the DataObject is not sequenced, then getOldSequence(DataObject dataObject) MUST return null. [COR04020601]
4.2.7 ChangeSummary Interface

[image: image5.png]& changeSummary

E8logging : Boolean
| g changedDataObject : DataObject [*]

@ beginLogging ()

4 endLogging ()

3 isLogaing () : Bookean

4 undoChanges ()

4 isAdded (dataObject : DataObject) : Boolean

3 isModfied (dataObject : DataObject) : Boolean
€ getoldContainer (dataObject : DataObject) : DataObject

3 oetoldContainmentProperty (dataObject : DataObject) : Property
 get0ldsequence (dataObject : DataObject) : Sequence

3 9etOldValues (dataObject : DataObject) : List

| oetOldValue (dataObject : DataObiect, property : Property)

1 |+ rootOject

The type returned by getOldValue, and the types in the List returned by getOldValues is implementation language dependent.

4.3 Sequence

A Sequence is an ordered collection of settings. Each entry in a Sequence has an index.

A Sequence preserves the order of settings, even across different properties. So, if Property A is updated, then Property B is updated and finally Property A is updated again, a Sequence will reflect this.

Each setting is a property and a value.

4.3.1 Unstructured Text

Unstructured text can be added to a Sequence. The addText(String text) method adds a new text entry to the end of the Sequence. The addText(int index, String text) method adds a new text entry at the given index of the sequence. Text entries appear in a Sequence as settings with property equal to null.

4.3.2 Using Sequences

Sequences are used when dealing with semi-structured business data, for example mixed text XML elements. Suppose that a Sequence has two many-valued properties, say “numbers” (a property of type int) and “letters” (a property of type String). Also, suppose that the Sequence is initialized as follows:

27. The value 1 is added to the numbers property.

28. The String “annotation text” is added to the Sequence.

29. The value “A” is added to the letters property

30. The value 2 is added to the numbers property.

31. The value “B” is added to the letters property.

At the end of this initialization, the Sequence contains the settings:

 {<numbers, 1>, <null, ”annotation text”>, <letters, ”A”>, <numbers, 2>, <letters, ”B”>}

The numbers property is the list {1, 2} and the letters property is the set {“A”, ”B”}, but the order of the settings across numbers and letters is not available through accessors other than the sequence.

4.3.3 Relationship between Sequences with
 DataObjects

The way in which a DataObject keeps track of the order of properties and values is quite different from the way in which a Sequence keeps track of the order.

The order in which different properties are added to a DataObject is not preserved. In the case of a many-valued Property, the order in which different values are added to that one Property is preserved, but when values are added to two different Properties, there is no way of knowing which Property was set first. In a Sequence, the order of the settings across properties is preserved.

An SDO implementation MUST provide access to the properties that appear in a Sequence through the DataObject API. [COR04030301] The DataObject API does not provide information regarding the order across properties.

If DataObject APIs are used to modify properties of a sequenced DataObject, then setting a Property previously unset or adding a value as the last item of a many-valued Property an SDO implementation MAY add the value at the end of the Sequence or, if possible,in a more suitable position in the Sequence (according to the XSD definition of the sequenced DataObject's Type). [COR04030306] If DataObject APIs are used to set a Property that was already set an SDO implemenatation MUST do so “in-place”. [COR04030302] In other words, setting the value of a Property using the DataObject API does not have as side-effect reordering of properties in a Sequence. The Sequence API supports the explicit reordering of values in the sequence. If a value is added to a many-valued Property as the item with index “i” (rather than as the last item), then an SDO implemenation MUST insert the new value in the Sequence right before the value corresponding to the item “i+1” of that many-valued Property. [COR04030303].

When the Sequence APIs are used to reorder a many-valued property, getList() invoked on that property MUST have a relative order of values that reflects these changes. [COR04030304].

4.3.4 Sequence Methods

The size() method returns the number of entries in the Sequence.

The getProperty(int index) accessor returns the Property at the given index, or null for unstructured text entries.

The get<T>(int index) accessor returns the value at the given index.

The set<T>(int index, <T> value) accessor updates the value at the given index and maintains sequence positions. It returns the old value that previously occupied that index.

The boolean add() accessors add to the end of the sequence. Those methods which return a boolean return the value true if the addition was successful. Error cases which return false, as opposed to an exception or allowing invalid states, are implementation dependent.

The addText(int index, String text) accessor adds unstructured text, at the given index.

The addText(String text) accessor adds unstructured text at the end of the sequence.

The other add(int index) accessors add to the specified position in a sequence and shift entries at later positions upwards.

The remove() method removes the entry at the specified index and shifts all later positions down.

The move() method moves the entry at the fromIndex to the toIndex, shifting entries later than fromIndex down, and entries after toIndex up.

The create() methods on DataObject creates DataObjects at the end of a Sequence,.

4.3.5 Sequence Interface

[image: image6.png][Sequence

G sie : Integer

@ getProperty (index : Integer) : Property

4 getvalue (index : Integer) : Object

3 setValue (index : Integer, value : Object)

53dd (ndex : Integer, name : String, value : Object)
3dd (index: Integer, propertylndex : Integer, value : Object)
53dd (ndex : Integer, property : Property, value : Object)
3dd (name : String, value : Object) : Bookean

% 3dd (propertylndex : Integer, value : Object) : Boolean
g add (property : Property, value : Object) : Boolean

4 addText (index : Integer, text : String)

& addText (text : Strng) : Bookan

& remove (index : Integer)

& move (tolndex : Integer, fromIndex : Integer)

4.4 Type

The Type interface represents a common view of the model of a DataObject or of a data type.

The concept of a data type is shared by most programming languages and data modeling languages; and SDO Types can be compared with other data types. An SDO Type has a set of Property objects, unless it represents a simple data type.

4.4.1 Mapping SDO Types to Programming and Data Modeling Languages

Java, C++ or UML Class

Class can be represented by an SDO Type.

Each field of the Class can be represented by an SDO Property.

XML Schema

Complex and simple types can be represented by SDO Types.

Elements and attributes can be represented by SDO Properties.

C Struct

C Struct can be represented by an SDO Type

Each field of the Struct can be represented by an SDO Property.

Relational database

Table can be represented by an SDO Type.

Column can be represented by an SDO Property.

All of these domains share certain concepts, a small subset of which is represented in the SDO Type and Property interfaces. These interfaces are useful for DataObject programmers who need to introspect the shape or nature of data at runtime.

More complete metamodel APIs (for example, to inspect XML Schema or UML model from which the SDO metadata is derived) representing all the information of a particular domain are outside the scope of this specification.

4.4.2 Type Contents

A Type will always have:

· Name - A String that is unique among the Types that belong to the same URI in the same HelperContext. Defining a Type with duplicate type name or aliases results in undefined behavior. A type name corresponds to the rules for an XML Schema NCName, see [Schema1]
· URI - The logical URI of a package or a target namespace, depending upon your perspective.

· Boolean fields indicating if the type is open, abstract, sequenced, or a data type.

A Type can have:

· Properties - a list of Property objects defined by this Type. Types corresponding to simple data types define no properties.

· Aliases - Strings containing additional names. Alias Names are unique within a URI. Duplicates in the names or aliases of types results in undefined behavior. All methods that operate on a Type by name also accept alias names. For example, a Type might be assigned an alias name for the domains it is used in: an XML Schema name "PurchaseOrderType", a Java name "PurchaseOrder" and a database table name "PRCHORDR".

· Instance properties – open content metadata extensions attached to the Type instance.

· Base types – a list of base Types. All the properties declared on the base types are also inherited by the current Type and DataObjects of this Type are substitutable for DataObjects of any of the base Types.

· Key type - the Type of values that are used to uniquely identify instances of this Type.
4.4.3 Name Uniqueness

Within a single HelperContext, the combination of a URI and a Type name or alias name uniquely identifies the Type. Other HelperContexts potentially have different (and conflicting) definitions for Types having the same URI and name.

Property names and Property alias names are all unique within a Type and any base Types.

4.4.4 Compatibility Between Types

Types in different HelperContexts potentially represent the same underlying business data. Often Types in different contexts are closely enough related that it is possible to transfer the business data between the contexts using the HelperContext.import() method. Types that are closely enough related to allow this are termed compatible Types.

Two types, T1 and T2, are considered compatible if their definitions are identical or differ only in the following ways:

1) If neither T1 nor T2 is a DataType, then the implementation type (in Java, the instanceClass) is allowed to differ, or be absent in one of the types.

2) If both T1 and T2 are DataTypes, then they are allowed to differ as long as the implementation type (in Java, the instanceClass) is the same, and the types are compatible according to the conversion table in Chapter11: DataType Conversions.

3) T1.name != T2.name or T1.aliasNames != T2.aliasNames, provided there is a matching name in the two sets of names

4) Corresponding properties P1.name != P2.name or P1.aliasNames != P2.aliasNames, provided there is a matching name in the two sets of names

5) Corresponding properties P1.containment != P2.containment

6) Corresponding properties P1.type and P2.type, and P1.type not a data type, then P2.type could be the key type of P1.type (see section 4.5.3: Key Properties)

An SDO implementations MUST not have a more restrictive set of conditions for compatibility than defined by this specification, it MAY loosen these conditions. [COR04040401] For example, an implementation might allow the set of properties in T1 to be a subset of the properties in T2.
4.4.5 Data Types

A data type is used to represent the value of properties that are not DataObjects. A Type is a data type if Type.isDataType() returns true.

SDO defines Types for the common data types supported in SDO, enabling more consistency in defining the Types and Properties used by services. Refer to section 6.1: SDO Data Types, for more details.
Multiple calls to DataObject.get() for a data type property can return different objects as long as equals() is true. For mutable data values (Date and List of Strings for example), modification of those values directly is implementation dependent.

4.4.6 Data Type Wrappers

Wrapper types are special types used to hold a dataType value in situaltions where a DataObject is required (for example, an XMLDocument rootObject or for the value of an xsd:anyType property). A wrapper type contains a single property with name “value” and type equal to that of the dataType (or a base type such as SDO Object) for which it is a wrapper. The “value” property is used to get or set the dataType value. The actual type of a wrapper DataObject is implementation dependent, but MUST extend the SDO type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataTypeWrapper. [COR04040601] Users can test for this type to determine when a DataObject is a wrapper. For example:

DataObject someObject = dataObject.get(DataObject.class,

 someAnyTypeProperty);

Type wrapperType = typeHelper.getType(TypeHelper.SDO_URI, "DataTypeWrapper");

if (wrapperType.isInstance(someObject)) {

 // "someObject" is a data type wrapper

 Object simpleValue = someObject.get("value"); // get the actual value

 ...

}

4.4.7 Multiple Inheritance

Type supports multiple inheritance by allowing multiple base types. When multiple inheritance is used, the order of Properties in getProperties() between a Type and the order in the base Types can differ.

4.4.8 Type Instance Properties

Open content (metadata extensions) can be added to SDO Type and Property instances.

For example, open content can be added to a Type when it is being defined:

// Create a new Type and with an open content property set

DataObject myDataType = dataFactory.create(SDO_URI, "Type");

myDataType.set("name", "MyType");

...

Property openContentProperty =

 typeHelper.getOpenContentProperty("someURI", "someProperty");

myDataType.set(openContentProperty, someValue);

// Define the Type

Type definedType = typeHelper.define(myDataType);

Although the Type and Property objects returned from TypeHelper, DataObject.getType, etc., need not implement the entire DataObject interface, an SDO implemenation MUST support access to open content using the getInstanceProperties() and get(Property) methods on the objects. [COR04040801] For example, the open content property, added above, can be retrieved from the defined type by calling a get<T>() method:

// Retrieve the open content property

Object retrievedValue = definedType.get(openContentProperty);

Several open content properties are defined in this specification. For example, section 5.4: Representation of DataType Facets defines open content properties through which constraints on the legal values associated with a type can be expressed. Similarly, section 8.2: Tuning the Default Mapping using Open Content Properties, defines properties that can be used to fine tune the XML representation of a type.

4.4.9 The mechanism is extensible, type metadata can be enhanced with open content properties defined by users or specific to theSDO implementation. Type Methods

getName() returns the Type Name.

getURI() returns the Type URI.

getInstanceClass() returns the Class used to implement the SDO Type.
isInstance(Object object) returns true if the specified object is an instance of this Type.

isDataType() returns true if this Type specifies DataTypes and returns false for DataObjects.
isSequenced() returns true if this Type specifies Sequenced DataObjects. When true, a DataObject can return a Sequence.
isOpen() returns true if this Type allows open content. If false, then dataObject.getInstanceProperties() is the same as dataObject.getType().getProperties() for any DataObject of this Type.

isAbstract() returns true if this Type is abstract, that is cannot be instantiated. Abstract types cannot be used in DataObject or DataFactory create methods. Abstract types typically serve as the base Types for instantiable Types.

getBaseTypes() returns a List of base Types for this Type. The list is empty if there are no base Types. XSD <extension> and <restriction> are mapped to this List of base Types.

getKeyType() retuns the keyType for this Type or null if the type has no key properties.
getAliasNames() returns a List of alias names for this Type. The list is empty if there are no Aliases.

getProperties() returns a read-only List of all Properties for this Type, including those declared in the base Types.

getDeclaredProperties() returns a read-only List of the Properties declared in this Type, not including those declared in the base Types.

getProperty(String propertyName) returns a particular Property or null if there is no property with the given name.

getInstanceProperties() returns a read-only List of instance Properties available on this Type.

get(Property property) returns the value of the specified instance property of this Type.

4.4.10 Type Interface

[image: image7.png]+ baseType
+keyType

0.1

% getProperties) Lit
% get (property : Property) : Object

4.5 Property

A DataObject is made up of Property values.

A Property has:

· Name - A String that is unique among the Properties of the containing Type. Defining a Property with a duplicate name or aliases results in undefined behavior. A property name corresponds to the rules for an XML Schema NCName, see [Schema1]
· Name - a String that is unique among the Properties of the containing Type. An SDO implemenation MUST raise an error if defining a Property would result in a duplicate name or the name would duplicate an alias of an existing Property. [COR04050001]

· Type - the Type of this Property. A Property whose Type is for DataObjects is sometimes called a reference; otherwise it is called an attribute.

· Containment - whether the property is a containment property. A property with containment true is called a containment property.

· Many - whether the property is single-valued or many-valued.

· ReadOnly - whether it is allowed to modify the property through the DataObject or the generated API.

· Alias names - alternative names that are unique within the Type. An SDO implemenation MUST raise an error if defining a Property would result in a duplicate alias or an alias would duplicate the name of an existing Property. [COR04050002] A Property might be assigned an alias name for the domains it is used in, such as an XMLSchema name "firstName", a Java name "first_name", and a database column name, "FRSTNAME".

· Default value.

· Nullable – whether the property can be set to null.

· Key – whether the property is a key property. A property with key true is called a key property.

· Instance properties – open content metadata extensions attached to the Property instance.

· Numeric index within the Property’s Type.

4.5.1 Property Index

Each Type assigns a unique index to each Property that belongs to a DataObject. The index can be accessed in the List returned by Type.getProperties().

4.5.2 Containment

In the case of a reference, a Property is either a containment or non-containment. In XML, elements with complex types are mapped to containment properties while elements and attributes with type IDREF are mapped to non-containment properties. Containment also maps to the UML concept of aggregation, and non-containment to association.
A Property with containment true is called a containment property. Containment properties show the parent-child relationships in a tree of DataObjects.

4.5.3 Key Properties

Key properties are used to identify one or more properties of a type that combine to form a value that within a data graph uniquely identifies objects of the type. The concept of object identity also maps to various data source technologies, for instance, to primary keys in a relational database, but such a mapping is beyond the scope of this specification. Within SDO, keys influence the XML serialization of non-containment references (seeSection 8.3:Generating XSD from Types using Keys) and also influence how DataObjects are transferred between contexts (see).

A property with key true is called a key property. A Property key can be set to true only when isMany is false and either of the following is true:
· The type of the property is a DataType. The use of “approximate” types such as float and double is discouraged and the resulting code will not be portable.
· The type of the property is not a DataType, but itself has or is a key type.
A key type is the type of the (possibly composite) key associated with a type. Any type with at least one key property has a key type. In any type for which one or more keys has been defined, it is possible to set the key type explicitly using the keyType property. If the key type is not explicitly set, and SDO implemenation MUST derive its default value according to the algorithm:

· If there is exactly one key property, and its type is a DataType, then the key type is the type of the key property.

· If there is exactly one key property and its type is not a DataType, then the key type is the key type of the key property’s type. [COR04050301]

If a type contains more than one key property, or the key property is an embedded key (see below), then the type has to have the keyType property set. The value of this property has to be a type such that for every key property (or key component of an embedded key) the key type also contains a corresponding property. If a key property’s type is a DataType, then the corresponding property in the keyType has to have the same type as the key property. If the key property’s type is not a DataType, then the type of the corresponding property is the key type associated with the key property’s type. An SDO implementation MUST check that the specified key type matches the defined key properties, and raise an error if the key type and the key properties do not match. [COR04050302]

Example

OrderType
- id (type=String, key=true)

- customer (type=CustomerType)

- lineItems (type=LineItemType, many=true, opposite=order)

LineItemType (keyType=LineItemKeyType)
- order (type=OrderType key=true opposite=lineItems)

- lineNumber (type=Int, key=true)

- productID, etc.

LineItemKeyType
- order (type=String)

- lineNumber (type=Int)

In the example, “id” has been specified as the single key property for OrderType, giving OrderType a keyType of String. LineItemType has a two-part key, “order” and “lineNumber”. Because LineItemType uses a multi-part key, it explicitly declares a key type. The complex key type, LineItemKeyType, has properties corresponding to each of LineItemType’s key properties. Notice that the order property in LineItemKeyType has type String, the key type of the corresponding property in LineItemType.
It is possible to declare a composite key be used directly as a property of a DataObject. This is referred to as an embedded key. In this case, LineItemType can be defined as follows:

LineItemType (keyType=LineItemKeyType)
- lineItemKey (type=LineItemKeyType key=true, containment=”true”)

- productID, etc.

Here the key type of LineItemType is set to the same type as the key property itself (lineItemKey), which has to be a containment reference, indicating the use of an embedded key.

4.5.4 Read-Only Properties

Read-Only Properties cannot be modified using the SDO APIs. When DataObject.delete() is invoked, read-only Properties are not changed. Any attempt to alter read-only Properties using DataObject.set(Property property, Object value) or unset() results in an error
.
Read-Only Properties can be modified by a service using implementation-specific means. For example, suppose a relational database service returns a DataObject in which the customerName Property is marked read-only. If the DataObject is passed back to the service, the value of the customerName could be updated by the service to the current value in the database.

4.5.5 Nullable Properties

It is possible that setting the value of a property to null is not allowed for a given property. For example, a property that does not map to a nillable XML element or that maps to a non-nullable RDB column, cannot be set to null. A property that can be set to null is called a nullable property.

Calling get() on a property that is not nullable might still return a null value if the default value of the property is null and it is currently unset. Calling unset is the preferred way to return properties to their default value. Calling set(null) on a non-nullable property will produce implementation dependent results.
For the particular case where a pair of opposite properties have differing values for nullable

1. Calling o1.set(nullableProperty, null) has the secondary effect that o2.isSet(nonNullableProperty) returns false, and

2. calling o2.unset(nonNullableProperty) has the secondary effect that o1.isSet(nullableProperty) returns false

4.5.6 Open Content Properties

Open content properties are ones that can be used to set open content (instance properties) on an open type. They are typically created using TypeHelper.defineOpenContentProperty() or demand-created by calling DataObject.set() on an open object. XSD global properties (elements and attributes) also map to open content properties.

4.5.7 Property Instance Properties

Property instances can themselves include open content, that is, extended metadata in the form of instance properties. The list of such extensions is available by calling Property.getInstanceProperties(). The values of these properties are available by calling Property.get(Property). For more details, see 4.4.8 Type Instance Properties.

getName() returns the Property Name.

getType() returns the Property Type.

isMany() returns true if the Property is many-valued, or false if the Property is single-valued.
isContainment() returns true if the Property is a containment reference and always returns false for data type properties.

isReadOnly() returns true if values for this Property cannot be modified using the SDO APIs.

getContainingType() returns the Type that declares this Property.

getAliasNames() returns a list of alias names for this Property.

getOpposite() returns the opposite Property, if the Property is bidirectional, otherwise returns null.

getDefault() returns the default value (as an Object).

isNullable() returns true if instances of this property can be set to null.

isKey() returns true if the property is a key property for its containing Type.

isOpenContent() returns true if this is a Property for setting open content.

getInstanceProperties() returns a read-only List of instance Properties available on this Property.

get(Property property) returns the value of the specified instance property of this Property.

4.5.8 Property Interface

[image: image8.png]Eype

+type
+containngType | 1

+ opposte

+ instanceProperty

|Egkey:Boolean |
& get (property : Property) : Object

L

4.6 HelperContext

A HelperContext provides access to a consistent set of SDO helpers. This is intended to allow applications to define metadata that is independent of and protected from metadata in other applications. The set of helpers returned by a single context have access to the same SDO metadata, that is, HelperContexts define the scope or visibility of a set of SDO types.

Every SDO type is conceptually contained by (associated with) the HelperContext from which it is retrieved. Since every DataObject has a type, every DataObject is, in turn, indirectly associated with a

In order to assure consistent behaviour, every DataObject in a data graph, that is, in the transitive closure reachable from some root node, has to be associated with the same HelperContext. Mixing contexts within the same graph is illegal and results in implementation specific behavior
4.6.1 Default HelperContext

The default HelperContext is accessed in a language specific manner.

Default helpers can be accessed using the get() methods of the default HelperContext.

4.6.2 Non-DefaultHelperContext

HelperContext objects other than the default can be created using a HelperContextFactory.

4.6.3 HelperContext Interface

[image: image9.png]C ¥itiDocument

4.6.4 Importing DataObjects from Other HelperContexts

The HelperContext.import() method is used to move data between contexts. This functionality is useful when moving data between loosely coupled applications, or when imposing alternate structures on existing models, for instance when imposing an XML containment hierarchy on data coming from a relational database. This section describes the behavior of the import method in terms of an object O1 with type T1 in HelperContext C1 and a second context C2. The method

 DataObject O2 = C2.import(O1);

 MUST return a DataObject O2 such that O2.getType() is compatible with O1.getType(), provided such a type is defined in C2. [COR04060401]. The definition of Type Compatibility is given in section 4.5.4 means that for every property P1 that can be accessed on O1 there is a corresponding property P2 accessible from O2. The types of the two corresponding properties are either directly compatible (i.e., P1.getType() is compatible with P2.getType()) or one side is compatible with the keyType of the other side (i.e., either P1.getType().getKeyType() is compatible with P2.getType() or P1.getType() is compatible with P2.getType().getKeyType()). The behavior of the import method when moving from complex objects into keys or back again is dealt with is section 4.6.5. For each property P2 in O2 that is directly related to a property P1 in O1, the import method MUST initialize the values of the property such that: [COR04060403]
1. If P1.getType().isDataType() is true then O1.get(P1) is equal toO2.get(P2)

2. If P1.getType().isDataType() is false then C2.getEqualityHelper().equals(O2.get(P2), C2.import(O1.get(P1))

If O1 and O2 are both sequenced, then the order of the elements in the sequences MUST match. [COR04060402]

It is possible that a valid data graph cannot be imported into another context, because doing so would violate the restrictions implied by the target context’s metamodel. Such restrictions include those implied by the type’s containment structure, e.g., there can be no objects in the imported containment graph that have more than one container. For instance, consider an object O1, with Type T1, in context C1. Assume that it has 2 properties, “a” and “b”, neither of which are marked as being a containment property. In this case, it would be valid to set the value of these properties to the same object, N1. Now consider a second type, T2, in context C2, that is compatible with T1 but in which the properties “a” and “b” are both marked as being containment properties. In this case, the DataObject O1 cannot be imported into the context C2, because the object N1 would create to an object that has conflicting containment properties. Attempting to import under such conditions is a user error and results in undefined behavior.
4.6.5 Keys and Imported DataObjects

A type and its keyType are compatible with each other. In other words, a type defined in one context as having a property whose type has a key type is compatible with a type in another context in which the corresponding property’s type is the key type. Since the types are compatible, it is possible to import objects from one context to another, thus the value of a property can in one context be a DataObject but in another could be a simple value. For example, the metamodel

HelperContext #1

Type Employee
* property - id (Integer) - KEY
* property - name (String)
* property - direct-report (List of Employee)

is compatible with the metamodel

HelperContext #2

Type Employee
* property - id (Integer) - KEY
* property - name (String)
* property - direct-report (List of Integer)

Here the type of the direct-report property has been replaced in the second HelperContext with the corresponding key type.

Conceptually, keys represent references to entities that lie outside the data graph (and whose types are potentially not even defined in the context through which the data graph was created). Changing the value of a key changes the target of the reference, and impacts neither the referenced DataObject itself nor any other references to that object. This is compatible with behavior when primitives or immutable data values (such as Integers or Strings) are used as key types. Achieving consistent behavior when the key type extends DataObject (as required whenever compound keys are used) requires that, when importing from a context with entities to a context with complex keys, a new DataObject MUST be created for every reference. [COR04060501] The DataObjects representing the keys are never shared, no matter how often any single DataObject is referenced in the original model. When importing from a DataObject to a key, a new instance of the key is always created. By contrast, when importing between contexts that do not map entities to keys, the resulting data graph has the same number of objects in the target HelperContext as in the source HelperContext.

Conversely, when importing from a key to a DataObject, then all usages of the same key value MUST resolve to the same DataObject.[COR04060502] The import operation MUST create a single DataObject for each key value.[COR04060503] The created DataObject MUST have all default values, except for its key properties, which MUST be set to match the key. [COR04060504]
Importing between DataObjects and keys is useful when the relationships through which the entities tie into the graph are non-containment. The following example shows how a complex model that lacks containment relationships can be imported onto a context that requires a specific XML serialization. The import operation implicitly prunes the orignal graph to the requirements of a specific client.

HelperContext #1

Type School
* property - name (String) - KEY
* property - students (Student) - many=true
* property - courses (Course) - many=true
Type Student
* property - name (String) - KEY
* property - courses (Course) - many=true, containment=false, opposite=students
* property - school (School) - containment=false, opposite=students
Type Course
* property - name (String) - KEY
* property - students (Students) - many=true, containment=false, opposite=courses
* property - school (School) - containment=false, opposite=courses

Notice the m:n relationship between Student and Course. It is possible that this data model should provide data to variety of clients, each organizing the data slightly differently, some wishing to obtain the list of students participating in a particular course, others wishing to obtain the list of courses in which a particular student is enrolled. The application cannot determine based on the structure of the data which of the two possible containment structures is "correct". Notice also that returning the transitive closure would return all the data associated with the entire school.

In this example the client wants the data structured according to the following XSD

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://importSample" xmlns:tns="http://importSample"
<complexType name="School">
<sequence>
<element name="students" type="tns:Student" maxOccurs="unbounded"/>
</sequence>
<attribute name="name" type="string"/>
</complexType>
<complexType name="Student">
<sequence>
<element name="courses" type="string" maxOccurs="unbounded"/>
</sequence>
<attribute name="name" type="string"/>
</complexType>

<element name="school" type="tns:School"/>
</schema>

Notice that the import imposes a containment structure on the original context, as well as pruning it by replacing the “course” DataObjects by the corresponding key. The following code illustrates the behavior of the HelperContext.import method.

DataObject cal = _helperContext.getDataFactory().create(School.class);
// Create the SDO graph
cal.set("name","Berkeley");
DataObject billy = cal.createDataObject("students");
billy.set("name", "Billy Bear");
DataObject bob = cal.createDataObject("students");
bob.set("name", "Bobbie Bear");
DataObject basketWeaving = cal.createDataObject("courses");
basketWeaving.set("name", "Basket Weaving");
DataObject algol = cal.createDataObject("courses");
algol.set("name", "Algol");
DataObject revolution = cal.createDataObject("courses");
revolution.set("name", "Revolution");
// hook things up
billy.getList("courses").add(basketWeaving);
billy.getList("courses").add(algol);
bob.getList("courses").add(basketWeaving);
bob.getList("courses").add(revolution);
// Create a second context defined by an XSD

HelperContext hc2 = SDO.getHelperContextFactory().createHelperContext();
hc2.getXSDHelper().define(getClass().getClassLoader().getResourceAsStream(

"importSample.xsd"), null);
// Import from the java context to the XSD context
DataObject imported = hc2.import(cal);
// Produce XML based on the XSD
String xml = hc2.getXMLHelper().save(imported, "http://importSample", "school");
// I'm imagining here that sending the XML out over the wire (eg, using it as a response to a
// WebService request. On the client side, we go from the XML back to SDO. We use the context
// based on the XSD.
DataObject imported2 = hc2.getXMLHelper().load(xml).getRootObject();
// We can make some changes. We can add a new course...
imported2.getList("students.0/courses").add("Fortran and You");
// So, now the trip back to the server…
//I'm skipping the XML step, and simply importing the modified (XML oriented) data back into
// my java context
DataObject cal2 = _helperContext.import(imported2);

// Test that there is one entity per key value
DataObject billy2 = (DataObject)cal2.getList("students").get(0);
DataObject basketWeavingBill = (DataObject)billy2.getList("courses")
.get(0);
DataObject bob2 = (DataObject)cal2.getList("students").get(1);
DataObject basketWeavingBob = (DataObject)bob2.getList("courses").get(0);
assertSame(basketWeaving2, basketWeavingBob);
4.6.6 Importing ChangeSummaries
The HelperContext.import method provides for the transmission of data between distinct but compatible (see section 4.4.4) HelperContexts. In the case that a service providing the persistence mechanism has a different but compatible type system from the client performing the changes, the contents of ChangeSummaries may also be imported. This functionality is subject to the constraint that the list returned from ChangeSummary.getChangedObjects() contains only DataObjects that are within the scope of the ChangeSummary into which they are being imported. Behavior is undefined if a changed DataObject is not in scope of the ChangeSummary according to the containment structure and OrphanHolder properties of the target HelperContext. The restriction that the contents of the ChangeSummary matches the scope as defined by the containment structure and OrphanHolders of the target HelperContext assures that all SDO functionality (e.g., XML serialization, deep copies using CopyHelper) continue to work as expected in the target context.

The logging state of an active, non-empty ChangeSummary is changed during the HelperContext.import operation. When a DataObject having a ChangeSummary property is imported into another context, and ChangeSummary.beginLogging() has been called on the ChangeSummary object without a corresponding call to ChangeSummary.endLogging(), an SDO implementation MUST perform an implicit call to ChangeSummary.endLogging() before performing the import. [COR04060601] If the ChangeSummary is empty (that is, no changes have yet been logged), then the implementation MUST make an implicit call to ChangeSummary.beginLogging() in the target context. This supports the case where the persistence service initializes change tracking before passing the imported result to its client. If the ChangeSummary is not empty (that is, ChangeSummary.getChangedObjects() returns a non-empty list), then ChangeSummary.isLogging() on the imported ChangeSummary object MUST return false. [COR04060602]
The ChangeSummary, and its properties, follow the normal rules associated with the importation of DataObjects and property values. The list returned by ChangeSummary.getChangedObjects() MUST contain the same underlying business objects, regardless of whether the ChangeSummary is being inspected in the context in which beginLogging was called or in the target context. [COR04060603] The elements in the list MUST be consistent with (i.e., imported into) the context of the DataObject from which the ChangeSummary was retrieved. [COR04060604] The behavior of ChangeSummary.getOldContainer() is currently undefined and will be resolved in a later draft of SDO 3.
It is illegal to call ChangeSummary.undoChanges() after importing the ChangeSummary. The behavior will be implementation dependent.
The following example, based on the metadata from the previous section’s example, illustrates this behavior.
// Create an envelope DataObject containing a change summary.
DataObject dataGraph =
 _helperContext.getDataFactory().create(SDO_URI,"DataGraphType");
// Create the SDO graph root node
DataObject cal = _helperContext.getDataFactory().create(School.class);
// Add it to the graph
dataGraph.add("school",cal);
// Fill the data graph
cal.set("name","Berkeley");
DataObject billy = cal.createDataObject("students");
billy.set("name", "Billy Bear");
DataObject bob = cal.createDataObject("students");
bob.set("name", "Bobbie Bear");
DataObject basketWeaving = cal.createDataObject("courses");
basketWeaving.set("name", "Basket Weaving");
DataObject algol = cal.createDataObject("courses");
algol.set("name", "Algol");
DataObject revolution = cal.createDataObject("courses");
revolution.set("name", "Revolution");

// hook things up
billy.getList("courses").add(basketWeaving);
billy.getList("courses").add(algol);
bob.getList("courses").add(basketWeaving);
bob.getList("courses").add(revolution);
// Create a second context defined by an XSD
HelperContext hc2 = SDO.getHelperContextFactory().createHelperContext();
hc2.getXSDHelper().define(getClass().getClassLoader().getResourceAsStream("sample/importSample.xsd"), null);
// Import from the java context to the XSD context
DataObject imported = hc2.import(dataGraph);
// Turn on change logging in the imported DataObject
imported.getChangeSummary().beginLogging();
DataObject importedSchool = imported.get(DataObject.class, "school");
// Make a few changes in the logging context
importedSchool.set("name","Stanford");
DataObject billy2 = (DataObject)importedSchool .getList("students").get(0);
billy2.set("name","Chauncy Cardinal");
// Make the original context active by importing back to it
cal = _helperContext.import(imported);
// Inspect the change summary
ChangeSummary changeSummary = cal.getChangeSummary();
// import is an implicit call to endLogging()
assertFalse(changeSummary.isLogging());
assert.equals(2, changeSummary.getChangedObjects().size());
assert.true(changeSummary.getChangedObjects().contains(cal));
assert.true(changeSummary.getChangedObjects().contains(billy));
4.7 DataFactory

A DataFactory is a helper for the creation of DataObjects. The created DataObjects are not connected to any other DataObjects.

4.7.1 Default DataFactory

The default DataFactory is available from getDataFactory() of the default HelperContext (see 4.6: HelperContext
). It is configured in an implementation-specific fashion to determine which Types are available and what instance classes are instantiated.

An SDO implementation MUST create DataFactory instances that use the TypeHelper associated with the same HelperContext as the DatFactory instance. [COR04070101] For example, the default DataFactory uses the default TypeHelper

DataFactory.create(String, String) is a shortcut to

DataFactory dataFactory = helperContext.getDataFactory();

TypeHelper typeHelper = HelperContext.getTypeHelper();

dataFactory.create(typeHelper.getType(String, String)).

4.7.2 Creating DataObjects

For all create methods:

· Type.abstract has to be false.

· If Type.dataType is true, then a wrapper DataObject is returned (see Data Type Wrappers
), on which a property with name “value” and type Type or SDO Object can then be set.

· The Type's getInstanceClass() method returns the same object as the interfaceClass parameter.

· Throw an IllegalArgumentException if the instanceClass does not correspond to a Type this factory can instantiate.

· The created DataObject implements the DataObject interface and the interface specified by the Type.instanceClass, if one exists. There is always an SDO Type and instance relationship and there can also be a Java Class and instance relationship. If there is a Java instance class specified on the Type then both the SDO and the Java relationships hold.

· The created object's getType() MUST return the Type used in the call to DataFactory.create(), and the Type.isInstance() MUST return true for the created object.[COR04070201]

· When instantiating a Type that has an InstanceClass then the object returned from the create MUST instantiate it. [COR04070202]

create(String uri, String typeName)

Creates a DataObject of the Type specified by typeName with the given package uri.

The uri and typeName parameters uniquely identify a Type from the metadata.

The effect of this call is the same as determining the Type for the uri and typeName and calling the create(Type) method

create(Type type)

Creates a DataObject of the Type specified.

NOTE: If the Type used in a create() method has a property of type SDO ChangeSummaryType, an SDO implementation MUST create the DataObject associated with a new ChangeSummary instance with change logging turned off. [COR04070203]

4.7.3 DataFactory Interface

[image: image10.png]| pataractory

4 create ((URL: String, typeilame : String) : DatzObject
| # create (type : Type) : DataObject

4.8 TypeHelper

A TypeHelper is a helper for looking up and dynamically defining new SDO Types. It also provides constants for the namespaces containing predefined SDO types and properties:

· SDO_URI = "http://docs.oasis-open.org/ns/opencsa/sdo/200911"

· SDO_XML_URI = "http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911"

4.8.1 Default TypeHelper

The default TypeHelper is available from getTypeHelper() of the default HelperContext (see 4.6: HelperContext
) It is configured in an implementation-specific fashion to determine which Types are available and what instance classes are known.

When SDO methods have String parameters to specify the name and URI of a Type, the behavior is the same as if they had used TypeHelper getType() with the same parameters. The scope of the types available through any SDO API includes all those available through the default TypeHelper.

4.8.2 Defining SDO Types Dynamically

It is possible to define new SDO Types dynamically using TypeHelper. For example, to define a new Customer Type, the TypeHelper can be used as follows:

HelperContext helperContext = SDO.getDefaultHelperContext();

TypeHelper types = helperContext.getTypeHelper();

Type intType = types.getType(SDO_URI, "Int");

Type stringType = types.getType(SDO_URI, "String");

// create a new Type for Customers

DataObject customerType = helperContext.getDataFactory()

 .create(SDO_URI, "Type");

customerType.set("uri", "http://www.example.com/customer");

customerType.set("name", "Customer");

// create a customer number property

DataObject custNumProperty = customerType.createDataObject("property");

custNumProperty.set("name", "custNum");

custNumProperty.set("type", intType);

// create a first name property

DataObject firstNameProperty = customerType.createDataObject("property");

firstNameProperty.set("name", "firstName");

firstNameProperty.set("type", stringType);

// create a last name property

DataObject lastNameProperty = customerType.createDataObject("property");

lastNameProperty.set("name", "lastName");

lastNameProperty.set("type", stringType);

// now define the Customer type so that customers can be made

types.define(customerType);

An SDO implementations MUST allow the “sdotype” argument in the property.set(“type”, sdotype) method, and in all setters that take Types as arguments, to be either an instance of org.oasisopen.sdo.Type or a DataObject of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Type. [COR04080201] If the latter, the defined type is implicitly registered when the Property is created, just as the Property is implicitly created when the Type is registered (e.g., through a call to TypeHelper.define(). Similarly, any base types referenced in the property definition may be either Type objects or DataObejcts where getType is “{http://docs.oasis-open.org/ns/opencsa/sdo/200911}Type. An SDO implementation MUST define all directly or indirectly referenced Types, and their properties when the referencing Type is defined (e.g., through a call to TypeHelper.define()). [COR04080202]

4.8.3 Using SDO Dynamic Types

To use the dynamically created Customer Type the DataFactory API could be used as follows:

DataFactory factory = SDO.getDefaultHelperContext().getDataFactory();

DataObject customer1 = factory.create("http://www.example.com/customer", "Customer");

customer1.setInt("custNum", 1);

customer1.set("firstName", "John");

customer1.set("lastName", "Adams");

DataObject customer2 = factory.create("http://www.example.com/customer", "Customer");

customer2.setInt("custNum", 2);

customer2.set("firstName", "Jeremy");

customer2.set("lastName", "Pavick");
4.8.4 Defining and Using Open Content Properties

Clients use open content properties to set instance properties on a data object. For example:

// Define a new SDO open content property with simple type

DataObject p = dataFactory.create(SDO_URI, "Property");

p.set("type", typeHelper.getType(SDO_URI, "Decimal"));

p.set("name", "someName");

Property openProperty =

 typeHelper.defineOpenContentProperty("someURI", p);

// Set an instance property on an open type DataObject

openDataObject.setBigDecimal(openProperty, new BigDecimal("1100.0"));

Properties defined through TypeHelper.defineOpenContentProperty(uri, p) can be used like global properties defined through loading schema with targetNamespace equal to the specified uri. Such an open content property MUST be available by calling XSDHelper.getGlobalProperty(uri, propertyName, true), just as XSD global properties created by XSDHelper.define() MUST be available by calling TypeHelper.getOpenContentProperty(). [COR04080401]

openProperty = typeHelper.getOpenContentProperty("someURI", "someName");

A null uri can also be passed to the TypeHelper.defineOpenContentProperty() method:

openProperty = typeHelper.defineOpenContentProperty(null, p);

In this case, the created property's location (containingType) is implementation dependent. Such open content properties are not available by calling TypeHelper.getOpenContentProperty() or XSDHelper.getGlobalProperty(). This type of property is equivalent to an on-demand open content property, as described in 4.1.9: Open Content DataObject Properties.

The XSD representation of an open content property that was created with a non-null uri argument can be generated by calling:

xsdHelper.generate(

 Collections.singletonList(openProperty.getContainingType())

);

An XSD representation cannot be generated for open content properties created with a null uri.

4.8.5 TypeHelper Methods

getType(String uri, String typeName) returns the Type specified by typeName with the given uri, or null if not found.

getOpenContentProperty(String uri, String propertyName) returns the open content (global) Property with the specified uri and name, or null if not found.

define(DataObject type) defines the DataObject as a Type. If a type with the same name and URI already exists, the SDO implementation MUST NOT redefine the existing type. [COR04080501]

define(List types) defines the list of DataObjects as Types. If some of the types in the list have the same name/URI combination as types that already exist, the SDO implementation MUST NOT redefine the existing types and the corresponding entries in the List returned MUST have references to the already-existing types. [COR04080502]

defineOpenContentProperty(String uri, DataObject property) defines the DataObject as a Property for setting open content.

4.8.6 TypeHelper Interface

[image: image11.png]= TypeHtelper

 9etType (URT: Stiing, typeflame : Sting) : Type

3 oetOpenContentProperty (URI : String, propertyliame : String) : Property
3 defineOpenContentProperty (URI : String, property : DataObject) : Property.
3 define (type : DataObject) : Type

| define (types : List) : List

4.9 CopyHelper

A CopyHelper creates copies of DataObjects.

4.9.1 Default CopyHelper

The default CopyHelper is available from getCopyHelper() of the default HelperContext HelperContext (see 4.6: HelperContext
).

4.9.2 Shallow Copies

copyShallow(DataObject dataObject) creates a new DataObject. The copyShallow() method MUST create a DataObject with the same values as the source dataObject for each Property of the source DataObject where property.type.dataType is true, including read-only properties, and for each Property of the Data Object were property.type.dataType is false, that property MUST be unset in the new DataObject. [COR04090201]

For single-valued Properties:

copiedDataObject.get(property) <==> dataObject.get(property).

For many-valued Properties:

copiedDataObject.getList(property).get(i) <==> dataObject.getList(property).get(i).

Where <==> means equals() for DataType Properties or the corresponding copied DataObject for DataObject Properties.

A copied object shares metadata with the source object. For example:

sourceDataObject.getType() == copiedDataObject.getType().

If a ChangeSummary is part of the source DataObject then copyShallow() MUST create a new, empty ChangeSummary that is associated with the new DataObject and the logging state of the new ChangeSummary MUST BE the same as the source ChangeSummary. [COR04090204]

4.9.3 Deep Copies

copy(DataObject dataObject) creates a deep copy of the DataObject tree, that is it copies the dataObject and all its contained DataObjects recursively.

The copy() method MUST create a DataObject with the same values as in the shallow copy for each Property of the source DataObject where property.getType().isDataType() is true. [COR04090301]

The copy() method MUST make a deep copy of the value for each containment Property of the source DatObject where the value is a DataObject. [COR04090302]

The copy() method MUST NOT copy a value that is a reference to a DataObject outside the copy tree for any bidirectional property of the source DataObject. [COR04090303] If a unidirectional property’s value is a reference to a DataObject outside the copy, then the the copy() method MUST set the value in the new DataObject to reference the same DataObject as the source DataObject. [COR04090304].

If a ChangeSummary is part of the copy tree, the copy() method MUST create a new ChangeSummary with contents that correspond to the values in the source ChangeSummary, with the copied ChangeSummary referring to objects in the copied DataObject tree and logging state the same as the source Change Summary. [COR04090305]

4.9.4 CopyHelper Methods

DataObject copyShallow(DataObject dataObject) creates a shallow copy of the dataObject.

DataObject copy(DataObject dataObject) creates a deep copy of the dataObject tree.

4.9.5 CopyHelper Interface

[image: image12.png]& CopyHelper

93 copyShalow (dataObject : DataObjact) : DataObject
| coy (dataObject : DataObject) : DataObject

4.10 EqualityHelper

An EqualityHelper compares DataObjects to decide if they are equal.

4.10.1 Default EqualityHelper

The default EqualityHelper is available from getEqualityHelper() of the default HelperContext (see 4.6: HelperContext
).

4.10.2 EqualityHelper Methods

equalShallow(DataObject dataObject1, DataObject dataObject2) returns true if two DataObjects have the same Type, and all their compared datatype Properties are equal.
equal(DataObject dataObject1, DataObject dataObject2) returns true if two DataObjects are equalShallow(), all their compared Properties are equal, and all the values of their compared DataObject Properties are equal, recursively.

When testing for equality of the values of Properties for which isMany() is true, the order in which the values appear is significant.

When testing for equality of values of Types for which isSequenced() is true, order of property/value pairs inside the sequence is significant.

If the type is not sequenced, the order is not significant
4.10.3 EqualityHelper Interface

[image: image13.png]& EqualityHelper

equalshalow (dataObject : DataObject, dataObject2 : DataObject) : Boolean
| @ equal (dataObject! : DataObject, dataObject2 : DatzObject) : Boolean

4.11 XMLHelper

An XMLHelper converts XML to and from graphs of DataObjects.

XMLHelper can be used with or without an XSD. All closed trees of DataObjects are supported, whether or not an XSD was specified. However, the XML will use an XSD if one is used to define the DataObjects.

XMLHelper supports the case where a DataObjects's Types and Properties did not originate in an XSD. It does this by writing XML documents that follow the Generation of XSDs portion of this specification.

4.11.1 Default XMLHelper

The default XMLHelper is available from getXMLHelper() of the default HelperContext (see Section 4.6: HelperContext). It is configured in an implementation-specific fashion to determine which Types are available.

4.11.2 Loading and Saving XML Documents

The XMLHelper and XMLDocument do not change the state of the input DataObject and ignore any containers. After load, the root DataObject created does not have a containing DataObject.

When loading XML documents, typically the Types and Properties are already defined, for example from an XSD. Section 7.11, XML without Schema to SDO Type and Property, defines the behaviour when metadata is not available. In some situations, the definitions of the Types and Properties have changed relative to the software that has originally written the document, often called schema evolution. SDO does not directly address schema evolution, which is an issue broader than SDO, but the general guideline is to use the same URI for compatible XML documents and different URIs for incompatible XML documents.

4.11.3 Determining the Type of XML Elements

Often, it is desirable to validate XML documents with an XSD. To ensure validation, it is required that the root element name and URI correspond to a global element name and target namespace in an XSD.

If an XSD is not being used, for example when the schema types were created dynamically with TypeHelper, it is recommended that TypeHelper.defineOpenContentProperty() be used to define the root element. This improves integration with software that does make use of XSDs.

In cases where the schema is unavailable, or does not give sufficient information regarding a value’s type, or where global elements are not appropriate, xsi:type provides an alternate means for specifying the type of an element. An SDO Implementaion MUST generate an xsi:type annotation in the serialization of DataObjects whenever the Type of the DataObject is not the same as the type of the element, e.g., when polymorphism occurs in the object model, but there are no corresponding substitution group defined in the XSD. [COR04110301]

The same rule applies when saving the root element. If the schema already provides enough information to determine the type, for instance, if rootElementURI and rootElementName correspond to a valid global element for the root DataObject's Type, then the implementation does not need to generate an xsi:type attribute. Otherwise, an xsi:type attribute will be generated.

When marshalling an element having an xsi:type declaration into a DataObject, the SDO implementation MUST create an DataObject with the indicated type. [COR04110302] Unless XSD validation is being performed, it is not an error if the rootElementURI and rootElementName do not correspond to a valid global element.

It is possible to use the root element "http://docs.oasis-open.org/ns/opencsa/sdo/200911", "dataObject" in combination with xsi:type to serialized or de-serialize any DataObject.

XSD cannot support multiple inheritance, but an SDO implementation MUST be able to marshal and unmarshal between SDO objects that use multiple inheritance and well-formed XML documents. [COR04110303] The serialization of the DataObject is the same as if the Type for the DataObject had no inheritance at all, that is as if all the properties in Type.getProperties() were declared within the type. .

4.11.4 Creating DataObjects from XML

Using XMLHelper it is easy to convert between XML and DataObjects. The following example shows how to get a DataObject from XML, assuming that the purchaseOrder global element has been defined in the IPO namespace:

String poXML =

 "<ipo:purchaseOrder orderDate=\"1999-10-20\" "+

 " xmlns:ipo=\"http://www.example.com/IPO\">"+

 " <shipTo country='US'>"+

 " <name>Alice Smith</name>"+

 " <street>123 Maple Street</street>"+

 " <city>Mill Valley</city>"+

 " <state>PA</state>"+

 " <zip>90952</zip>"+

 " </shipTo>"+

 "</ipo:purchaseOrder>";

DataObject po = XMLHelper.load(poXML).getRootObject();
Note that the purchaseOrder global element could have been created either through parsing an XSD, or directly through the use of TypeHelper.defineOpenContentProperty. When processing <any> and <anyAttribute> content from an XML document, the SDO implemention MUST check if a matching open content property is found in the associated TypeHelper and set this property in the created DataObject. [COR04110401] It is an error if the value does not have the corresponding type. If no matching open content property is found, the implementation MUST create an unregistered open content property. [COR04110402]

4.11.5 Creating DataObjects from XML documents

It is possible to convert to and from XML documents to build DataObject trees, which is useful when assembling DataObjects from several data sources. For example, suppose the global elements for shipTo and billTo were declared in the PurchaseOrder XSD:

<schema targetNamespace="http://www.example.com/IPO">

<element name="shipTo" type="USAddress"/>

<element name="billTo" type="USAddress"/>

…

</schema>

To create the shipTo DataObject from XML:

String shipToXML =

 "<ipo:shipTo country=\"US\" xmlns:ipo=\"http://www.example.com/IPO\">"+

 " <name>Alice Smith</name>"+

 " <street>123 Maple Street</street>"+

 " <city>Mill Valley</city>"+

 " <state>PA</state>"+

 " <zip>90952</zip>"+

 "</ipo:shipTo>";

XMLHelper xmlHelper = SDO.getDefaultHelperContext().getXMLHelper();

DataObject shipTo = xmlHelper.load(shipToXML).getRootObject();

purchaseOrder.set("shipTo", shipTo);

To convert the billTo DataObject to XML:

XMLHelper xmlHelper = SDO.getDefaultHelperContext().getXMLHelper();

String billToXML =

 xmlHelper.save(billTo, ”http://www.example.com/IPO”, "billTo");

System.out.println(billToXML);

This produces:

<?xml version="1.0" encoding="UTF-8"?>

<ipo:billTo country="US" xmlns:ipo="http://www.example.com/IPO">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Mill Valley</city>

 <zip>95819</zip>

</ipo:billTo>

Only properties that are isSet are included in the XML serialization of a DataObject. Absence of an element or attribute indicates that the corresponding property is not set. For example, if we unset the name property before serializing the billTo DataObject:

billTo.unset("name");

XMLHelper xmlHelper = SDO.getDefaultHelperContext().getXMLHelper();

String billToXML = xmlHelper.save(billTo, "http://www.example.com/IPO", "billTo");

System.out.println(billToXML);

This now produces:

<?xml version="1.0" encoding="UTF-8"?>

<ipo:billTo country="US" xmlns:ipo="http://www.example.com/IPO">

 <street>8 Oak Avenue</street>

 <city>Mill Valley</city>

 <zip>95819</zip>

</ipo:billTo>

4.11.6 Creating XML without an XSD

XMLHelper can be used without an XSD. In the TypeHelper Customer example, a Customer Type was defined dynamically without an XSD, and without calling TypeHelper.defineOpenContentProperty to define a global element with type Customer. Assuming customer1 is an instance of type Customer, we can save customer1 to XML as follows:

xmlHelper.save(

 customer1, "http://www.example.com/customer", "customer", stream);

This produces the following XML:

<?xml version="1.0" encoding="UTF-8"?>

<customer xsi:type="Customer" custNum="1" firstName="John" lastName="Adams"

 xmlns="http://www.example.com/customer"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

The presence of “xsi:type” in the generated XML is required, since no global element exists through which the type of the root object can be derived.

4.11.7 XMLHelper Methods

load(String inputString) creates and returns an XMLDocument from the input string. This method does not perform XSD validation by default.

save(XMLDocument xmlDocument) serializes an XMLDocument as an XML document into a string. If the DataObject's Type was defined by an XSD, the serialization follows the XSD. Otherwise, the serialization follows the format as if an XSD were generated as defined by the SDO specification.

save(DataObject dataObject, String rootElementURI, String rootElementName) returns the DataObject saved as an XML document with the specified root element.

createDocument(DataObject dataObject, String rootElementURI, String rootElementName) creates an XMLDocument with the specified XML rootElement for the DataObject.

4.11.8 Orphan Serialization

If a data graph includes noncontainment references to DataObjects which are not also reachable via some containment reference (i.e., if the graph is not closed) serializing an SDO data graph using the XMLHelper.save() method MAY throw an exception. For some applications, however, it is burdensome and unnatural to impose a containment structure on the data. To allow such applications to serialize to XML while avoiding such serialization errors, it is possible to annotate one or more elements in the XML schema with the sdox:orphanHolder attribute. OrphanHolder elements are used to serialize orphan objects, ”closing” the XML representation of the graph without imposing a containment structure.

DataObjects that are referenced by the DataObject with the orphanHolder property, or any DataObject contained, directly or indirectly by this DataObject MUST BE serialized in the contents of the orphan holder (subject to any restrictions on the types of orphans in the orphanHolder, see below). [COR04110801] Each “orphan” element MUST serialized as part of the containment tree in which it is located, that is, only DataObjects with getContainer()==null can be rendered as top-level orphans. [COR04110802] An SDO implementation MUST treat any DataObject that is referenced from an orphaned DataObject (or from any node in the orphaned object’s containment graph) but that is not otherwise included in the XML serialization as an orphan, and assign it to some orphanHolder property within the XML document, if any appropriate orphanHolder is exists. [COR04110803] References to orphaned DataObjects follow the normal rules of XML serialization

For example:

 <xsd:complexType name="MyRootType">

 <xsd:sequence>

 <xsd:element name="myOrphans"

 type="xsd:anyType" minOccurs="0" maxOccurs="unbounded"

 sdox:orphanHolder="true"/>

 <xsd:element ...

When serializing an instance of “MyRootType”, all orphan objects encountered during the save() operation are serialized under the “myOrphans” element.

The type of an orphan holder element is typically (but not always) xsd:anyType, allowing it to contain all orphans encountered during the save() operation. If multiple orphan holders appear in a type, or among several types encountered in the data graph being serialized (for example, one orphan holder could be defined per potential orphan Type), the algorithm for chosing which is used for a particular orphan object is implementation dependent. For example, an implementation MAY pick the best match for each orphan or it MAY just use the first compatible one.

Note that the predefined SDO type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataGraphType includes an orphan holder property allowing users of DataGraphs to avoid graph not closed errors without needing to explicitly define their own orphan holders.

4.11.9 XMLHelper Interface

[image: image14.png]= XMLHelper

g3 load (nput : Skring) : XMLDocument
& save (xmDocument : XMLDocument) : String

4 save (datzObject : DataObject, rootElementURI : String, rootElementiiame : String) : String

| createDocument (dataObject : DataObject, rootElementURI : String, rootElementName : String) : XMLDocurment.

4.12 XMLDocument

An XMLDocument represents an XML Document containing a graph of DataObjects.

XMLHelper creates and serializes XMLDocument objects. An XMLDocument enables a program to access parts of an XML Document.

XMLDocuments do not change the state of any input DataObjects and ignore any containers.

4.12.1 Example XMLDocument

Using this XML Schema fragment:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.example.com/IPO">

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:complexType name="PurchaseOrderType">

and the following example XMLDocument fragment:

<?xml version="1.0"?>

<ipo:purchaseOrder orderDate="1999-10-20"

 xmlns:ipo="http://www.example.com/IPO">

After loading this XMLDocument:

· DataObject is an instance of Type PurchaseOrderType.

· RootElementURI is “http://www.example.com/IPO”.

· RootElementName is purchaseOrder.

· The XML encoding default of "UTF-8" is applied to the creation of new documents. After a load() it will have an encoding value from the document, or null, if no encoding value was found in the document.

· XMLDeclaration is true because the document contained an XML declaration.

· XMLVersion is 1.0.

· SchemaLocation and noNamespaceSchemaLocation are null because they are not specified in the document.

4.12.2 XMLDocument Methods

getRootObject() returns the root DataObject for the XMLDocument.

getRootElementURI() returns the targetNamespace URI for the root element. If there is no targetNamespace URI, returns null.

getRootElementName() returns the name of the root element.

getEncoding() returns the encoding of the document, or null if not specified. Support of values other than “UTF-8” is implementation-dependent.
setEncoding(String encoding) sets the XML encoding of the document, or null if the encoding is not specified.

isXMLDeclaration() returns true if the document contains an XML declaration. The default value is true to enable new documents to contain the declaration.

setXMLDeclaration(boolean xmlDeclaration) sets the XML declaration version of the document.

getXMLVersion() returns the XML version of the document, or null if not specified. The default value is "1.0". Specification of other values is implementation-dependent.

setXMLVersion(String xmlVersion) sets the XML version of the document, or null if not specified.

getSchemaLocation() returns the value of the schemaLocation declaration for the http://www.w3.org/2001/XMLSchema-instance namespace in the root element, or null if not present.

setSchemaLocation(String schemaLocation) sets the value of the schemaLocation declaration.

getNoNamespaceSchemaLocation() returns the value of the noNamespaceSchemaLocation declaration for the http://www.w3.org/2001/XMLSchema-instance namespace in the root element, or null if not present.

setNoNamespaceSchemaLocation(String schemaLocation) sets the value of the noNamespaceSchemaLocation declaration.

The root element is a global element of the XML Schema that has a type compatible with the DataObject.

4.12.3 XMLDocument Interface

[image: image15.png]/XMLDocument
£ ro0tObject : DataObject
(g rootElementURI : String
(g rootElementName : String
5 encodng : String

|ieg noamespaceschemaLocation : Strng |

4.13 XSDHelper

An XSDHelper provides additional information when a Type or Property is defined by an XML Schema (XSD). Also, an XSDHelper can define Types from XSDs.

If SDO Types and Properties were not originally defined by an XSD, or if the original XSD declaration information is not available, the helper methods return information corresponding to what would be generated in an XSD generated from the Types and Properties. IsXSD() can be used to tell if the information that XSDHelper has, originally comes from a Schema or not.

The original name and namespace from an XML Schema can be found using the getLocalName() and getNamespaceURI() methods. The original name returned by getLocalName() is the XML name before sdo:name is applied.

It is possible to tell if a Property is serialized as an XML element or attribute with the isElement() and isAttribute() methods.

XML Schema global elements and attributes can be found using the getGlobalProperty() method. This is the most common way to build XML documents with open content, by finding a global property with the XSDHelper and then setting the property on an open content DataObject.

The getAppinfo() methods return the XSD Appinfo . Appinfo is commonly used to specify information specific to a service in an XSD that may be valuable for configuring that service. The getAppinfo() methods return the XML, starting from the specified source element.

When defining SDO medatada from a particular Schema, it can happen that some of the components defined by that Schema (directly or via XSD imports or includes) map to SDO Types and Properties with the same name and namespace URI as existing Types and/or Properties. If an implementation can determine that the XSD components that the existing Types/Properties have been mapped from and the new components have the same identity, then the existing SDO Types/Properties are used instead of defining new ones.

4.13.1 Default XSDHelper

The default XSDHelper is available from getXSDHelper() of the default HelperContext (see 4.6: HelperContext
).

4.13.2 Generating XSDs

The XSDHelper can generate a new XSD for Types that do not already have an XSD definition. This is useful when the source of the Types come from services in another domain, such as relational databases, programming languages and UML. The generated XSD format is described later in 8: Generation of XSD from SDO Type and Property

 HYPERLINK \l "_Generation_of_XSD"
.

If an XML Schema was originally used to define the Types, that original XSD should be used instead of generating a new XSD. If a new XML Schema is generated when one already exists, the generated schema and the original schema will not be compatible and will validate different documents. The XMLHelper will follow the original XSD if one exists, otherwise it will follow a generated XSD.

4.13.3 XSDHelper Methods

The XSDHelper has methods to:

· Return the original XML local name for Types and Properties

· Return the namespace uri for Types and Properties

· Identify if a Property is represented as an XML element or attribute

· Identify if a Type allows XML mixed content

· Determine if a Type is defined from an XSD

· Access Properties of a Type based on XML representation characteristics

· Access instance Properties of a DataObject based on XML representation characteristics

· Return Properties for global elements and attributes

· Return the appinfo for Types and Properties

· Define new Types and Properties from XML Schemas

· Generate XML Schemas from Types and Properties

4.13.4 XSDHelper Interface

[image: image16.png]= XSDHelper

@ oetlocallame (type : Type) : Sting

5 getLocalName (property : Property) : String

3 getiiamespaceURI (type : Type) : Sting

€ getilamespaceURI (property : Property) : Sting

£ 5XSD (type : Type) : Boolean

4 isMixed (type : Type) : Bookean

4 isElement (property : Property) : Boolean

4 isAttribute (property : Property) : Boolean

3 getGlobalProperty URI String, propertyliame : String, isElement : Boolean) : Property
3 getProperty (type : Type, URI . String, xsdame : Strng, sElement : Boolean) : Property
€ getinstanceProperty (dataObject : DataObject, URI : String, xsdName : String, isElement : Boolean) : Property
 getAppInfo (type : Type) : String

€ getappInfo (property : Property) : String

483 define (xsd : String) : List

3 generate (types : List) : Sting

| 3 generate (types : List, namespaceSchemaMap) : String

4.14 DataHelper

The DataHelper provides helper methods for working with DataObjects, and values used with DataObjects.

Methods are available for converting values between data types.

4.14.1 Default DataHelper

The default DataHelper is available from getDataHelper() of the default HelperContext (see 4.6: HelperContext
).

4.14.2 DataHelper Interface

The conversion methods provided by DataHelper are language specific. Coversions between language specific time and data formats and SDO time and date related types are typically provided.

[image: image17.png]| DataHelper
@ pioject (dataObiect : DataObject) : DataObject

4.15 SDO

The SDO class provides access to HelperContext and HelperContextFactory objects.

4.15.1 Default HelperContext

The SDO class is the means by which the default HelperContext is found:

4.15.2 HelperContext by Identifier

HelperContext objects are created with a unique identifier. The SDO class can be used to retrieve the HelperContext based on the identifier. A null or empty string (“”) identifier corresponds to the default HelperContext. Null is returned if a HelperContext cannot be found for the specified identifier.

HelperContext hrHelperContext = SDO.getHelperContext(“org.example.hr”);

4.15.3 Default HelperContextFactory

To create instances of HelperContext other than the default one, a HelperContextFactory is used. The HelperContextFactory can be accessed from the SDO class.

HelperContextFactory hcf = SDO.getHelperContextFactory();

HelperContext hc = hcf.createHelperContext(“org.example.hr”, null);

4.15.4 Implementation Specific HelperContextFactory

In order to ensure that a HelperContext factory from a particular vendor is used, an implementation language dependent identifier can be specified.

HelperContextFactory hcf =

SDO.getHelperContextFactory(“org.example.vendor.HCFImpl”);

4.15.5 SDO Class

[image: image18.png]EE

 getieberContaxtFactory () : HeperContextractory

3 oetHelperContextFactory (dentifier : String) : HelperContextFactory
£ getDefaultHeerContext) : HeperContext

4 getHeberContext (identfier : String) : HelperContext

4.16 HelperContextFactory

HelperContextFactory is used to create instances of HelperContext.

4.16.1 Creating a HelperContext

It is possible to supply a unique identifier when creating a HelperContext

HelperContextFactory hcf = SDO.getHelperContextFactory();

HelperContext hc = hcf.createHelperContext(“org.example.hr”, null);

If a unique identifier was supplied when the HelperContext was created, it is possible to use the identifier to look up the associated HelperContext, using the SDO class:

HelperContext hc = SDO.getHelperContext(“org.example.hr”);

It is an error condition if an attempt is made to create a HelperContext with an existing identifier.

4.16.2 HelperContextFactory Interface

[image: image19.png]] HelperContextractory

 createrielperContext (identier : Strng, configuraton : Object) * HeerContext

5 SDO Model for Types and Properties

SDO defines a simple metamodel for describing types. DataObjects make their metamodel available through the Type interface, that is, through DataObject.getType(). Figure 2 shows this metamodel as a UML diagram.
[image: image20.png]+keyType

Eype
S name : String
€ URI: String
cg dataType : Boolean

5 0pen : Boolean
5 abstract : Bookean

(e sequenced : Bookean
(e alsiame : String
1

+type

+baseType

contaningType

= | + decaredproperty

= property

g name : String

£ Containment : Boolean
g many : Bookean

2 readonly : Bookean

£ nulable : Boolean

56 alsiame : String

5 defaut : Object

5 openContent : Bookean
g key : Bookean

+ opposte
| opposte

Figure 2
SDO’s metamodel is extensible. This means that Type and Property can have open content so that additional new properties can be added to the metamodel. One usecase for this is to represent metadata that is specific to a particular data source. For example, some predefined global properties (specific to XML serialization) are defined in section 8.2: Tuning the Default Mapping using Open Content Properties.
SDO allows application programs to define types. In this case, the objects in the metamodel are created as DataObjects and then passed to the TypeHelper.define API. The DataObjects in such a metamodel are themselves normal DataObjects, which means that they themselves have Types, and these Types have properties, etc.
5.1 API for DataObjects Representing Type and Properties

The objects passed to the TypeHelper.define API are restricted to DataObjects with type {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Type. Every TypeHelper MUST define {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Type and {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Property according to
 [COR05010001]

	SDO Model Types

	Type

 name="Type"

 open=true

 uri="http://docs.oasis-open.org/ns/opencsa/sdo/200911"

 Property name="baseType" many=true type="Type"

 Property name="property" containment=true many=true type=”Property”

 Property name="aliasName" many=true type="String"

 Property name="name" type="String"

 Property name="uri" type="String"

 Property name="dataType" type="Boolean"

 Property name="open" type="Boolean"

 Property name="sequenced" type="Boolean"

 Property name="abstract" type="Boolean"

 Property name="keyType" type="Type"

	Property

 name="Property"

 open=true

 uri="http://docs.oasis-open.org/ns/opencsa/sdo/200911"

 Property name="aliasName" many=true type="String"

 Property name="name" type="String"

 Property name="many" type="Boolean"

 Property name="containment" type="Boolean"

 Property name="type" type="Type"

 Property name="default" type="Object"

 Property name="readOnly" type="Boolean"

 Property name="opposite" type="Property"

Property name="nullable" type="Boolean"

Property name=”key” type=”Boolean”

Note that the order of the properties is significant, and implies the index of each property. For instance, the value of the “baseType” property can be retrieved using DataObject.get(0) and the value of the keyType property can be retrieved using DataObject.get(9).

As described in 4.8.2: “Defining SDO Types Dynamically”, wherever Types are expected, e.g., as the value of Property.type or of Type.baseType, either a DataObject of type {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Type or a Type object retrieved from the TypeHelper can be used.

Once the type has been defined, an SDO implementation MUST make the values used in the defining DataObject available through the the accessor methods in the Type API. [COR05010002] The mapping between the properties and accessor methods is
	Property in {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Type
	org.oasisopen.sdo.Type accessor

	name
	getName()

	uri
	getURI()

	dataType
	isDataType()

	open
	isOpen()

	sequenced
	isSequenced()

	abstract
	isAbstract()

	baseType
	getBaseTypes()

	property
	getDeclaredProperties()

	keyType
	getKeyType()

	aliasName
	getAliasNames()

	Property in {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Property
	org.oasisopen.sdo.Property accessor

	name
	getName()

	many
	isMany()

	containment
	isContainment()

	default
	getDefault()

	readOnly
	isReadOnly()

	type
	getType()

	opposite
	getOpposite()

	nullable
	isNullable()

	key
	isKey()

	aliasName
	getAliasNames()

An SDO implementation MUST expose any open content properties set on the DataObject used to define a Type or Propertiy through the getInstanceProperties() and get() methods on the corresponding org.oasisopen.sdo.Type and org.oasisopen.sdo.Property objects. [COR05010003]
5.2 SDO Type and Property constraints

Compliance is based on an implementation’s ability to create types based on reasonable and consistent type definitions. The definition of objects in the metamodel needs to be consistent with type and property semantics, otherwise the behavior of the SDO implementation is undefined.

· Property.containment=true implies type.dataType=false.

· Property.default values have to be consistent with property.type, and can only be given if property.type.dataType=true and property.many=false

· Type.dataType has the same value as the base Type's dataType

· Type.sequenced =true if the base Type's sequenced=trueType.dataType and sequenced have the same value as their base Types' dataType and sequenced.

· Type.open=false implies the type.baseType.open=false.
· Properties that are bidirectional have type.dataType=false

· Properties that are bidirectional have no more than one end that is containment=true

· Properties that are bidirectional have the same value at both ends for readOnly

· Properties that are bidirectional where one side has containment=true implies that the other side has many=false.

· Names and aliasNames are unique within Type.getProperties()

5.3 XML Representation of SDO Type and Property

The file SdoModel.xsd
defines an XML document structure corresponding to SDO’s type and property metamodel.
5.4 Representation of DataType Facets

SDO defines an open content property and a set of types that can be used to express the constraints on the values given to properties. The manner in which these constraints are expressed is intended to support a straightforward mapping with facets expressed using XML schema.

Figure 5.4-1 shows the structure of the open content property and the associated facet types. The open content “facets” property, the abstract “Facet” type, and all the concrete subclasses of Facet are in the http://docs.oasis-open.org/ns/opencsa/sdo/facet/200911 namespace. Note that, as with XML, the constraints (or “facets”) are associated not directly with a property, but rather with a type. That is, to specify that a property can accept only strings of length 4, a type defining strings of length 4 has to be defined, and used as the type of the property.
 SHAPE * MERGEFORMAT

Individual languages can extend some of the constructs defined by this core specification. The concrete facet types defined by this specification follow the pattern that each has a single property named “value”. The type of the value property varies, depending on the concrete facet.
An implementation of SDO MUST define the facets property, the abstract Facet type, and all the concrete types defined in table 5.4 -1 [COR05040001]

	http://docs.oasis-open.org/ns/opencsa/sdo/facet/200911 type
	Definition of value property

	MinLength
	Int value

	MaxLength
	Int value

	Length
	Int value

	MinInclusive
	Object value

	MaxInclusive
	Object value

	MinExclusive
	Object value

	MaxExclusive
	Object value

	TotalDigits
	Int value

	FractionDigits
	Int value

	Enumeration
	Object value

 many = true

	Pattern
	String value

Table 5.4‑1
Note that the set of facets defined by this spec is extensible. Implementations and users can define additional facet types. There is no requirement that all facet types follow the single “value” property pattern.

In order to assure that valid schema can be produced from the SDO type system, facets are only allowed on those simple Types for which the corresponding facet is supported in the XSD standard. Table 5.4.2 shows which facets are supported on SDO standard simple types.
	Facet->

Type

 |

 V
	length
	minLength
	maxLength
	pattern
	enumeration
	minExclusive
	maxExclusive
	minInclusive
	maxInclusive
	totalDigits
	factionDigits

	Boolean
	
	
	
	X
	
	
	
	
	
	
	

	Byte
	
	
	
	X
	X
	X
	X
	X
	X
	X
	0

	Character
	
	
	
	X
	X
	
	
	
	
	
	

	Double
	
	
	
	X
	X
	X
	X
	X
	X
	
	

	Float
	
	
	
	X
	X
	X
	X
	X
	X
	
	

	Int
	
	
	
	X
	X
	X
	X
	X
	X
	X
	0

	Long
	
	
	
	X
	X
	X
	X
	X
	X
	X
	0

	Short
	
	
	
	X
	X
	X
	X
	X
	X
	X
	0

	String
	X
	X
	X
	X
	X
	
	
	
	
	
	

	Bytes
	X
	X
	X
	X
	X
	
	
	
	
	
	

	Decimal
	
	
	
	X
	X
	X
	X
	X
	X
	X
	X

	Integer
	
	
	
	X
	X
	X
	X
	X
	X
	X
	0

	Date
	
	
	
	X
	X
	X
	X
	X
	X
	
	

Table 5.4‑2
5.4.1 Retrieving Facets from a Type
We begin with a schema that defines a faceted type:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.example.com/IPO"

 targetNamespace="http://www.example.com/IPO">

 <xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string">

<xsd:length value="3"/>
 </xsd:restriction>

 </xsd:simpleType>
The schema can be read in using XSDHelper, defining a type from which the facet (in this case, that the type is restricted to strings of length 3) can be retrieved.

helperContext.getXSDHelper().define(…);

Type sku =

 helperContext.getTypeHelper().getType(=http://www.example.com/IPO,"SKU");

Property facetsProperty = helperContext.getTypeHelper(SDO_URI,"facets");

List<DataObject> facets = (List<DataObject>)sku.get(facetsProperty);

assertEquals(1,facets.size());

assertEquals("Length",facets.get(0).getType().getName());
assertEquals(3,facets.get(0).getValue());

6 Standard SDO Types

The predefined SDO Types described in this chapter MUST be available from TypeHelper.getType(TypeHelper.SDO_URI, String typeName). [COR06000001]

6.1 SDO Data Types

The term SDO data type refers to an SDO Type where isDataType() = true. None of the types have any Properties unless noted. All values are false unless noted
.

DataObject methods of the form get<T>(property) where T is type such as int or String are conversions between the implementation type value and the T type as shown in the SDO type conversion table
. The same is true for the set<T>(property, value) methods. When code is generated with accessors of type T, the behavior is identical to the get<T>(property) and set<T>(property) methods.

The SDO Types are applicable across all languages mapped into SDO. When crossing between languages, the DataType mapping is between the SDO Types in each language.

Each DataType has a String representation and can be converted to and from the String representation to its implementation type using get<String>() and set<String>(). An SDO Implementation MUST convert between each of the defined DataTypes and its string representation according to the patterns described in the table
. [COR06010001]

Numeric DataTypes have a precision in terms of a number of bits. For example, 32 bits signed indicates 1 sign bit and 31 value bits, with a range of -2^31 to 2^31-1. The String representation of DateTime, Duration, Time, Day, Month, MonthDay, Year, YearMonth, and YearMonthDay follows the lexical representation defined in XML Schema
for the corresponding data types: dateTime, duration, time, gDay, gMonth, gMonthDay, gYear, gYearMonth, and Date respectively.

List of Strings are converted to a String by inserting a space character between each value. A String is converted to a List of Strings by spliting the String on whitespace boundaries.

	SDO Type

URI = http://docs.oasis-open.org/ns/opencsa/sdo/200911
	Precision
	String Representation

	Boolean
	1 bit
	'true' | 'false' | ‘1’ | ‘0’

	Byte
	8 bits signed
	('+'|'-')? [0-9]+

	Bytes
	
	[0-9A-F]+

	Character
	
	any character

	Date
	
	'-'?yyyy'-'mm'-'dd'T'hh':'mm':'ss('.'s+)? 'Z'?

	DateTime
	
	'-'?yyyy'-'mm'-'dd'T'hh':'mm':'ss('.'s+)? zz?

	Day
	
	'---'dd zz?

	Decimal
	
	('+'|'-')? ([0-9]+ ('.'[0-9]+)?) | ('.'[0-9]+) (('E'|'e') ('+'|'-')? [0-9]+)?

	Duration
	
	'-'?'P'(yyyy'Y')? (mm'M')? (dd'D')?

('T'(hh'H')? (mm'M')? (ss('.'s+)?'S')?)?

	Double
	IEEE-754 64 bits
	Decimal | 'NaN' | '-NaN' | 'Infinity' | '-Infinity'

	Float
	IEEE-754 32 bits
	Decimal | 'NaN' | '-NaN' | 'Infinity' | '-Infinity'

	Int
	32 bits signed
	('+'|'-')? [0-9]+

	Integer
	
	('+'|'-')? [0-9]+

	Long
	64 bits signed
	('+'|'-')? [0-9]+

	Month
	
	'--'mm zz?

	MonthDay
	
	'--'mm'-'dd zz?

	Short
	16 bits signed
	('+'|'-')? [0-9]+

	String
	
	any characters

	Strings
	
	any characters separated by whitespace

	Time
	
	hh':'mm':'ss('.'s+)? zz?

	URI
	
	any characters

	Year
	
	'-'?yyyy zz?

	YearMonth
	
	'-'?yyyy'-'mm zz?

	YearMonthDay
	
	'-'?yyyy'-'mm'-'dd zz?

	UnsignedByte
	8 bits unsigned
	[0-9]+

	UnsignedInt
	32 bits unsigned
	[0-9]+

	InsignedLong
	64 bits unsigned
	[0-9]+

	UnsignedShort
	16 bits unsinged
	[0-9]+

where

· [0-9] any digit, [0-9A-F] any hexadecimal digit.

· '-' single quotes around a literal character, () for higher precedence, | for choice.

· ? occurs zero or one time, * occurs zero or more times, + occurs one or more times.

· Decimal lexical representation is valid for Double and Float.

· yyyy year, mm month, dd day, hh hour, mm minute, ss second, s fractional second

· zz time zone (('+'|'-')hh':'mm)|'Z' where hh time zone hour, mm time zone minute.

· Date accepts the same lexical format as DateTime but normalizes to the Z time zone.

If a value is null and a conversion to (byte, char, double, float, int, long, short) is requested by a DataObject.get<T>() method, 0 is returned. If a value is null and a conversion to boolean is requested by a DataObject.getBoolean() method, false is returned. This

6.1.1 Conversion from SDO type Bytes to SDO type String

An SDO implementation MUST convert Bytes to String by converting each byte into the hexadecimal two-digit equivalent using the characters [0-9A-F]. [COR06010101]The 0 index of the byte array becomes the 0th and 1st index of the String, with subsequent values in order to the right. Null Bytes become null Strings. This representation is compatible with XML Schema hexBinary dataType canonical lexical representation. An example conversion of byte[] = { 10, 100 } becomes the String "0A64".

6.1.2 Conversion from SDO type String to SDO type Bytes

An SDO implementation MUST convert Strings to Bytes by converting each pair of characters from the hexadecimal two-digit equivalent using the characters [0-9A-Fa-f]. [COR06010201] The 0th and 1st index of the String becomes the 0 index of the byte array, with subsequent values in order to the right. Null Strings become null Bytes. This representation is compatible with XML Schema hexBinary dataType lexical representation. An example conversion of the String "0A64" becomes byte[] = { 10, 100 }.

6.1.3 Conversion between Character and String

An SDO implementation MUST convert Character to String by mapping the Character value to a String of length 1, whose first (and only) character is that Character value. [COR06010301] The character with the Unicode codepoint '0' MUST map to the empty String. [COR06010302] Strings with length > 1 can't be converted to Character. Null String can't be converted to Character.

6.2 SDO Abstract Types

It is not possible to instaniate the following types
. They describe metadata for DataObjects, Types, and Properties. Attempts to instantiate any of these
Types MUST raise an error from all create() methods.[COR06020001]

	SDO Abstract Type
URI = http://docs.oasis-open.org/ns/opencsa/sdo/200911
	Comments

	ChangeSummaryType

 abstract=true

 dataType=true
	Not instanciated through the API. An SDO implementation MUST return a ChangeSummary object whenever a property with ChangeSummaryType is accessed. [COR06020002]

	DataObject

 abstract=true

	When the isInstance method on the DataObject type is passed any DataObject, an SDO implementation MUST return true, regardless of the DataObject’s type. [COR06020003]

For single valued properties with type DataObject, an SDO implementation MUST allow the property’s value to be set to any DataObject. [COR06020004] For multivalued properties, an SDO implementation MUST allow any DataObject to be added to the list of values. [COR06020005]

	DataTypeWrapper

	Instances are generated by the implementation when a DataObject is required, but the value is a dataType. See section 4.4.6.

6.3 Standard SDO Types

SDO defines the following standard types

	SDO Type
URI = http://docs.oasis-open.org/ns/opencsa/sdo/200911
	Comments

	OpenSequencedType

 dataType=false

 open=true

 sequenced=true

 mixed=true
	This type is used when loading XML for which no schema or other source of metadata is available. See section 7.11.

	DataGraphType

 dataType=false

 open=true

 property = {

 metamodel: DataObject

 changeSummary; changeSummaryType

 orphans:DataObject

 orphanHolder=true

}
	DataGraphType is a built-in type that can be used for exchanging DataObjects between services

7 XML Schema to SDO Mapping

XML Schema declarations (XSD) are mapped to SDO Types and Properties following the principles outlined below. [Schema1] [Schema2] (The abbreviation XSD is used for both the XML Schema infoset and the XML Schema declarations used to build the infoset.)

This simple yet flexible mapping allows SDO DataObjects to represent XML documents following an XSD. The vast majority of XSD capabilities are mapped and several corner cases are included. XML documents without XSDs are also handled.

Sequenced DataObjects preserve detailed information about the order of XML elements.

This document describes the Mapping Principles, Mapping of XSD Types, Sequenced DataObject, Mapping of XSD elements and Attributes, Mapping of data types and XML document mapping. It also provides Examples.

7.1 Mapping Principles

Creating SDO Types and Properties from XML Schema is important as a great deal of structured information is described by XSDs. The following table provides an overview the mapping.

	XML Schema Concept
	SDO Concept

	Target namespace
	URI for Types

	Simple Type
	Type, dataType=true

SDO data types

	Complex Type
	Type, dataType=false

SDO DataObjects

	Attribute of Complex Type
	Property within enclosing Type

	Global Attribute
	Open content property

	Element of Complex Type
	Property within enclosing Type

	Global Element
	Open content property

The general principles are that:

32. A Schema target namespace describes the URI for a set of Types.

33. SimpleType declarations describe data types, Types where isDataType() is true.

34. ComplexType declarations describe DataObjects, Types where isDataType() is false.

35. Within each ComplexType, the elements and attributes describe Properties in the corresponding enclosing Type.

36. Model groups (all, choice, sequence, group reference) are expanded in place and do not describe Types or Properties. There is no SDO construct corresponding to groups.

37. Open content maps to Type.open. Open element content also maps to Type.sequenced.

38. Mixed content maps to Type.sequenced and uses text entries in the sequence for mixed text.

39. Order of element content maps to Type.sequenced.

40. XSD any and anyAttribute (wildcard) declarations are not required to map to Types or Properties.

41. We do not allow design changes that complicate the simple cases to solve more advanced cases.

42. The mapping input is an annotated XSD using the SDO annotations. The mapping output is SDO Types and Properties.

43. Normally, SDO names are the same as the XSD names. To change the SDO name user can annotate an XSD with sdox:name annotations. In some cases, for example in the case of duplicate component names or anonymous XSD types, the original XSD names cannot be used in SDO. In such cases, an SDO-aware code generator tool will generate new names and virtually add sdox:name annotations to the original XSD
. Then, the tool will use the Annotated Schema to generate SDO. Such tool would be able to serialize the Annotated Schema at user request. Note: an SDO implemention MUST NOT generate names for anonymous types that hide a globally defined type with the same name. [COR07010001]
44. This mapping specifies a minimum. An SDO implementation MAY expand this mapping to perform additional functions as long as the mapping stated here works for all client code.

7.2 Generating static SDOs from an XSD

These principles apply when generating static SDOs from an XSD:

45. SDO does not specify any name mangling but enables and sometimes requires name overrides through annotations.

46. If the normal generation of source code from an XSD would result in conflicting names, the XSD declaration would need to contain annotations to override the default name.

47. XSD allows for anonymous types to be defined within an enclosing definition. When generating a static SDO in an implementation language that supports a concept of locally scoped types (such as Java's inner classes or C++'s nested classes), then the anonymous type is scoped to the smallest available enclosing structure. For instance, in Java, the anonymous type is by default an inner class within the class that represents the containing type (see the [SDOJava] for details). To achieve global visibility or cross language consistency when generating static SDOs from an anonymous type, annotations are required to specify the name of the static SDO.

48. Implementations MAY provide behavior (in a product-specific fashion) equivalent to annotations to automatically solve such problems as duplicate names. This is logically equivalent to the implementation creating an Annotated Schema (AS) and then creating SDO metadata from the Annotated Schema. An implementation that provides this behavior should also provide a means to generate the AS. The generated AS should be annotated so that another implementation can define SDO Types and Properties from the generated schema without further name mangling. Having such an annotated schema ensures portability of Types and Properties (and generated code) across all implementations.

7.3 Mapping from XSD to SDO Types

The tables in this section and in section 7.4: Mapping of XSD Attributes and Elements to SDO Properties, define the default mapping of XSD to SDO constructs, which MUST be implemented by all SDO implementations. [COR07030001] There are a number of customizations that can be used to modify the constructed SDO metamodel.

These customizations are expressed as attributes in the SDO namespace for XML, "http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911"

49. name - sets the SDO name to the name specified. Applies to Type and Property. Used in ComplexType, SimpleType, element, and attribute declarations. The XSD type of the annotation is string.

50. propertyType - sets the Property's Type as specified by the QName value. Applies to Property. Used in element and attribute declarations where Property.type.dataType is false. The XSD type be
 IDREF, IDREFS, anyURI or the keyType associated with the property. The XSD type controls how the non-containment relationship is rendered in XML, e.g., during XMLHelper.save(): when the specified property type has a key type, then the key is rendered, otherwise, the XPath is rendered (see the ChangeSummary XML format described in 10: ChangeSummary XML format. The XSD type of the annotation is QName.

51. oppositeProperty - sets the Property opposite to be the property with the given name within the Type specified by propertyType. Applies to Property, making the property bidirectional. Used in element and attribute declarations where Property.type.dataType is false. Requires sdox:propertyType on the property. Automatically creates the opposite property if one or both ends are specified in the XSD, with opposites bidirectional. The XSD type of the annotation is string.

52. sequence – overrides the value of Type.sequenced. Applies to Type. Used in ComplexType declarations. A Sequenced Type has a Sequence for all XML Elements. The default is false. If schema extension is used and the value is “true”, the base complexType is required to also be marked sequence="true". The XSD type of the annotation is boolean.

53. string="true" - sets the SDO Type to String for XSD SimpleTypes as a means to override the instance class when it is desired to preserve the exact values.. Applies to Property. Used in element and attribute declarations. Same as sdox:dataType="sdo:String". The XSD type of the annotation is boolean.

54. dataType - sets the Property's type as specified by the QName value as a means to override the declared type. Applies to XML attributes and elements with simple content. Used in element and attribute declarations. The XSD type of the annotation is QName.

55. aliasName - add alias names to the SDO Type or Property. The format is a list of names separated by whitespace, each becoming an aliasName. Applies to Type and Property. The XSD type of the annotation is string.

56. readOnly - indicate the value of Property.readOnly. The format is boolean with default false. Applies to Property. Used in element and attribute declarations. The XSD type of the annotation is boolean.

57. many - sets the value of Property.isMany to the specified boolean value. Typically used on element declarations that appear inside a repeating model group declaration (<sequence>, <choice>, or <all> with maxOccurs > 1) to override the default isMany value (true) that would otherwise be assigned to the property. XSD generation MUST include this attribute on any element serialized inside a repeating model group, where the corresponding property has Property.isMany = false. [COR07030002]
58. orphanHolder – used on an element declaration to indicate that the element should not map to an ordinary SDO Property, but instead used as a holder for orphan objects during XML serialization as described in 4.11.8 Orphan Serialization
, Orphan holder properties MUST NOT be not visible in Type.getProperties() or DataObject.getInstanceProperties(). [COR07030003] The contents of the orphans property cannot be accessed using getters or setters.
59. key – used on an element or attribute declaration to indicate that it is a key property. The key annotation can be used only on elements with maxOccurs="1" and whose type is either simple, or a complex type that itself defines keys (or embedded key components). When types are defined through XSD, an attribute with type “xsd:ID” also has the same effect as this attribute, i.e., it generates a string-typed key property.
60. keyType – used on a complex type to indicate the keyType of the corresponding SDO Type. A type with this annotation is required to declare one or more of its elements or attributes to be key properties. The value of this property is required be the QName of a type such that for every key property, or property of an embedded key, the key type contains a corresponding property.
61. embeddedKey – used on an element declaration with a complex type to denote that the element is a composite key. It is equivalent to setting key to true and also setting keyType on the containing type to the element’s type. The embeddedKey annotation cannot be used in combination with the key or keyType annotations.
In all tables, SDO Type and Property values that are not shown default to false or null, as appropriate. [URI] is the targetNamespace. Use sdo:name to override the names as desired.

7.3.1 XML Schemas

	XML Schemas
	SDO Package

	Schema with targetNamespace

<schema targetNamespace=[URI]>

	[URI] is (non-null) type.uri for the types defined by this Schema.

	Schema without targetNamespace

<schema>

	[URI] is null. Null is type.uri for the types defined by this Schema.

7.3.2 XML Simple Types

XML simple types map directly to SDO types.

The mapping of XML Schema built-in simple types is defined in section 7.5. When deriving Simple Types by restriction, the base Type for the SDO Type MUST be the SDO Type thap maps to the XSD SimpleType restriction base. [COR07030201]
When the XSD type is integer, positiveInteger, negativeInteger, nonPositiveInteger, nonNegativeInteger, long, or unsignedLong, and there are facets (minInclusive, maxInclusive, minExclusive, maxExclusive, totalDigits or enumeration) constraining the range to be within the range of int, then implementation type MUST be int. [COR07030202].
	XML Simple Types
	SDO Type

	Simple Type with name

<simpleType name=[NAME]>

 <restriction base=[BASE]/>

</simpleType>
	Type name=[NAME]

 base=[BASE]

 dataType=true

 uri=[URI]

	Simple Type Anonymous

<... name=[NAME] ...>

<simpleType>

 <restriction base=[BASE]/>

</simpleType>

</...>
[NAME]=given by an automated annotation utility (see 7.1:Mapping Principles, point 12)
	Type name=[NAME]

 base=[BASE]

 dataType=true

 uri=[URI]

Note: It is recommended that the type be accessed using property.getType() on the corresponding property, rather than directly by name

	Simple Type with sdox:name

<simpleType name=[NAME]

 sdox:name=[SDO_NAME]>

 <restriction base=[BASE]/>

</simpleType>
	Type name=[SDO_NAME]

 base=[BASE]

 dataType=true

 uri=[URI]

	Simple Type with list of itemTypes

<simpleType name=[NAME]>

 <list itemType=[BASE] />

</simpleType>
	Type name=[NAME]

 dataType=true

 uri=[URI]

	Simple Type with union

<simpleType name=[NAME]>

 <union memberTypes=[TYPES]/>

</simpleType>
	Type name=[NAME]

 dataType=true

 uri=[URI]

7.3.3 XML Complex Types

	XML Complex Types
	SDO Type

	Complex Type with empty content

<complexType name=[NAME] />
	Type name=[NAME]

 uri=[URI]

No Properties.

	Complex Type with content

<complexType name=[NAME] />
	Type name=[NAME]

 uri=[URI]
Properties for each element and attribute.

	Complex Type Anonymous

<... name=[NAME] ...>

 <complexType />

</...>

[NAME]=given by an automated annotation utility (7.1:Mapping Principles, point 12)
	Type name=[NAME]

 uri=[URI]

Note: It is recommended that the type be accessed using property.getType() on the corresponding property, rather than directly by name

	Complex Type with sdox:name

<complexType name=[NAME]

 sdox:name=[SDO_NAME] />
	Type name=[SDO_NAME]

 uri=[URI]

	Complex Type with abstract

<complexType name=[NAME}

 abstract="true">
	Type name=[NAME]

 abstract=true

 uri=[URI]

	Complex Type with sdox:aliasName

<complexType name=[NAME]

 sdox:aliasName=[ALIAS_NAME] />
	Type name=[NAME]

 aliasName=[ALIAS_NAME]

 uri=[URI]

	Complex Type extending a Complex Type

<complexType name=[NAME]>

 <complexContent>

 <extension base=[BASE]/>

 </complexContent>

</complexType>
or

<complexType name=[NAME]>

 <simpleContent>

 <extension base=[BASE]/>

 </simpleContent>

</complexType>
	Type name=[NAME]

 base=[BASE]

 uri=[URI]

 properties+=[BASE].properties

Type.getProperties() maintains the order of [BASE].getProperties() and appends the Properties defined here.

	Complex Type with complex content restricting a Complex Type

<complexType name=[NAME]>

 <complexContent>

 <restriction base=[BASE]/>

 </complexContent>

</complexType>
	Type name=[NAME]

 Properties+=[BASE].properties

 base=[BASE]

 uri=[URI]

Type.getProperties() maintains the order of [BASE].getProperties() and appends the Properties defined here.

When element and attribute declarations are in both the base type and the restricted type, no additional Properties are created and declarations inside the complex type are ignored.

When new element or attribute declarations are added in the restricted type that are not in the base type and restrict wildcard <any> and <anyAttribute> in the base, the element and attribute declarations are added as new Properties.

	Complex Type with simple content restricting a Complex Type

<complexType name=[NAME]>

 <simpleContent>

 <restriction base=[BASE]/>

 </simpleContent>

</complexType>
	Type name=[NAME]

 base=[BASE]

 uri=[URI]

properties+=[BASE].properties
Type.getProperties() maintains the order of [BASE].getProperties() and appends the Properties defined here.

	Complex Type with mixed content

<complexType name=[NAME]

 mixed="true" />

	Type name=[NAME]

 sequenced=true

 uri=[URI]

DataObject.getSequence() is used to access the mixed text values.

	Complex Type with sdox:sequence

<complexType name=[NAME]

 sdox:sequence="true" />

	Type name=[NAME]

 sequenced=true

 uri=[URI]

	Complex Type extending a SimpleType

<complexType name=[NAME]>

 <simpleContent>

 <extension base=[BASE]/>

 </simpleContent>

</complexType>
	Type name=[NAME]

 uri=[URI]

 Property:

 name="value" type=[BASE]

Properties are created for attribute declarations.

	Complex Type with open content

<complexType name=[NAME]>

 ...

 <any />

 ...

</complexType>
	Type name=[NAME]

 open=true

 sequenced=true

 uri=[URI]]

No property required for <any>.

Use getInstanceProperties() for reflection.

It is possible to use DataObject accessors to access the value.

	Complex Type with open attributes

<complexType name=[NAME]>

 ...

 <anyAttribute />

 ...

</complexType>
	Type name=[NAME]

 open=true

 uri=[URI]

No property required for <anyAttribute>.

Use getInstanceProperties() for reflection.

It is possible to use DataObject accessors to access the value.

7.4 Mapping of XSD Attributes and Elements to SDO Properties

Each XSD element or attribute maps to an SDO property.

The Property.containingType is the SDO Type for the enclosing ComplexType declaration.

The order of Properties in Type.getDeclaredProperties() MUST be in the order of declarations as they appear in the XML Schema ComplexType. [COR07040001] When extension is used, the groups of declared Properties of the base type MUST occur first, recursively, in the Type.getProperties() list. [CIR07040002]
If the local names of the elements and attributes of a complex type, including its base types, are not unique, then it is avisable to assign the SDO name of the generated property using sdox:name. This ensures that all property names in Type.getProperties() are unique. See Chapter 9: SDO Path Expression for DataObjects for using SDO path syntax to distinguish attributes and elements in cases where sdox:name cannot be applied. Multiple elements with the same name and URI are combined into a single Property and the Type is sequenced, as described in 7.4.2: Mapping of XSD Elements.

When creating a Property where the default or fixed value is defined by the XSD, the Property's default is assigned based on the XSD default. If there is no default in the XSD, then the Property’s default is null.

Note that XSD anyType is a ComplexType and XSD anySimpleType is a SimpleType. They follow the normal mapping rules.

7.4.1 Mapping of XSD Attributes

	XML Attribute
	SDO Property

	Attribute

<attribute name=[NAME]

 type=[TYPE] />
	Property name=[NAME]

 type=[TYPE]

DataObject accessors MAY enforce simple type constraints.

	Attribute with sdox:name

<attribute name=[NAME]

 sdox:name=[SDO_NAME]

 type=[TYPE] />
	Property name=[SDO_NAME]

 type=[TYPE]

	Attribute with sdox:aliasName

<attribute name=[NAME]

 sdox:aliasName=[ALIAS_NAME]

 type=[TYPE] />
	Property name=[NAME]

 aliasName=[ALIAS_NAME]

 type=[TYPE]

	Attribute with default value

<attribute name=[NAME]

 type=[TYPE]

 default=[DEFAULT] />
	Property name=[NAME]

 type=[TYPE]

 default=[DEFAULT]

	Attribute with fixed value

<attribute name=[NAME]

 type=[TYPE]

 fixed=[FIXED] />
	Property name=[NAME]

 type=[TYPE]

 default=[FIXED]

	Attribute reference

<attribute ref=[ATTRIBUTE] />
	Property name=[ATTRIBUTE].[NAME]

 type=[ATTRIBUTE].[TYPE]

 default=[ATTRIBUTE].[DEFAULT]
Use the XSDHelper to determine the URI of the attribute if the referenced attribute is in another namespace.

	Attribute with type ID

<attribute name=[NAME]

 type=ID />

	Property name=[NAME]

 type= String

 sdo:key = true

	Attribute with sdox:string

<attribute name=[NAME]

 type=[TYPE]

 sdox:string="true" />
	Property name=[NAME]

 type=String

The type of the property is SDO String

Used when the instance class for TYPE is not appropriate.

	Attribute referencing a DataObject with sdox:propertyType

<attribute name=[NAME]

 type=[TYPE]

 sdox:propertyType=[P_TYPE] />
where [TYPE] = IDREF, IDREFS, the KeyType associated with P_TYPE, anyURI or restrictions of these types.
	Property name=[NAME]

 type=[P_TYPE]

 many=true (for IDREFS only)

 containment=false

	Attribute with bidirectional property to a DataObject with sdox:oppositeProperty and sdox:propertyType

<attribute name=[NAME]

 type=[TYPE]

 sdox:propertyType=[P_TYPE]

 sdox:oppositeProperty=[PROPERTY] />

where:

[TYPE] = IDREF, IDREFS, anyURI, the KeyType assocated with P_TYPE or restrictions of these types.
	Property name=[NAME]

 type=[P_TYPE]

 opposite=[PROPERTY]

 many=true (for IDREFS only)

 containment=false
Declared on:

Type [P_TYPE]:

Property name=[PROPERTY]

 type=[NAME].containingType

 opposite=[NAME]

 containingType=[P_TYPE]

	Attribute with sdox:dataType

<attribute name=[NAME]

 type=[TYPE]

 sdox:dataType=[SDO_TYPE] />
	Property name=[NAME]

 type=[SDO_TYPE]

The type of the property is the SDO type for [SDO_TYPE]

Used when the instance class for TYPE is not appropriate.

	XML Global Elements and Attributes
	SDO Property

	Global Element
<element name=[NAME] />
	Same as local element declaration except the containing Type is not specified by SDO other than the Type's URI is the XSD target namespace and that many=”true”.

	Global Attribute
<attribute name=[NAME] />
	Same as local attribute declaration except the containing Type is not specified by SDO other than the Type's URI is the XSD target namespace.

7.4.2 Mapping of XSD Elements

If a ComplexType has content with two elements that have the same local name and the same targetNamespace, whether through declaration, extension, substitution, groups, or other means, the duplication MUST BE handled as follows [COR07040201]:

· The ComplexType becomes a sequenced type, as if sdox:sequence="true" was declared.

· A single property is used for all the elements with the same local name and the same targetNamespace. If the content model allows more than 1 instance of the element, then isMany=true. If, however, the elements are mutually exclusive (for example, they are single valued and on two sides of a xsd:choice group), then isMany=false.

· If schema extension is used, the base type MAY be modified with sdox:sequence="true". Elements with name conflicts introduced in extensions require that the property in the extended base type MUST BE made many=true. [COR07040202]
	XML Elements
	SDO Property

	Element

<element name=[NAME] />
	Property name=[NAME]

	Element with sdox:name

<element name=[NAME]

 sdox:name=[SDO_NAME] />
	Property name=[SDO_NAME]

	Element with sdox:aliasName

<element name=[NAME]

 sdox:aliasName=[ALIAS_NAME]

 type=[TYPE] />
	Property name=[NAME]

 aliasName=[ALIAS_NAME]

 type=[TYPE]

	Element reference

<element ref=[ELEMENT] />
	Property name=[ELEMENT].[NAME]

 type=[ELEMENT].[TYPE]

 default=[ELEMENT].[DEFAULT]

Use the XSDHelper to determine the URI of the element if the referenced element is in another namespace.

	Element with maxOccurs > 1

<element name=[NAME]

 maxOccurs=[MAX] />

where [MAX] > 1
	Property name=[NAME]

 many=true

	Element in all, choice, or sequence

<[GROUP] maxOccurs=[G_MAX]>

 <element name=[NAME]

 type=[TYPE]

 maxOccurs=[E_MAX] />

</[GROUP] >

where

 [GROUP] = all, choice, sequence

Element groups and model groups are treated as if they were expanded in place.

Nested [GROUP]s are expanded.
	Property name=[NAME]

 type=[TYPE]

 many=true

A property is created for every element

many=true when E_MAX or G_MAX is > 1

sequenced=true if the content allows elements to be interleaved. (for example <A/><A/>)

sequenced=true if G_MAX > 1 and there is more than one element in this group or a contained group.

Sequenced=true if GROUP is <all> and there is more than one element in this group.

Property declarations are the same whether GROUP is <all> or <choice> or <sequence>

Property behavior ignores group declarations.

Validation of DataObjects for the group constraints is external to the DataObject interface.

	Element with nillable

<element name=[NAME]

 nillable="true" type=[TYPE]/>
	Property name=[NAME]

 type=[TYPE]

 nullable=true

Some language bindings define and allow the definition of SDO types that do not support null values. For instance, the Java language binding defines the “int” type as not allowing null values. When such a type is used in a nillable property, an SDO implementation MUST generate the meta-model such that the property is nullable. [COR…] The metadata associated with the type will be implementation dependent.

	Element with substitution group

<element name=[BASE_NAME] type=[BASE_TYPE]/>

<element name=[CONCRETE_NAME]

 type=[CONCRETE_TYPE]

 substitutionGroup=[BASE_NAME] />

<complexType name=[TYPE]>

 <element ref=[BASE_NAME]/>

</complexType>
	Property name=[BASE_NAME]

 type=[BASE_TYPE]

Implementations MUST interpret instance documents containing a [CONCRETE_NAME] tag as part of a type [TYPE] element as setting (or adding, in the case of multi-valued properties) the value of property [BASE_NAME]. [COR07040203] The effect is equivalent to using xsi:type together with the [BASE_NAME].
When marshalling a DataObject to XML, an SDO implementation MUST use the [CONCRETE_NAME] that provides the best match to the DataObject’s type. [COR07040204] In the case where more than one “best” match is found, the selection of which name is used will be implementation dependent. Specifically, there is no requirement that the [CONCRETE_NAME] from the input document used to generate the DataObject round trip when the object is again marshaled to XML.

Elements of Complex Type follow this table, in addition.

	XML Elements with Complex Type
	SDO Property

	<element name=[NAME]

 type=[TYPE] />
	Property name=[NAME]

 type=[TYPE]

 containment=true

	Element referencing a DataObject with sdox:propertyType

<attribute name=[NAME]

 type=[TYPE]

 sdox:propertyType=[P_TYPE] />
where [TYPE] = the (compound) KeyType associated with P_TYPE.
	Property name=[NAME]

 type=[P_TYPE]

 many=true (for IDREFS only)

 containment=false

Elements of Simple Type follow this table, in addition.

	XML Elements with Simple Type
	SDO Property

	Element of SimpleType

<element name=[NAME]

 type=[TYPE] />
	Property name=[NAME]

 type=[TYPE]

DataObject accessors MAY enforce simple type constraints.

	Element of SimpleType with default

<element name=[NAME]

 type=[TYPE]

 default=[DEFAULT] />
	Property name=[NAME]

 type=[TYPE]

 default=[DEFAULT]

	Element of SimpleType with fixed

<element name=[NAME]

 type=[TYPE]

 fixed=[FIXED] />
	Property name=[NAME]

 type=[TYPE]

 default=[FIXED]

	Element of SimpleType with sdox:string

<element name=[NAME]

 type=[TYPE]

 sdox:string="true" />
	Property name=[NAME]

 type=String

The type of the property is SDO String

Used when the instance class for TYPE is not appropriate.

	Element referencing a DataObject with sdox:propertyType

<element name=[NAME]

 type=[TYPE]

 sdox:propertyType=[P_TYPE] />
where [TYPE] = IDREF, IDREFS, anyURI the KeyType associated with P_TYPE or restrictions of these types
	Property name=[NAME]

 type=[P_TYPE]

 many=true (for IDREFS only)

 containment = false

	Element with bidirectional

reference to a DataObject with sdox:propertyType and sdox:oppositeProperty

<element name=[NAME]

 type=[TYPE]

 sdox:propertyType=[P_TYPE]

 sdox:oppositeProperty=[PROPERTY] />

where [TYPE] = IDREF, IDREFS, anyURI, the KeyType associated with P_TYPE or restrictions of these types
	Property name=[NAME]

 opposite=[PROPERTY]

 type=[P_TYPE]

 many=true (for IDREFS only)

Declared on Type PR_TYPE]:

Property name=[PROPERTY]

 type=[NAME].containingType

 opposite=[NAME]

 containingType=[P_TYPE]

	Element of SimpleType with sdox:dataType

<element name=[NAME]

 type=[TYPE]

 sdox:dataType=[SDO_TYPE] />
	Property name=[NAME]

 type=[SDO_TYPE]

The type of the property is the SDO type for [SDO_TYPE]

Used when the instance class for TYPE is not appropriate.

	XML Schema Element

special types
	SDO Property

	Element with type SDO ChangeSummaryType

<element name=[NAME]

 type="sdo:ChangeSummaryType"/>

	Property name=[NAME]

 type=ChangeSummaryType

 readOnly=true

7.5 Mapping of XSD Built in Data Types

SDO specifies a basic mappings from XSD to SDO Types. Some language specific specifications provide additional and/or alternate mappings. For instance, the Java specification allows xs:int to map to either sdo:int or the Java specific sdo:intObject type. See the language specific specifications for details.

The URI of the SDO Types is http://docs.oasis-open.org/ns/opencsa/sdo/200911. An SDO implementation MUST read simple values whose type cannot be determined the value is read as a String. [COR07050001]. Note that in cases where the schema does not provide the necessary information, xsi:type can be specified in the document.

	XSD Simple Type
	SDO Type

	anySimpleType
	Object

	anyType
	DataObject

	anyURI
	URI (override with sdox:propertyType)

	base64Binary
	Bytes

	boolean
	Boolean

	byte
	Byte

	date
	YearMonthDay

	dateTime
	DateTime

	decimal
	Decimal

	double
	Double

	duration
	Duration

	ENTITIES
	Strings

	ENTITY
	String

	float
	Float

	gDay
	Day

	gMonth
	Month

	gMonthDay
	MonthDay

	gYear
	Year

	gYearMonth
	YearMonth

	hexBinary
	Bytes

	ID
	String (signifies the field is a sdo:key field)

	IDREF
	String (override with sdox: propertyType)

	IDREFS
	Strings (override with sdox: propertyType)

	int
	Int

	integer
	Integer

	language
	String

	long
	Long

	Name
	String

	NCName
	String

	negativeInteger
	Integer

	NMTOKEN
	String

	NMTOKENS
	Strings

	nonNegativeInteger
	Integer

	nonPositiveInteger
	Integer

	normalizedString
	String

	NOTATION
	String

	positiveInteger
	Integer

	QName
	URI

	short
	Short

	string
	String

	time
	Time

	token
	String

	unsignedByte
	UnsignedByte

	unsignedInt
	UnsignedInt

	unsignedLong
	UnsignedLong

	unsignedShort
	UnsignedShort

7.5.1 Conversion between XSD QName and SDO URI

When an XML document is loaded, a value of type xsd:QName, an SDO implementation MUST convert it into an SDO URI with a value of:

namespace name + # + local part

where + indicates string concatenation. [COR07050101]

When an XML document is saved, a value of type SDO can be converted back to an xsd:QName, if that is the expected XML type:

The URI value is parsed into two parts:

· The namespace name is the URI up to but not including the last # character in the URI value.

· The local part is the URI after the last # character in the URI value.

An XML namespace declaration for a namespace prefix is made in the XML document. The declaration MAY be made at any enclosing point in the document in an implementation-dependent manner or an existing declaration MAY be reused.

The declaration is of the form xmlns:prefix="namespace name".

The prefix is implementation-dependent.

The QName value is of the form prefix:local part.

Example:

Message is a property of XSD type QName and SDO type URI

Load: <input message="tns:inputRequest" name="inputMessage" xmlns:tns="http://www.example.com" />

inputDataObject.get (String.class, message) returns http://www.example.com#inputRequest

inputDataObject.set(String,class, message, "http://test.org#testMessage")

Save: <input message="tns:testMessage" name="inputMessage" xmlns:tns="http://test.org" />

7.5.2 Dates

Considering the importance of Date information, it is unfortunate that there are few good software standards for handling this information.

SDO chose strings as the default implementation type for Date types because they are the simplest implementation to sufficient to enable technology-independent scenarios. The string representations are from XML Schema and easy to convert to other representations.

Operating on Date values, such as applying calendar, time zone, order, duration, and locale settings, is best left to helper and utility libraries. In the case where a string representation is insufficient, sdo:dataType can be used to override the datatype to a custom type

7.6 Examples of XSD to SDO Mapping

	XSD
	SDO

	Schema declaration

<schema targetNamespace= "http://www.example.com/IPO">
	uri="http://www.example.com/IPO"

	Global Element with Complex Type

<element name="purchaseOrder" type="PurchaseOrderType"/>
	Property name="purchaseOrder" type="PurchaseOrderType" containment=true

	Global Element with Simple Type

<element name="comment" type="xsd:string"/>
	Property name="comment" type="sdo:String"

	Complex Type

<complexType name="PurchaseOrderType">
	Type name="PurchaseOrderType" uri="http://www.example.com/IPO"

	Simple Type

<simpleType sdox:name="QuantityType">

 <restriction base="positiveInteger">

 <maxExclusive value="100"/>

 </restriction>

</simpleType>

<simpleType name="SKU">

 <restriction base="string">

 <pattern value="\d{3}-[A-Z]{2}"/>

 </restriction>

 </simpleType>
	Type name="QuantityType"

dataType=true

instanceClass="int"

uri="http://www.example.com/IPO"

Type name="SKU"

dataType=true

uri="http://www.example.com/IPO"

base="sdo:String"

	Local Element with Complex Type

<element name="shipTo" type="ipo:Address"/>

<element name="billTo" type="ipo:Address"/>

<element name="items" type="ipo:Items"/>
	Property name="shipTo" type="Address" containment=true containingType="PurchaseOrderType"

Property name="billTo" type="Address" containment=true containingType="PurchaseOrderType"

Property name="items" type="Items" containment=true containingType="PurchaseOrderType"

	Local Element with Simple Type

<element ref="ipo:comment" minOccurs="0"/>

<element name="productName" type="string"/>
	Property name="comment" type="String" containingType="PurchaseOrderType"

Property name="productName" type="String" containingType="Items"

	Local Attribute

<attribute name="orderDate" type="date"/>

<attribute name="partNum" type="ipo:SKU" use="required"/>
	Property name="orderDate" type="YearMonthDay" containingType="PurchaseOrderType"

Property name="partNum" type="SKU" containingType="ItemType"

	Type extension

<complexType name="USAddress">

 <complexContent>

 <extension base="ipo:Address">

	Type name="USAddress" uri="http://www.example.com/IPO"

 base="ipo:Address"

	Local Attribute fixed value declaration

<attribute name="country" type="NMTOKEN" fixed="US"/>
	Property name="country" type="String" default="US" containingType="USAddress"

	Multi-valued local element declaration

<element name="item" minOccurs="0" maxOccurs="unbounded">

 <complexType sdox:name="ItemType"/>

</element>

	Property name="item" type="ItemType" containment=true many=true containingType="Items"

Type name="ItemType" uri="http://www.example.com/IPO"

	Attribute reference declarations

<attribute name="customer" type="IDREF" sdox:propertyType="cust:Customer" sdox:oppositeProperty="purchaseOrder" />

<attribute name="customer" type="anyURI" sdox:propertyType="cust:Customer"/>

<attribute ref="xlink:href" sdox:propertyType="cust:Customer" sdox:name="customer" />
	Property name="customer" type="Customer" opposite="Type[name='Customer']/ property[name='purchaseOrder']"

 containingType="PurchaseOrderType"
Declared in the Customer type:

Property name="purchaseOrder" type="PurchaseOrderType"

 opposite="Type[name='PurchaseOrderType']/ property[name='customer']"

 containingType="Customer"

Property name="customer" type="Customer" containingType="PurchaseOrderType"

Property name="customer" type="Customer" containingType="PurchaseOrderType"

	Local Attribute ID declaration

<attribute name="primaryKey" type="ID"/>
	Property name="primaryKey" type="String" containingType="Customer"

	Local Attribute default value declaration

<attribute name="country" type="xsd:NMTOKEN" default="US"/>
	Property name="country" type="String" default="US" containingType="USAddress"

	Abstract ComplexTypes

<complexType name="Vehicle" abstract="true"/>
	Type name="Vehicle"

 abstract=true uri="http://www.example.com/IPO"

	SimpleType unions

<simpleType name="zipUnion">

<union memberTypes="USState

 listOfMyIntType"/>

</simpleType>
	Type SDO Object is used as the Type for every Property resulting from elements and attributes with SimpleType zipUnion.

 Notes:

62. Examples are from, or based on, IPO.xsd in http://www.w3.org/TR/xmlschema-0/

63. Type[name='Customer']/property[name='purchaseOrder'] refers to the declaration of the purchaseOrder Property in the Type Customer in the same document.

7.6.1 Example of SDO Annotations

This example shows the use of sdox:string and sdox:dataType.

<schema targetNamespace="http://www.example.com/IPO"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:ipo="http://www.example.com/IPO"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911"

 xmlns:sdox=”http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911”>

 <complexType name="PurchaseOrderType" >

 <sequence>

 <element name="shipTo" type="ipo:Address"/>

 <element name="billTo" type="ipo:Address"/>

 <element ref="ipo:comment" minOccurs="0"/>

 <element name="items" type="ipo:Items"/>

 </sequence>

 <attribute name="orderDate"

 type="date" sdox:dataType="ipo:MyGregorianDate"/>

 </complexType>

 <complexType name="Items">

 <sequence>

 <element name="item" minOccurs="0" maxOccurs="unbounded">

 <complexType sdox:name="Item">

 <sequence>

 <element name="productName" type="string"/>

 <element name="quantity" sdox:dataType="sdo:Int">

 <simpleType>

 <restriction base="positiveInteger">

 <maxExclusive value="100"/>

 </restriction>

 </simpleType>

 </element>

 <element name="USPrice" type="decimal"/>

 <element ref="ipo:comment"

 minOccurs="0" sdox:aliasName="itemComment"/>

 <element name="shipDate"

 type="date" minOccurs="0" sdox:string="true"/>

 </sequence>

 <attribute name="partNum" type="ipo:SKU" use="required"/>

 </complexType>

 </element>

 </sequence>

 </complexType>

 <simpleType name="MyGregorianDate"

 <restriction base="dateTime"/>

 </simpleType>

 <simpleType name="SKU">

 <restriction base="string">

 <pattern value="\d{3}-[A-Z]{2}"/>

 </restriction>

 </simpleType>

</schema>

7.7 XML use of Sequenced Data Objects

Sequenced Data Objects are DataObjects with a sequence capturing the additional XML order information, defining an order of values across all DataObject’s instance properties.

Sequenced DataObjects have Type.sequenced=true. The XSD to SDO mapping in sections 7.3 and 7.4 define when a complex type in schema is mapped to a sequenced type in SDO. The default value may be overridden using the sdox:sequence attribute in the XSD type.

Sequenced DataObject have a Sequence that can be accessed using the DataObject.getSequence() method. This method returns a Sequence of all the elements and mixed text in the content of an XML element. Each entry in the Sequence represents either one XML element designated by the entry's Property, or XML mixed text, designated by a null Property. The name of the property is the same as the name of the XML element unless sdox:name was used to replace the name.

The values of the entries are available through both the Sequence API and the DataObject API for the Properties.

DataObject.getInstanceProperties() includes all the Properties in the Sequence. For open content, where XML any declarations were used, the Properties of some entries might not be declared in the DataObject's Type. The order of the entries in the Sequence MUST BE the same as the order of XML elements. [COR07070001]
7.8 XSD Mapping Details
An implementation of SDO MUST follow these rules when mapping XSD to SDO:

64. The order of the Properties declared within a Type is the order of their declaration in an XSD. All Properties of the Type extended precede local declarations within the Type.

65. The XSD names are preserved in the Type and Property. Use the sdox:name override to modify names as an option to remove duplicate names, blank names, or names with special characters.

66. All declarations not covered in this Mapping MAY be ignored by a compliant implementation.

67. All <group> references, <attributeGroup> references, <include>s, and <import>s are fully expanded to the equivalent XSD as if these declarations were not present.

68. <choice> declarations for Complex Content are treated as <sequence> for the purpose of declaring Properties.

69. All comments, processing instructions, and annotations other than appinfo are discarded to the equivalent XSD as if these declarations were not present. Access to appinfo information, if present, is mandatory.

70. Redefinitions are expanded to the equivalent XSD as if these declarations were not present.

71. Model Groups (sequence, all, choice, group) do not contribute to the mapping except for maxOccurs>1 results in Properties with many=true.

72. Global group and attribute group declarations that include type declarations follow the normal mapping rules for those type declarations. The same types are used in all places the groups are referenced.

73. When an element of anyType is used with xsi:type specifying simple content, a wrapper DataObject (see Data Type Wrappers) is created with a property named "value" and type of SDO Object that is set to the wrapped type. For example, <element name="e" type="anyType"> and a document <e xsi:type="xsd:int">5</e> results in a wrapper DataObject where the value property is set to the Integer with value 5.

[COR07080001]

7.9 Compliance

The mappings here are the base mappings. Vendors MAY extend the mappings provided that client programs developed against these mappings continue to run. [COR07090001] An SDO program using this mapping, and the DataObject, should be portable across vendor-added mappings and implementations.

7.10 Corner cases

This specification does not standardize the mapping for corner cases. We follow the principle that complexity is never added to the simple cases to handle these more advanced cases. It is possible that future versions of SDO will define mappings for these corner cases.

74. List of lists without unions.

75. Multi-valued nillable Properties with DataObject Types.

76. key and keyref.

77. In some cases it is not possible to maintain an SDO base relationship when one exists in schema. This can happen for example when complex types extend simple types or when sdoj:instanceClass is specified.

78. Elements that occur more than once and have the schema type IDREFS but an SDO type defined through sdox:propertyType will not be able to distinguish between consecutive elements in an XML document and one element with all the values in a single element. If there are interleaving elements, it is required that sequence be true in order to distinguish the order between elements. XML Schema recommends against the use of elements with type IDREF or IDREFS.

79. Anonymous type declarations in global group declarations, which are not a recommended schema design practice.

7.11 XML without Schema to SDO Type and Property

When no meta information is available during the parsing of a document, that is, the document does not have a schema and the properties and types in the document are not otherwise known to the SDO application, the document contents are converted to SDO DataObjects using the algorithm:

80. To represent the rootObject of the document, an SDO implementation MUST BE an instance of OpenSequncedType. [COR07110001] See section 6.3 for details of the OpenSequncedType.
81. If an attribute or element contains a URI, the implementation MUST attempt to locate the property definition as if by calling XSDHelper.getGlobalProperty() using the specified URI and property name. [COR07110002]

82. Attributes for which no meta-information is available MUST be interpreted as open content String properties, where the name of the property is the local name of the attribute. [COR07110003]
83. Elements for which no meta-information is available MUST be interpreted as open content properties, where the name of the property is the local name of the element and the property MUST have containment=true. [COR07110004]
84. If multiple instance of the same element occur within a containing element instance, the open content property corresponding to the element MUST have isMany=true, otherwise an implementation MAY
create the property with isMany=false. [COR07110005]
85. The type of the created property will not necessarily be identical to the type of the value read from an element, since, in the case of multi-valued properties it is possible that the types of the elements do not agree. If an element contains an xsi:type attribute, the value MUST be used to determine the type of the value. If no xsi:type attribute is present and the content is simple, then the value's type will be implementation dependent. If the content is complex, the value MUST be interpreted as an instance of OpenSequncedType; an implementation MUST provide a single Type to handle all such cases. Implementations MAY use wrapper objects (see 7.10: Corner Cases, point 4) to contain simple values. [COR07110006]
86. An implementation MUST define the property type such that all the values of the property conform, and the type information is available. If the property is single valued, or if the type of all elements in a multi-valued property agree, an implementation MAY create the property of the value type itself. However, implementations MAY, instead, choose to create the property with a more general type, such as {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Object or {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataObject. Applications SHOULD use meta-data introspection to determine the contents and structure of the received data objects. [COR07110007]
87. Any properties created in the previous steps are local to their containing DataObject, i.e. they MUST NOT not available via the TypeHelper.getOpenContentProperty() API. [COR07110008]
8 Generation of XSD from SDO Type and Property

When SDO Types and Properties do not originate from an XSD definition, it is often useful to define the equivalent XML schema declarations.

When an XSD is generated from Types and Propertys it contains all the information defined in the SDO Model. An SDO implementation MUST generate an XSD from a Type such that the XSD type round trips back to an SDO Type that is identical to the original Type. [COR08000001] However, if the XSD was not generated and is used to create the Type and Property, regenerating the XSD will not necessarily round trip to produce the original. This is because there is more information in an XSD than in Type and Property, primarily focused on defining the XML document syntax.

The mapping principles are summarized in this table. A URI defines a schema and a target namespace. An SDO Type defines an XSD complex type and a global element declaration. An SDO property defines either a local element or an attribute in a complex type.

	SDO
	XSD

	URI
	<schema targetNamespace>

	Type
	<complexType>

<element> global

// or

<simpleType>

	Property
	<element> local

// or

<attribute>

Each XSD contains Types with the same URI. When referring to other ComplexTypes, the implementation is responsible for generating the appropriate import and include XSD declarations.

An XSD can only be generated when:

88. Multiple inheritance is not used.

· That is, all Types have no more than 1 base in Types.getBaseTypes().

89. The names of the Types and Properties are valid XSD identifiers.

The following defines the minimal XML schema declarations. When opening XML elements are shown the appropriate ending XML element is produced by the implementation. An SDO implementation MAY include additional declarations as long as documents that validate with the generated schema also validate with the customized schema. [COR08000004] In addition, an implementation is expected to generate all required namespace declarations, includes, and imports necessary to produce a valid XML schema.

If a namespace declaration shown in the generation templates is not used by the XSD, it can be suppressed. Namespace declarations can have prefix names chosen by the implementation (instead of xsd, sdo, sdoj, and tns). The specific elements containing the namespace declarations are determined by the implementation.

It is permissible to generate the xmi:version attribute from the XMI specification to enable XMI conformant software to read the XSDs and valid XML documents.

An SDO implementation MUST generate the Schema element with a target namespace determined by the URI of the Types that will be defined in the schema. [COR08000002]

[URI] is defined by type.uri. If [URI] is null then the XSD is generated without a targetNamespace.

	SDO
	XSD Schema

	
	<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

	[URI]
	 xmlns:tns=[URI]

 targetNamespace=[URI]

For each Type that is a dataType, type.dataType==true, an SDO implementation MUST generate an XSD SimpleType as follows:

[NAME] is type.name

[ABSTRACT] is type.abstract.

[ALIAS_NAME] is space separated values from type.aliasNames and is produced if there are alias names.

[BASE.NAME] is the name of the base type, type.getBaseTypes().get(0).getName() if not null. When not null, the simple type extends the base type. tns: is the prefix for the URI of the base type, type.getBaseTypes().get(0).getURI(). If the base type is in another namespace the appropriate namespace and import declarations are produced by the implementation. If there are no base types, then the xsd type used is from the table "Mapping of SDO DataTypes to XSD Built in Data Types"...

[COR08000005]

	SDO Type
	XSD SimpleType

	
	<xsd:simpleType name=[NAME]>

	[ABSTRACT]
	 abstract="true"

	[ALIAS_NAME]
	 sdox:aliasName=[ALIAS_NAME]

	[BASE.NAME]
	 <xsd:restriction base=tns:[BASE.NAME]>

For each Type that is not a dataType, an SDO implementation MUST generate an XSD ComplexType and a global element. The ComplexType is based on:

[NAME] is type.name. If an implementation can determine that a particular SDO type has been created based on an anonymous Schema type declaration and both the type and its containing Schema component are to be generated, then the implementation can use an anonymous type declaration in the generated XSD.

[ABSTRACT] is type.abstract.

[ALIAS_NAME] is space separated values from type.aliasNames and is produced if there are alias names.

[BASE.NAME] is the name of the base type, type.getBaseTypes().get(0).getName() and is produced if not null. When produced, the complex type extends the base type. tns: is the prefix for the URI of the base type, type.getBaseTypes().get(0).getURI(). If the base type is in another namespace the appropriate namespace and import declarations are produced by the implementation.

[SEQUENCED] indicates if the type is sequenced, type.sequenced. If true, the complex type declaration is mixed and the content of the element is placed in a <choice>. If false, the complex type contents are placed in a <sequence>. If no local elements are generated, the <choice> or <sequence> is suppressed.

[OPEN] indicates if the type accepts open content, type.open. An <any> is placed in the content and <anyAttribute> is placed after the content. If [SEQUENCED] is false, also add an “sdox:sequence” attribute with the value set to false. Implementations are allowed to extend the range of permissible namespaces in the <any> wildcard as long as the generated Schema remains valid.

[COR08000006]

	SDO Type
	XSD ComplexType

	
	<xsd:complexType name=[NAME]>

	[ABSTRACT]
	 abstract="true"

	[ALIAS_NAME]
	 sdox:aliasName=[ALIAS_NAME]

	[BASE.NAME]
	 <xsd:complexContent>

 <xsd:extension base=tns:[BASE.NAME]>

	[SEQUENCED]
	 mixed="true"

 <xsd:choice maxOccurs="unbounded">

	![SEQUENCED]
	 <xsd:sequence>

	[OPEN]
	 <xsd:any namespace=”##other”

 maxOccurs="unbounded"

 processContents="lax"/>

 <xsd:anyAttribute processContents="lax"/>

For each property in type.getDeclaredProperties(), either an element or an attribute is generated as the content of the complexType corresponding to the SDO type. If property.many, property.containment, or property.nullable is true, or if property.get(xmlElement) is present and set to true, where xmlElement is an open content property in http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911 an SDO implementation MUST generate an element; if the property is bidirectional and the opposite property has containment=true, an SDO implementation MUST generate neither an element nor an attribute; otherwise, an SDO implementation MUST generate an attribute. [COR08000007] Round-trip between SDO models and their generated XSDs will preserve the order of the properties when all elements are generated. When an SDO implementation generates an element it MUST base the element on:

[NAME] is property.name

[ALIAS_NAME] is space separated values from property.aliasNames and is produced if there are alias names.

[READ_ONLY] is the value of property.readOnly and is produced if true.

[MANY] indicates if property.many is true and maxOccurs is unbounded if true.

[CONTAINMENT] indicates if property.containment is true.

· When containment is true, then DataObjects of that Type will appear as nested elements in an XML document.

· When containment is false and the property's type is not a data type, then by default the generated element or attribute will have the XSD type AnyURI and an sdox:propertyType declaration records the target type. Values in XML documents will be of the form "#xpath" where the xpath is an XPath expression, like the ones used in the ChangeSummary XML format described in ChangeSummary XML format
.

· When containment is false and the property's type is a type for which key properties have been specified, it is also possible to the key type to represent the non-containment reference. See the 8.3: Generating XSD from Types using Keys
.

[OPPOSITE.NAME] is the opposite property if the property is bidirectional and indicated when property.opposite is not null.

[NULLABLE] is the value of property.nullable and is produced if true.

[COR08000008]

	SDO Property
	XSD Element

	
	<xsd:element name=[NAME] minOccurs="0"

	[ALIAS_NAME]
	 sdox:aliasName=[ALIAS_NAME]

	[READ_ONLY]
	 sdox:readOnly=[READ_ONLY]

	[MANY]
	 maxOccurs="unbounded"

	[CONTAINMENT]
	 type="tns:[TYPE.NAME]"

	![CONTAINMENT]
	 type="xsd:anyURI" sdox:propertyType="tns:[TYPE.NAME]",

it is also possible to use keys may to represent non-containment relationships. If xmlType is set to the XSD type matching the target type’s keyType, then an SDO implementation MUST render the reference using the value of the key. [COR08000003]

	[OPPOSITE.NAME]
	 sdox:oppositeProperty=[OPPOSITE.NAME]

	[NULLABLE]
	 nillable="true"

When an SDO implementation generates an attribute it MUST base the attribute on:

[NAME] is property.name

[ALIAS_NAME] is space separated values from property.aliasNames and is produced if there are alias names.

[READ_ONLY] is the value of property.readOnly and is produced if true.

[DEFAULT] is property.default and is produced if the default is not null and the default differs from the XSD default for that data type .

[TYPE.DATATYPE] indicates if property.type.dataType is true.

· When isDataType is true, [TYPE.NAME] is the name of the XSD built in SimpleType corresponding to property.type, where the prefix is for the xsd namespace.

· When isDataType is false, [TYPE.NAME] is property.type.name where the tns: prefix is determined by the namespace declaration for the Type's URI. A URI reference to the element containing the DataObject is used and an sdox:propertyType declaration records the target type. Values in XML documents will be of the form "#xpath" where the xpath is an XPath expression, like the ones used in the ChangeSummary XML format described in Chapter 10: ChangeSummary XML format.. It is typical to customize the declaration to IDREF if the target element has an attribute with type customized to ID.

[OPPOSITE.NAME] is the opposite property if the property is bidirectional and indicated when property.opposite is not null.
 [COR08000009]
	SDO Property
	XSD Attribute

	
	<xsd:attribute name=[NAME]

	[ALIAS_NAME]
	 sdox:aliasName=[ALIAS_NAME]

	[READ_ONLY]
	 sdox:readOnly=[READ_ONLY]

	[DEFAULT]
	 default=[DEFAULT]

	[TYPE.DATATYPE]
	 type="tns:[TYPE.NAME]"

	![TYPE.DATATYPE]
	 type="xsd:anyURI" sdox:propertyType=tns:[TYPE.NAME]

	[OPPOSITE.NAME]
	 sdox:oppositeProperty=[OPPOSITE.NAME]

8.1 Mapping of SDO DataTypes to XSD Built in Data Types

For SDO Date and for SDO Character, an sdox:dataType annotation is generated on the XML attribute or element referring to the SDO Type.

	SDO Type
	XSD Type

	Boolean
	boolean

	Byte
	byte

	Bytes
	hexBinary

	Character
	string

	DataObject
	anyType

	Date
	dateTime

	DateTime
	dateTime

	Day
	gDay

	Decimal
	decimal

	Double
	double

	Duration
	duration

	Float
	float

	Int
	int

	Integer
	integer

	Long
	long

	Month
	gMonth

	MonthDay
	gMonthDay

	Object
	anySimpleType

	Short
	short

	String
	string

	Strings
	string

	Time
	time

	Year
	gYear

	YearMonth
	gYearMonth

	YearMonthDay
	date

	URI
	anyURI

8.2 Tuning the Default Mapping using Open Content Properties

Open content properties in http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911 are used to modify the default mapping for of SDO types and properties. It is also possible to read these values, for instance, to determine the characteristics of the schema docment used to generate the SDO metadata.

The following properties are defined

	http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911 property
	Type
	applies to

	xmlElement
	boolean
	Property

	xmlType
	URI string
	Property, data Type and types with keys

	xmlPropertyUri
	URI string
	Property

Setting the xmlElement property to true forces Properties represented as XML elements. Setting the value to false does not guarantee that the annotated property will map to an XML attribute, since this is not always possible. For example, containment properties, nullable properties, and demand created open content property are always serialized as XML elements.

Setting the xmlType property overrides the default mapping of a property or data type. The value should be the standard SDO string representation of the URI of the desired schema type. An important use of this annotation is to force the use of keys as the representation of non-containment references.

The xmlPropertyURI controls the namespace of the element or attribute under which the property value will be serialized. In this way, it is possible to specify that, in XML, namespace of the property differs from the namespace of the type (as would occur if the property were defined through an xs:ref element). Leaving this property unset, or setting it to an empty string causes the property to be rendered in “unqualified” form. By setting the xmlPropertyURI to be the same as the URI of the containing type, the user can make the XML form of the property qualified. An Implementation of SDO MUST respect the xmlPropertyURI attribute when rendering DataObjects in XML. [COR08020001]

8.3 Generating XSD from Types using Keys

Non-containment references are represented by default as XPath expressions. In cases where it is known that the key values are set before XML serialization is requested, the xmlType property can be used to indicate that the XML representation the non-containment reference should be the key value rather than the XPath expression. The xmlType has to match the keyType of the referenced object. If the key type is a DataType and the reference is single-valued, the reference an SDO implementation MUST, by default, render it as an attribute. [COR08030001]. An SDO implementation MUST render complex keys and multivalued references as elements. [COR08030002] Whenever a non-containment reference is redenderd in schema, whether XPath or keys are used, and regardless of whether the reference is rendered as a attribute or element, an SDO implementation MUST also annotate the attribute or element with “sdox:propertyType”. [COR08030003]

To illustrate, we start with the example from 4.5.3: Key Properties:

OrderType
- id (type=String, key=true)

- customer (type=CustomerType)

- lineItems (type=LineItemType, many=true, opposite=order, xmlType=LineItemKeyType)

LineItemType (keyType=LineItemKeyType)
- order (type=OrderType key=true opposite=lineItems, xmlType=String)

- lineNumber (type=Int, key=true)

- productID, etc.

LineItemKeyType
- order (type=String)

- lineNumber (type=Int)

Generating XSD from these types results in:

<xsd:complexType name="OrderType">

 <xsd:sequence>

 <xsd:element name="id" type="xsd:string" sdox:key=true/>

 <xsd:element name="customer" type="tns:CustomerType"/>

 <xsd:element name="lineItems" type="tns:LineItemKeyType"

 maxOccurs="unbounded"

 sdox:propertyType="tns:LineItemType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="LineItemType" sdox:keyType="tns:LineItemKeyType">

 <xsd:sequence>

 <xsd:element name="lineNumber" type="xsd:int" sdox:key=true/>

 <xsd:element name="item" type="tns:ItemType"/>

 </xsd:sequence>

 <xsd:attribute name="order" type="xsd:string" sdox:key=true

 sdox:propertyType="tns:OrderType"

 sdox:oppositeProperty="lineItems"/>

</xsd:complexType>

<xsd:complexType name="LineItemKeyType">

 <xsd:attribute name="order" type="xsd:string"/>

 <xsd:attribute name="lineNumber" type="xsd:int"/>

</xsd:complexType>
As shown, the sdox:key and sdox:keyType annoations are generated to indicate the key metadata for OrderType and LineItemType. Notice also that the OrderType.lineItems and LineItemType.order references are generated to use the key-based referencing pattern described above.

8.4 Example Generated XSD

If the Types and Properties for the PurchaseOrder schema had not come originally from XSD, then these rules would produce the following XML Schema.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.example.com/IPO"

 targetNamespace="http://www.example.com/IPO">

<xsd:element name="purchaseOrder" type="PurchaseOrder"/>

 <xsd:complexType name="PurchaseOrder">

 <xsd:sequence>

 <xsd:element name="shipTo" type="USAddress" minOccurs="0"/>

 <xsd:element name="billTo" type="USAddress" minOccurs="0"/>

 <xsd:element name="items" type="Items" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="comment" type="xsd:string"/>

 <xsd:attribute name="orderDate" type="xsd:date"/>

 </xsd:complexType>

 <xsd:complexType name="USAddress">

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="street" type="xsd:string"/>

 <xsd:attribute name="city" type="xsd:string"/>

 <xsd:attribute name="state" type="xsd:string"/>

 <xsd:attribute name="zip" type="xsd:decimal"/>

 <xsd:attribute name="country" type="xsd:string" default="US"/>

 </xsd:complexType>

 <xsd:complexType name="Items">

 <xsd:sequence>

 <xsd:element name="item" type="Item"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="item" type="Item"/>

 <xsd:complexType name="Item">

 <xsd:attribute name="productName" type="xsd:string"/>

 <xsd:attribute name="quantity" type="quantityType"/>

 <xsd:attribute name="partNum" type="SKU"/>

 <xsd:attribute name="USPrice" type="xsd:decimal"/>

 <xsd:attribute name="comment" type=”xsd:string"/>

 <xsd:attribute name="shipDate" type="xsd:date"/>

 </xsd:complexType>

 <xsd:simpleType name="quantityType">

 <xsd:restriction base="xsd:int"/>

 </xsd:simpleType>

 <xsd:simpleType name="SKU">

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

</xsd:schema>

The following is the serialization of the example purchase order that matches this schema.

<?xml version="1.0"?>

<ipo:purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ipo="http://www.example.com/IPO" orderDate="1999-10-20"

 comment="Hurry, my lawn is going wild!">

 <shipTo country="US" name="Alice Smith" street="123 Maple Street"

 city="Mill Valley" state="CA" zip="90952"/>

 <billTo country="US" name="Robert Smith" street="8 Oak Avenue"

 city="Old Town" state="PA" zip="95819"/>

 <items>

 <item partNum="872-AA" productName="Lawnmower"

 quantity="1" USPrice="148.95"

 comment="Confirm this is electric"/>

 <item partNum="926-AA" productName="Baby Monitor"

 quantity="1" USPrice="39.98" shipDate="1999-05-21"/>

 </items>

</ipo:purchaseOrder>

8.5 Customizing Generated XSDs

Because an XSD contains more information than Type and Property, there are many XSD capabilities unused by the default generation, for example the preference between serializing with XML elements or attributes. The suggested procedure is to generate the XSD from Types and Properties, customize the XSD using tools or with XSLT, and use the customized XSD as the original from which to define the SDO Types and Properties.

9 SDO Path Expression for DataObjects

Many of the accessor methods for DataObjects make use of a String parameter that provides the path that identifies the property to which the method applies.

An SDO Path is a subset of XPath 1.0 [XPath]. The syntax for specifying these paths, is shown here:

path ::= (scheme ':')? '/'? (step '/')* step

scheme ::= [^:]+

step ::= property

 | property '[' index_from_1 ']'

 | property '[' namespace-uri() '=' uri ']'

 | reference '[' attribute '=' value ']'

 | ".."

property ::= NCName ;; may be simple or complex type

attribute ::= NCName ;; must be simple type

reference :: NCName ;; must be DataObject type

index_from_1 ::= NotZero (Digits)?

value ::= Literal

 | Number

 | Boolean

Literal ::= '"' [^"]* '"'

 | "'" [^']* "'"

Number ::= Digits ('.' Digits?)?

 | '.' Digits

Boolean ::= true

 | false

NotZero ::= [1-9]

Digits ::= [0-9]+

;; leading '/' begins at the root

;; ".." is the containing DataObject, using containment properties

;; Only the last step have an attribute as the property

NOTE: Previous versions of the SDO specification allowed for a zero-based dot syntax to specify the index (e.g., "departments.0"), and an @ sign (without meaning) to precede a property in the syntax (e.g., “departments[1]/@number”). Both of these have been deprecated in SDO 3.0, but SDO implementations MAY allow them for backwards compatibility. [COR09000002]
The scheme is an extension mechanism for supporting additional path expressions in the future. No schema and a scheme of "sdo:" are equivalent, representing this syntax. The "xml:" scheme provides a proper syntactic and semantic subset of standard XPath [XPath]. If a scheme of "xml:" is used, an SDO implementation MUST do name matching based on the XML representation (i.e., the XML element or attribute names), including distinguishing between attributes and elements based on whether or not the local name was preceeded by a “@” sign. [COR09000001]. For example, unlike get(”sdo:number”), get(”xml:number”) returns null if “number” is not an XML element, while get((”xml:@number”) returns the property’s value..

Consider the Company model described in Complete Data Graph for Company Example. One way to construct an SDO Path that can be used to access a DataObject contained in another DataObject is to specify the index of the contained DataObject within the appropriate property. For example, given an instance of a Company DataObject called “company” one way to access the first Department in the “departments” list is:

department = company.get(DataObject.class, "departments[1]");

Another way to access a contained DataObject is to identify that object by specifying the value of one of the attributes of that object. So, for example, given a Department DataObject called “department”, one way to access the Employee where the value of the “SN” attribute is “E0002” is:

employee = department.get(DataObject.class,"employees[SN='E0002']");

If there are more than one Employee DataObjects that have their “SN” property/attribute values equal to “E0002”, the first Employee DataObject in the list is returned. If no Employee DataObject matches the [SN=’E0002’] criteria, null is returned.

It is also possible to write a path expression that traverses one or more references in order to find the target object. The two accesses shown above can be combined into a single call that gets the Employee using a path expression that starts from the company DataObject, for example

employee = company.get(DataObject.class,"departments[1]/employees[SN='E0002']");

SDO Path expressions can also be used to set/unset values of properties, including multi-valued properties. In these cases, set(String path, …) changes values in the list without changing the size of the list and unset(String path) removes values from the list. For example, if “myList” is a multi-valued property on the “myDataObject” DataObject, then:

 List list = myDataObject.get("myList");

 // Let’s assume that at this point the list is empty

 list.add("one");

 list.add("two");

 // Changes the second element to "three" so the list will be

 // "one", "three"

 myDataObject.set("myList[2]", "three");

 // An unspecified runtime exception will be thrown because the index

 // exceeds the list size

 myDataObject.set("myList[3]", "three");

 // Variable b1 will be true because the specified index is smaller

 // than the size of the list

 boolean b1 = myDataObject.isSet("myList[1]");

 // Variable b2 will also be true

 boolean b2 = myDataObject.isSet("myList[2]");

 // Variable b3 will be false because the index is greater than

 // the size of the list

 boolean b3 = myDataObject.isSet("myList[3]");

 // An unset() call will remove elements from the list

 myDataObject.unset("myList[1]");

 // The list now contains one element: "three"

 // An unset() call can throw an unspecified runtime exception

 myDataObject.unset("myList[99]");

If more than one property shares the same name, only the first is matched by the path expression, using property.name for name matching. The second, or subsequent, property can be accessed by qualifying the name using the namespace-uri() function:

// Access the first "foo" property

Object foo1 = dataObject.get("foo");

// Aceess a duplicate open-content "foo" property in namespace

// "http://the-tns2-namespace"

Object foo2 =

 dataObject.get("foo[namespace-uri()='http://the-tns2-namespace']");

If there are alias names assigned, those are also used to match. Also, names including any of the special characters of the syntax (/[]=’”) are not accessible. Each step of the path before the last has to return a single DataObject. When the property is a Sequence, the values returned are those of the getValue() accessor.

10 ChangeSummary XML format

ChangeSummary elements are located in XML documents according to the normal rules accociated with properties of a type. For instance, a property named “changeSummary” having ChangeSummaryType is serialized as an element with local name “changeSummary” within the XML structure corresponding to the containing (envelope) object.

An SDO implementation MUST render the ChangeSummary element if either of the conditions apply:

· Changes have been logged (getChangedDataObjects().size() > 0).
· No changes have been logged but isLogging() is true at the time of serialization.
[COR10000001]
When deserializing an empty ChangeSummary element, an SDO implemention MUST create a changeSummary object having logging==true. [COR10000002] Otherwise, the logging state is given by the corresponding attribute.

The serialization of the ChangeSummary includes enough information to reconstruct the original state of the DataObjects in its scope at the point when logging was turned on. The goal of this format is to provide a simple XML representation that can express the difference between the graph when logging began and ended. The serialization of the state when logging is ended is the complete XML as serialized from XMLHelper and is referred to as the final XML in this section to contrast with the changeSummary XML.

10.1 ChangeSummary Creation and Deletion Attributes
When serializing a ChangeSummary, an SDO implementation MUST fill the @create attribute with references to every DataObject in the ChangeSummary’s getChangedObjects() list for which isCreated returns true. [COR10010001] For example, if the employee “Al Smith” with ID “E0004” was added:

<changeSummary create="E0004" >

</changeSummary>

...

<employees name="Al Smith" SN="E0004"/>

...
If more than one DataObject had been created, the create attribute contains a space-separated list of references, one for each DataObject. The format in which the references are serialized is given in Section 10.2: Serialization Format for References.

Similarly, when serializing a ChangeSummary, an SDO implementation MUST fill the @delete attribute with references to every DataObject in the ChangeSummary’s getChangedObjects() list for which isDeleted returns true. [COR10010002] Unlike the @create attribute, the references in the @delete attribute will always point at objects serialized within the <changeSummary> element itself. Deleted orphans MUST be serialized as top level elements in the changeSummary. [COR10010003] Deleted objects that were previously contained are serialized “in-place”, as part of the modification to their containers.

10.2 Serialization Format for References

When serializing references to DataObjects as a value of an sdo:ref attribute, or included in ChangeSummary’s create or delete attributes, an SDO implementation MUST use IDREFs when IDs are available, and XPath expressions otherwise. [COR10020001] XPath expressions are distinguishable from ID references in that they start with a ‘#’ character. Key properties, other than those identified using the schema ID type, are not used as values of sdo:ref or as elements of the created or deleted lists.

When serializing list of consecutive references to DataObjects an SDO implementation MAY use the sdo:range attribute in addition of sdo:ref. In this case the sdo:ref value MUST be a XPath and an implementation MUST raise an error if IDREF is used as sdo:ref value [COR10020001]. An SDO implementation MUST render the references from the ChangeSummary to objects in the document using either the sdo:ref attribute alone or using sdo:ref and sdo:range attributes. [COR1002020002]

To illustration both options, the following two semantically equivalent examples are provided:

<departments sdo:ref=”#/company:company[1]/departments[1]”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees”

 sdo:range=”1 5”/>

</departments>

< departments sdo:ref=”#/company:company[1]/departments[1]”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[1]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[2]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[3]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[4]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[5]” />

</departments>
The sdo:range value contains two numeric values separated by a white space character: a positive start index and a positive end index in the referenced collection. Both sdo:range indexes are inclusive and first index starts at 1. Unexpected values for sdo:range are:

· Negative values for any of the sdo:range indexes.

· Indexes larger than the size of the referenced collection.

· sdo:ref attribute value does not reference a collection.

· First index is larger than the second one.

A change summary can combine sdo:range values with deleted data objects. The following two examples are equivalent:
<changesummary delete=”#/changesummary/departments/employees[3]”>

 <departments sdo:ref=”#/company:company[1]/departments[1]”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees”

 sdo:range=”1 2”/>

 <employees name=”John”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees”

 sdo:range=”4 5”/>

 </departments>

</changesummary>

<changesummary delete=”#/changesummary/departments/employees[3]”>

 <departments sdo:ref=”#/company:company[1]/departments[1]”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[1]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[2]” />

 <employees name=”John”>

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[4]” />

 <employees sdo:ref=”#/company:company[1]/departments[1]/employees[5]” />

 </departments>

</changesummary>
XPath expressions differ from SDO object paths as described in SDO Path Expression for DataObjects, in particular, XPath expressions can navigate into the ChangeSummary. This is necessary so that references to deleted objects can be expressed. An XPath expression contains namespace information and element names from the serialized DataObject. All elements inside the ChangeSummary are indexed.

If there were no IDs available in the previous example (that is, either IDs were not defined, or simply not set), XPath expressions would be used exclusively for the references:

 <changeSummary

 create="#/company:company[1]/departments[1]/employees[3]"

 delete="#/changeSummary/departments[1]/employees[2]">

 <company sdo:ref="#/company:company[1]" name="ACME"

 employeeOfTheMonth=

 "#/changeSummary/departments[1]/employees[2]"/>

 <departments sdo:ref="#/company:company[1]/departments[1]">

 <employees

 sdo:ref="#/company:company[1]/departments[1]/employees[1]"/>

 <employees name="Mary Smith" SN="E0002" manager="true"/>

 <employees

 sdo:ref="#/company:company[1]/departments[1]/employees[2]"/>

 </departments>

 </changeSummary>

Note that in this case XPath expressions are used for normal cross references (employeeOfTheMonth) as well, not just for the SDO attributes (create, delete, and ref).

10.3 Serialization Format for Sequenced DataObjects
If the Type is sequenced, then the serialized change summary MUST contain the complete sequence of elements and intermixed text as it existed at the point that logging was started, with elements that are still represented in the final document containing only an sdo:ref attribute pointing to that respective element in the serialized graph. [COR10030001]
Note: For serialization of ChangeSummary information in case of many-valued properties or sequenced objects, implementations are allowed to follow a different format than the one described in this document, if interoperability is not required.
10.4 Serialization Format for DataObject Modifications
Where changes made were only to data type properties of a data object, an SDO implementation MUST include a copy of data object in the ChangeSummary element, but the copy MUST contain only the properties that have changed, showing their old values. [COR10040001] For example, changing the company name places just the changed information in the change summary:

<sdo:datagraph xmlns:company="company.xsd"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

 <changeSummary>

 <company sdo:ref="#/company" name="ACME"/>

 </changeSummary>

 <company:company name="MegaCorp" employeeOfTheMonth="E0004">

 ...

 </company:company>

</sdo:datagraph>

If a multivalued property was modifed, an SDO implementation MUST reproduce the entire list. [COR10040002] If the multivalued property’s type is not a dataType, an SDO implementation MUST render unaltered elements as references to the corresponding object in the final document using either the sdo:ref attribute to indicate single elements or the sdo:range attribute to indicate a block. [COR10040003]
If an old value is not present in the ChangeSummary, it is assumed not to have changed. If a property was not set when logging began, an SDO implementation MUST represent the old state in the ChangeSummary using an “unset” attribute. [COR10040004] For example, if comment is an optional property of product and is set for the first time.

<sdo:datagraph xmlns:product="product.xsd"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

 <changeSummary>

 <product sdo:ref="#/product" sdo:unset="comment">

 ...

 </product>

 </changeSummary>

 <product:product pid="P123">

 <comment>Sale until the end of the month.</comment>

 ...

 </product:product>

</sdo:datagraph>

The value of the “unset” attribute is a space-separated list of previously unset changed properties of the corresponding referenced object. Multi-valued datatype properties and mutli-valued non-containment properties have their entire old and new values in the changeSummary and final XML respectively. For example, if availableColors is a multi-valued property for a product, and the availableColors change:

<sdo:datagraph xmlns:product="product.xsd"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

 <changeSummary>

 <product sdo:ref="#/product">

 <availableColors>blue</availableColors>

 <availableColors>green</availableColors>

 </product>

 </changeSummary>

 <product:product pid="P123">

 <availableColors>blue</availableColors>

 <availableColors>red</availableColors>

 ...

 </product:product>

</sdo:datagraph>

When an object that was formerly contained is deleted, there is always a corresponding change to the object that contained the deleted object, namely, the property through which the deleted object was formerly contained has been modified. If the deleted object was formerly contained, an SDO implementation MUST serialize a deep copy of the object in-place, as part of the modification to the parent object. [COR10040005]

For example, <employees sdo:ref="E0001"/> refers to the employee with ID E0001 in the final document, <employees name="John Jones" SN="E0001"/>. The example below shows that the deleted employee <employees name="Mary Smith" SN="E0002" manager="true"/>, is located in the first department at the second position. The first and third employees are unchanged and the fourth employee is added.

<sdo:datagraph xmlns:company="company.xsd"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

 <changeSummary create="E0004" delete="E0002">

 <company sdo:ref="#/company:company[1]"

 name="ACME" employeeOfTheMonth="E0002"/>

 <departments sdo:ref="#/company:company[1]/departments[1]">

 <employees sdo:ref="E0001"/>

 <employees name="Mary Smith" SN="E0002" manager="true"/>

 <employees sdo:ref="E0003"/>

 </departments>

 </changeSummary>

 <company:company name="MegaCorp" employeeOfTheMonth="E0004">

 <departments name="Advanced Technologies"

 location="NY" number="123">

 <employees name="John Jones" SN="E0001"/>

 <employees name="Jane Doe" SN="E0003"/>

 <employees name="Al Smith" SN="E0004" manager="true"/>

 </departments>

 </company:company>

</sdo:datagraph>

In some cases, given a sequence of operations on a graph of DataObjects, there can be multiple ChangeSummaries representing the difference (or, in other words, there can be multiple ways to represent the difference between the final and initial state of a graph of DataObjects). The only requirement is that calling undo on the ChangeSummary will produce a data graph that is deep equals with a copy of its initial state (the state before beginLogging has been called).

10.5
 Example Use of ChangeSummary on a DataObject

A common use of defining DataObject Types with a ChangeSummary is when wrapping specific existing types such as PurchaseOrders along with a ChangeSummary tracking their changes. A message header defined by the following XSD is an example.

<element name="message" type="PurchaseOrderMessageType"/>

<complexType name="PurchaseOrderMessageType">

 <sequence>

 <element name="purchaseOrder" type="ipo:PurchaseOrderType"/>

 <element name="changeSummary" type="sdo:ChangeSummaryType"/>

 </sequence>

</complexType>

The following is an example message document:

<message>

 <purchaseOrder orderDate="1999-10-20">

 <shipTo country="US">

 <name>Alice Smith</name>

 </shipTo>

 <comment>Hurry, my lawn is going wild!</comment>

 </purchaseOrder>

 <changeSummary>

 <USAddress sdo:ref="#/message/purchaseOrder/shipTo">

 <name>John Public</name>

 </USAddress>

 </changeSummary>

</message>

11 DataType Conversions

In the tables in this section, x indicates that conversion is supported through DataObject or DataHelper and X indicates an identity where the input and output are the same. Individual languages might support converstions involving types specific to the language. Other conversions are not supported, including combinations not in these tables. Conversions of Lists to String are done by converting each element of the list to a string and adding a space character between each converted element.

	To->

From

 |

 V
	Boolean
	Byte
	Character
	Double
	Float
	Int
	Long
	Short
	String
	Bytes
	Decimal
	Integer
	Date

	Boolean
	X
	
	
	
	
	
	
	
	x
	
	
	
	

	Byte
	
	X
	
	x
	x
	x
	x
	x
	x
	
	x
	x
	

	Character
	
	
	X
	
	
	
	
	
	x
	
	
	
	

	Double
	
	x
	
	X
	x
	x
	x
	x
	x
	
	x
	x
	

	Float
	
	x
	
	x
	X
	x
	x
	x
	x
	
	x
	x
	

	Int
	
	x
	
	x
	x
	X
	x
	x
	x
	
	x
	x
	

	Long
	
	x
	
	x
	x
	x
	X
	x
	x
	
	x
	x
	x

	Short
	
	x
	
	x
	x
	x
	x
	X
	x
	
	x
	x
	

	String
	x
	x
	x
	x
	x
	x
	x
	x
	X
	x
	x
	x
	x

	Bytes
	
	
	
	
	
	
	
	
	x
	X
	
	x
	

	Decimal
	
	x
	
	x
	x
	x
	x
	x
	x
	
	X
	x
	

	Integer
	
	x
	
	x
	x
	x
	x
	x
	x
	x
	x
	X
	

	Date
	
	
	
	
	
	
	x
	
	x
	
	
	
	X

	To->

From

 |

 V
	String
	Day
	Date
	DateTime
	Duration
	Month
	MonthDay
	Strings
	Time
	Year
	YearMonth
	YearMonthDay

	String
	X
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x
	x

	Day
	x
	X
	x
	
	
	
	
	
	
	
	
	

	Date
	x
	x
	X
	x
	x
	x
	x
	
	x
	x
	x
	x

	DateTime
	x
	
	x
	X
	
	
	
	
	
	
	
	

	Duration
	x
	
	x
	
	X
	
	
	
	
	
	
	

	Month
	x
	
	x
	
	
	X
	
	
	
	
	
	

	MonthDay
	x
	
	x
	
	
	
	X
	
	
	
	
	

	Strings
	x
	
	
	
	
	
	
	X
	
	
	
	

	Time
	x
	
	x
	
	
	
	
	
	X
	
	
	

	Year
	x
	
	x
	
	
	
	
	
	
	X
	
	

	YearMonth
	x
	
	x
	
	
	
	
	
	
	
	X
	

	YearMonthDay
	x
	
	x
	
	
	
	
	
	
	
	
	X

12 Conformance

This specification identifies an SDO implementation as its only conformance target.

12.1 SDO Implemenation

An implementation that claims to conform to the requirements of this specification MUST meet the conditions:

1. The implementation MUST comply with all mandatory statements listed in Conformance Items.

12.1.1 Optional Items

In addition to mandatory items Conformance Items lists a number of non-mandatory items that can be implemented by a compliant implementation.
A. Complete Data Graph Examples

A.1 Complete Data Graph Serialization

A.2 Complete Data Graph for Company Example

The following XML represents the complete serialization of the data graph.

<sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:company="company.xsd"

 xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911">

 <xsd>

 <xsd:schema targetNamespace="company.xsd">

 <xsd:element name="company" type="company:CompanyType"/>

 <xsd:complexType name="CompanyType">

 <xsd:sequence>

 <xsd:element name="departments"

 type="company:DepartmentType" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="employeeOfTheMonth" type="xsd:string"/>

 </xsd:complexType>

 <xsd:complexType name="DepartmentType">

 <xsd:sequence>

 <xsd:element name="employees"

 type="company:EmployeeType" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="location" type="xsd:string"/>

 <xsd:attribute name="number" type="xsd:int"/>

 </xsd:complexType>

 <xsd:complexType name="EmployeeType">

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="SN" type="xsd:ID"/>

 <xsd:attribute name="manager" type="xsd:boolean"/>

 </xsd:complexType>

 </xsd:schema>

 </xsd>

 <changeSummary create="E0004" delete="E0002">

 <company:company sdo:ref="#/sdo:datagraph/company:company[1]"

 name="ACME" employeeOfTheMonth= "E0002"/>

 <departments sdo:ref="#/sdo:datagraph/company:company[1]/departments[1]">

 <employees sdo:ref="E0001"/>

 <employees name="Mary Smith" SN="E0002" manager="true"/>

 <employees sdo:ref="E0003"/>

 </departments>

 </changeSummary>

 <company:company name="MegaCorp" employeeOfTheMonth="E0004">

 <departments name="Advanced Technologies"

 location="NY" number="123">

 <employees name="John Jones" SN="E0001"/>

 <employees name="Jane Doe" SN="E0003"/>

 <employees name="Al Smith" SN="E0004" manager="true"/>

 </departments>

 </company:company>

</sdo:datagraph>

A.3 Complete Data Graph for Letter Example

In this data graph, no summary information is sent.

<sdo:datagraph xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911"

 xmlns:letter="http://letterSchema">

 <letter:letters>

 <date>August 1, 2003</date>

 Mutual of Omaha

 Wild Kingdom, USA

 Dear

 <firstName>Casy</firstName>

 <lastName>Crocodile</lastName>

 Please buy more shark repellent.

 Your premium is past due.

 </letter:letters>

</sdo:datagraph>

The XSD used is the following:

<xsd:schema targetNamespace="http://letterSchema"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="letters" type="letter:FormLetter"/>

 <xsd:complexType name="FormLetter" mixed="true">

 <xsd:sequence>

 <xsd:element name="date" minOccurs="0" type="xsd:string"/>

 <xsd:element name="firstName"

 minOccurs="0" type="xsd:string"/>

 <xsd:element name="lastName"

 minOccurs="0" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

A.4 Complete WSDL for Web services Example

The full WSDL from the Using Web services with data graph Example:

<wsdl:definitions name="Name"

targetNamespace="http://www.example.com"

xmlns:tns="http://www.example.com"

xmlns:company="company.xsd"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="company.xsd"

xmlns:company="company.xsd"

xmlns:sdo="http://docs.oasis-open.org/ns/opencsa/sdo/200911"

elementFormDefault="qualified">

 <element name="companyDatagraph"

 type="company:CompanyDataGraphType"/>

 <complexType name="CompanyDataGraphType">

 <complexContent>

 <extension base="sdo:BaseDataGraphType">

 <sequence>

 <element name="company" type="company:CompanyType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</schema>

 </wsdl:types>

 <wsdl:message name="fooMessage">

 <wsdl:part name="body" element="company:companyDataGraph"/>

 </wsdl:message>

 <wsdl:message name="fooResponseMessage"></wsdl:message>

 <wsdl:portType name="fooPortType">

 <wsdl:operation name="myOperation">

 <wsdl:input message="tns:fooMessage"/>

 <wsdl:output message="tns:fooResponseMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="fooBinding" type="tns:fooPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="myOperation">

 <soap:operation/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="myService">

 <wsdl:port name="myPort" binding="tns:fooBinding">

 <soap:address location="http://localhost/myservice"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

B. Conformance Items

	COR01010001
	An SDO implementation MAY support “commonj.sdo” as an alias URI for the http://docs.oasis-open.org/ns/opencsa/sdo/200911 namespace

	COR01010002
	An SDO implementation MAY choose to continue to support “commonj.sdo/xml” as an alias URI for the http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911 namespace.

	COR04010301
	An SDO implementation MUST convert between the data type of the property and the requested data type for all conversions defined in Chapter 11: DataType Conversions.

	COR04010302
	An SDO implementation MUST allow conversion between DataType values and Data Type Wrappers.

	COR04010303
	When converting from DataWrappers to DataTypes, an SDO implementation MUST support all conversions specified in Chapter 11: DataType Conversions

	COR04010401
	An SDO implementation MUST return an empty list, rather than a null value, for all property accessors that have a return type of List, whether in the DataObject interface or in a static API, even if the property has no value.

	COR04010402
	An SDO implementation MUST make all modifications to a returned List visible in the DataObject, so that all operations, reflect the updated list contents.

	COR04010403
	An SDO implementation MUST make updates to the DataObject visible though a returned List object.

	COR04010501
	For many-valued properties, isSet(property) MUST return:

· True, if the List is not empty.

· False, if the List is empty.

	COR04010502
	For single-valued properties, isSet(property) MUST return:

· True, if the Property has been set(), and not unset().

· False, if the Property has not been set(), or has been unset().

	COR04010503
	For single valued properties, isSet MUST return true if set() has been called after the last call to unset() , regardless of the value being set

	COR04010504
	After unset() has been called on a single-valued property, get(property) MUST return the property’s default value.

	COR04010505
	After unset() has been called on a many-valued property, get(property) MUST return an empty List.

	COR04010509
	An SDO implementation MUST raise an error if an attempt is made to modify read-only properties (using set, unset or delete)

	COR04010507
	Setting an unknown property to an empty list MUST NOT have any effect on a DataObject’s state.

	COR04010508
	If the last value of an existing open content property list is removed and then another value is added, an SDO implementation MUST put the same Property instance in the instance properties of the containing DataObject.

	COR04010601
	When a DataObject is set or added to a containment Property, the SDO implementation MUST remove it from any previous containment Property.

	COR04010701
	If the DataObject's Type is a sequenced type then the DataObject.create method MUST place the created DataObject at the end of the Sequence.

	COR04010702
	If the Property is single-valued, an SDO implementation MUST set the value of the Property, to the object created by DataObject.create().

	COR04010703
	If the Property is multi-valued, an SDO implementation MUST add the object created by DataObject.create() as the last object in the value list.

	COR04010704
	The delete() method MUST unset all the DataObject’s non-readonly properties.

	COR04010705
	If the containment Property is not read-only, the delete() method MUST also remove the DataObject from its containing DataObject.

	COR04010706
	When delete is called, all DataObjects directly or indirectly contained by containment properties MUST also be deleted.

	COR04010707
	If other DataObjects have one-way, non-containment properties that refer to deleted DataObjects, then these references MUST NOT be modified.

	COR04010801
	If a DataObject's Type is not sequenced then getSequence() MUST return null.

	COR04010901
	The isSet() method invoked on an open content property in the list of instance properties MUST return true.

	COR04010902
	If the specified property name does not already exist in a DataObject an SDO Implementaion MUST dynamically define the open content property and add it as an instance property of the DataObject.

	COR04010903
	A demand-created property created by an SDO Implemention MUST be equivalent to an open content property explicitly created by calling TypeHelper.defineOpenContentProperty(null, property) according to the specified rules.

	COR04010907
	When deriving a property type from a value that is an instance of DataObject or a List containing DataObject's, an SDO implementation MUST create a property of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataObject.

	COR04010904
	If the value is not a DataObject or List of DataObjects, an SDO implementation MUST create a DataType property of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Object.

	COR04010906
	If getList() is called on an undefined property, an SDO implemenation MAY return a value of null or an empty list.

	COR04010905
	An SDO implementation MUST automatically serialize sufficient metadata along with the instance so that an equivalent instance property is reconstituted on de-serialization.[

	COR04011301
	The get(String path) method MUST return null instead raising an error for error conditions, for example if “path” refers to a non-existing property.

	COR04011302
	The get<T> methods MUST NOT throw any other exceptions other than conversion-related exceptions.

	COR04011303
	The isSet(path) method MUST return the value of false in the case where the path does not exist.

	COR04011304
	Open content DataObjects MUST NOT raise an error for accessing properties which are not set on the DataObject.

	COR04011305
	The get<T>(String path) methods MAY raise a conversion-related error if it is impossible to convert between the actual and expected types.

	COR04011401
	If the value set on a Property does not meet a facet or constraint, such as an XSD range restriction, an SDO implementation MAY raise an implementation specific error or MAY delay raising an error to a later time when validation is more appropriate.

	COR04020201
	DataObject.getChangeSummary() invoked on the ChangeSummary root, or on any DataObject contained, directly or indirectly, by the ChangeSummary root, MUST return the same ChangeSummary object.

	COR04020202
	DataObject.get(“changeSummaryProperty”) where “changeSummaryProperty” is the name of a property whose Type is ChangeSummaryType MUST return the same ChangeSummary object as DataObject.getChangeSummary().

	COR04020203
	When an SDO implementation creates a DataObject containing a ChangeSummary, the logging state MUST be off.

	COR04020204
	An SDO implementation MUST raise an error if a Type is defined that contains more than one property with type ChangeSummaryType. [COR04020204]

	COR04020205
	An SDO implementation MUST raise an error if a Type is defined with a property with type ChangeSummaryType that has many=true and readOnly=false.

	COR04020206
	The scope of ChangeSummaries never overlap. An SDO implementation MUST raise an error if a DataObject has a property of type ChangeSummary is directly or indirectly contained or otherwised referenced by any other DataObject that has a property of type ChangeSummary.

	COR04020301
	An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that were in the ChangeSummary scope when logging was activated but are not in the scope when logging was deactivated and which are not themselves contained by a deleted DataObject; the implementation MUST return true when such an object is passed to ChangeSummary.isDeleted.

	COR04020302
	An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that were not in the ChangeSummary scope when logging was activated, but are in scope when logging was deactivated (or when ChangeSummary.getChangedObjects() was called, if logging is still active) and which are not themselves contained by a created DataObject; the implementation MUST return true when such an object is passed to ChangeSummary.isCreated.

	COR04020303
	An SDO implementation MUST include in the ChangeSummary.changedObjects list all DataObjects that remained in the ChangeSummary scope and whose property values changed during the time that logging was activated; the implementation MUST return true when such an object is passed to ChangeSummary.isModified.

	COR04020304
	The changeObject MUST NOT contain any objects other than those meeting the defined criteria.

	COR04020401
	If the only change a DataObject is to the contents of its orphanHolder properties, the object itself MUST NOT be contained in the ChangeSummary as a modified.

	COR04020402
	An SDO implementation MUST NOT include OrphanHolder properties in the getOldValues or getOldSequence lists.

	COR04020403
	If an orphan DataObject is referenced from within the scope of a ChangeSummary, and if an object with a matching orphanHolder property is contained, either directly or indirectly, then the object is in scope of the ChangeSummary then when the change summary root is serialized using XMLHelper.save, an SDO implementation MUST serialze the orphan DataObject as being “contained” by the orphanHolder property.

	COR04020404
	An SDO implemenation MAY ignore orphanHolder properties defined on DataObjects that themselves are orphans, or that are contained by orphans.

	COR04020405
	An SDO implemenation MAY ignore ChangeSummary defined on DataObjects that themselves are orphans, or that are contained by orphans.

	COR04020501
	For a deleted DataObject, the old values List MUST contain all the properties of the DataObject.

	COR04020502
	For a DataObject that has been modified, an SDO implementation MUST include only the modified properties in the the old values List.

	COR04020503
	For a DataObject that has not been deleted or modified, getOldValues() MUST return an empty List.

	COR04020601
	If DataObject.getSequence() returns null then getOldSequence(DataObject dataObject) MUST return null.

	COR04030301
	An SDO implementation MUST provide access to the properties that appear in a Sequence through the DataObject API.

	COR04030302
	If DataObject APIs are used to set a Property that was already set an SDO implemenatation MUST do so “in-place”.

	COR04030303
	If a value is added to a many-valued Property as the item with index “i” (rather than as the last item), then an SDO implemenation MUST insert the new value in the Sequence right before the value corresponding to the item “i+1” of that many-valued Property.

	COR04030304
	When the Sequence APIs are used to reorder a many-valued property, getList() invoked on that property MUST have a relative order of values that reflects these changes.

	COR04030306
	If DataObject APIs are used to modify properties of a sequenced DataObject, then setting a Property previously unset or adding a value as the last item of a many-valued Property an SDO implementation MAY add the value at the end of the Sequence or, if possible,in a more suitable position in the Sequence (according to the XSD definition of the sequenced DataObject's Type).

	COR04040401
	An SDO implementations MUST not have a more restrictive set of conditions for compatibility than defined by this specification, it MAY loosen these conditions.

	COR04040601
	The actual type of a wrapper DataObject is implementation dependent, but MUST extend the SDO type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataTypeWrapper

	COR04040801
	An SDO implemenation MUST support access to open content using the getInstanceProperties() and get(Property) methods on the objects

	COR04040802
	If provided by an implementation, such facets SHOULD appear in the list returned by getInstanceProperties().

	COR04050002
	An SDO implemenation MUST raise an error if defining a Property would result in a duplicate alias or an alias would duplicate the name of an existing Property.

	COR04050301
	If the key type is not explicitly set, and SDO implemenation MUST derive its default value according to the algorithm:

If there is exactly one key property, and its type is a DataType, then the key type is the type of the key property.

If there is exactly one key property and its type is not a DataType, then the key type is the key type of the key property’s type.

	COR04050302
	An SDO implementation MUST check that the specified key type matches the defined key properties, and raise an error if the key type and the key properties do not match.

	COR04060401
	The method

 DataObject O2 = C2.import(O1);

 MUST return a DataObject O2 such that O2.getType() is compatible with O1.getType(), provided such a type is defined in C2.

	COR04060403
	For each property P2 in O2 that is directly related to a property P1 in O1, the import method MUST initialize the values of the property such that:
1. If P1.getType().isDataType() is true then O1.get(P1) is equal toO2.get(P2)

2. If P1.getType().isDataType() is false then C2.getEqualityHelper().equals(O2.get(P2), C2.import(O1.get(P1))

	COR04060402
	If O1 and O2 are both sequenced, then the order of the elements in the sequences MUST match.

	COR04060501
	when importing from a context with entities to a context with complex keys, a new DataObject MUST be created for every reference.

	COR04060502
	Conversely, when importing from a key to a DataObject, then all usages of the same key value MUST resolve to the same DataObject.

	COR04060503
	The import operation MUST create a single DataObject for each key value.

	COR04060504
	The created DataObject MUST have all default values, except for its key properties, which MUST be set to match the key.

	COR04060601
	When a DataObject having a ChangeSummary property is imported into another context, and ChangeSummary.beginLogging() has been called on the ChangeSummary object without a corresponding call to ChangeSummary.endLogging(), an SDO implementation MUST perform an implicit call to ChangeSummary.endLogging() before performing the import.

	COR04060602
	If the ChangeSummary is not empty then ChangeSummary.isLogging() on the imported ChangeSummary object MUST return false.

	COR04060603
	The list returned by ChangeSummary.getChangedObjects() MUST contain the same underlying business objects, regardless of whether the ChangeSummary is being inspected in the context in which beginLogging was called or in the target context.

	COR04060604
	The elements in the list MUST be consistent with (i.e., imported into) the context of the DataObject from which the ChangeSummary was retrieved.

	COR04070101
	An SDO implementation MUST create DataFactory instances that use the TypeHelper associated with the same HelperContext as the DatFactory instance.

	COR04070201
	The created object's getType() MUST return the Type used in the call to DataFactory.create(), and the Type.isInstance() MUST return true for the created object.

	COR04070202
	When instantiating a Type that has an InstanceClass then the object returned from the create MUST instantiate it.

	COR04070203
	An SDO implementation MUST create the DataObject associated with a new ChangeSummary instance with change logging turned off.

	COR04080201
	An SDO implementations MUST allow the “sdotype” argument in the property.set(“type”, sdotype) method, and in all setters that take Types as arguments, to be either an instance of org.oasisopen.sdo.Type or a DataObject of type {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Type.

	COR04080202
	An SDO implementation MUST define all directly or indirectly referenced Types, and their properties when the referencing Type is defined (e.g., through a call to TypeHelper.define()).

	COR04080401
	Open content properties MUST be available by calling XSDHelper.getGlobalProperty(uri, propertyName, true), just as XSD global properties created by XSDHelper.define() MUST be available by calling TypeHelper.getOpenContentProperty().

	COR04080501
	If a type with the same name and URI already exists, this operation MUST NOT modify the existing type.

	COR04080502
	If some of the types in the list passed to TypeHelper.define have the same name/URI combination as types that already exist, the SDO implementation MUST NOT redefine the existing types and the corresponding entries in the List returned MUST have references to the already existing types.

	COR04090201
	The copyShallow() method MUST create a DataObject with the same values as the source dataObject for each Property of the source DataObject where property.type.dataType is true, including read-only properties, and for each Property of the Data Object were property.type.dataType is false, that property MUST be unset in the new DataObject.

	COR04090204
	If a ChangeSummary is part of the source DataObject then copyShallow() MUST create a new, empty ChangeSummary that is associated with the new DataObject and the logging state of the new ChangeSummary MUST BE the same as the source ChangeSummary.

	COR04090301
	The copy() method MUST create a DataObject with the same values as in the shallow copy for each Property of the source DataObject where property.getType().isDataType() is true.

	COR04090302
	The copy() method MUST make a deep copy of the value for each containment Property of the source DatObject where the value is a DataObject.

	COR04090303
	The copy() method MUST NOT copy a value that is a reference to a DataObject outside the copy tree for any bidirectional property of the source DataObject.

	COR04090304
	If a unidirectional property’s value is a reference to a DataObject outside the copy, then the the copy() method MUST set the value in the new DataObject to reference the same DataObject as the source DataObject.

	COR04090305
	If a ChangeSummary is part of the copy tree, the copy() method MUST create a new ChangeSummary with contents that correspond to the values in the source ChangeSummary, with the copied ChangeSummary referring to objects in the copied DataObject tree and logging state the same as the source Change Summary.

	COR04110301
	An SDO Implementaion MUST generate an xsi:type annotation in the serialization of DataObjects whenever the Type of the DataObject is not the same as the type of the element, e.g., when polymorphism occurs in the object model, but there are no corresponding substitution group defined in the XSD.

	COR04110302
	When marshalling an element having an xsi:type declaration into a DataObject, the SDO implementation MUST create an DataObject with the indicated type

	COR04110303
	XSD cannot support multiple inheritance, but an SDO implementation MUST be able to marshal and unmarshal between SDO objects that use multiple inheritance and well-formed XML documents.

	COR04110401
	When processing <any> and <anyAttribute> content from an XML document, the SDO implemention MUST check if a matching open content property is found in the associated TypeHelper and set this property in the created DataObject.

	COR04110402
	If no matching open content property is found, the implementation MUST create an unregistered open content property.

	COR04110801
	DataObjects that are referenced by the DataObject with the orphanHolder property, or any DataObject contained, directly or indirectly by this DataObject MUST BE serialized in the contents of the orphan.

	COR04110802
	Each “orphan” element MUST serialized as part of the containment tree in which it is located, that is, only DataObjects with getContainer()==null can be rendered as top-level orphans.

	COR04110803
	An SDO implementation MUST treat any DataObject that is referenced from an orphaned DataObject (or from any node in the orphaned object’s containment graph) but that is not otherwise included in the XML serialization as an orphan, and assign it to some orphanHolder property within the XML document, if any appropriate orphanHolder is exists.

	COR05010001
	Every TypeHelper MUST define {http://docs.oasis-open.org/ns/opencsa/sdo/xml/200911}Type according to the table in section 5.1

	COR05010002
	Once the type has been defined, an SDO implementation MUST make the values used in the defining DataObject available through the the accessor methods in the Type API.

	COR05010003
	An SDO implementation MUST expose any open content properties set on the DataObject used to define a Type or Propertiy through the getInstanceProperties() and get() methods on the corresponding org.oasisopen.sdo.Type and org.oasisopen.sdo.Property objects.

	COR05040001
	An implementation of SDO MUST define the facets property, the abstract Facet type, and all the concrete types defined in table 5.4 -1

	COR06000001
	The predefined SDO Types described in this chapter MUST be available from TypeHelper.getType(TypeHelper.SDO_URI, String typeName).

	COR06010001
	An SDO Implementation MUST convert between each of the defined DataTypes and its string representation according to the patterns described in the table.

	COR06010101
	An SDO implementation MUST convert Bytes to String by converting each byte into the hexadecimal two-digit equivalent using the characters [0-9A-F].

	COR06010201
	An SDO implementation MUST convert Strings to Bytes by converting each pair of characters from the hexadecimal two-digit equivalent using the characters [0-9A-Fa-f].

	COR06010301
	An SDO implementation MUST convert Character to String by mapping the Character value to a String of length 1, whose first (and only) character is that Character value.

	COR06010302
	The character with the Unicode codepoint '0' MUST map to the empty String.

	COR06020001
	Attempts to instantiate abstract Types MUST throw IllegalArgumentException from all create() methods.

	COR06020002
	An SDO implementation MUST return a ChangeSummary object whenever a property with ChangeSummaryType is accessed.

	COR06020003
	When the isInstance method on the DataObject type is passed any DataObject, an SDO implementation MUST return true, regardless of the DataObject’s type.

	COR06020004
	For single valued properties with type DataObject, an SDO implementation MUST allow the property’s value to be set to any DataObject.

	COR06020005
	For multivalued properties, an SDO implementation MUST allow any DataObject to be added to the list of values.

	COR07010001
	An SDO implemention MUST NOT generate names for anonymous types that hide a globally defined type with the same name.

	COR07030001
	The tables sections 7.3 and 7.4 MUST be implemented by all SDO implementations.

	COR07030002
	XSD generation MUST include the “many” attribute on any element serialized inside a repeating model group, where the corresponding property has Property.isMany = false.

	COR07030003
	Orphan holder properties MUST NOT BE not visible in Type.getProperties() or DataObject.getInstanceProperties().

	COR07030201
	When deriving Simple Types by restriction, the base Type for the SDO Type MUST BE the SDO Type thap maps to the XSD SimpleType restriction base.

	COR07030202
	When the XSD type is integer, positiveInteger, negativeInteger, nonPositiveInteger, nonNegativeInteger, long, or unsignedLong, and there are facets (minInclusive, maxInclusive, minExclusive, maxExclusive, totalDigits or enumeration) constraining the range to be within the range of int, then implementation type MUST be int.

	COR07040201
	If a ComplexType has content with two elements that have the same local name and the same targetNamespace, whether through declaration, extension, substitution, groups, or other means, the duplication MUST BE handled as described.

	COR07040202
	If schema extension is used, the base type MAY be modified with sdox:sequence="true". Elements with name conflicts introduced in extensions require that the property in the extended base type MUST BE made many=true.

	COR07040203
	Implementations MUST interpret instance documents containing a [CONCRETE_NAME] tag as part of a type [TYPE] element as setting (or adding, in the case of multi-valued properties) the value of property [BASE_NAME].

	COR07040204
	When marshalling a DataObject to XML, an SDO implementation MUST use the [CONCRETE_NAME] that provides the best match to the DataObject’s type.

	COR07050001
	An SDO implementation MUST read simple values whose type cannot be determined the value is read as a String.

	COR07050101
	When an XML document is loaded, a value of type xsd:QName, an SDO implementation MUST convert it into an SDO URI with a value of:

namespace name + # + local part

where + indicates string concatenation.

	COR07070001
	The order of the entries in the Sequence MUST BE the same as the order of XML elements.

	COR07080001
	An implementation of SDO MUST follow the guidelines when mapping XSD to SDO:

	COR07090001
	The mappings here are the base mappings. Vendors MAY extend the mappings provided that client programs developed against these mappings continue to run.

	COR07110001
	To represent the rootObject of the document, an SDO implementation MUST BE an instance of OpenSequncedType

	COR07110002
	If an attribute or element contains a URI, the implementation MUST attempt to locate the property definition as if by calling XSDHelper.getGlobalProperty() using the specified URI and property name.

	COR07110003
	Attributes for which no meta-information is available MUST BE interpreted as open content String properties, where the name of the property is the local name of the attribute.

	COR07110004
	Elements for which no meta-information is available MUST BE interpreted as open content properties, where the name of the property is the local name of the element. The property MUST always have containment=true.

	COR07110005
	If multiple instance of the same element occur within a containing element instance, the open content property corresponding to the element MUST have isMany=true. Otherwise an implementation MAY create the property with isMany=false.

	COR07110006
	If an element contains an xsi:type attribute, the value MUST BE used to determine the type of the value. If no xsi:type attribute is present and the content is simple, then the value's type will be implementation dependent. If the content is complex, the value MUST BE interpreted as an instance of OpenSequncedType; an implementation MUST provide a single Type to handle all such cases. Implementations MAY use wrapper objects (see 7.10: Corner Cases, point 4) to contain simple values.

	COR07110007
	An implementation MUST define the property type such that all the values of the property conform, and the type information is available. If the property is single valued, or if the type of all elements in a multi-valued property agree, an implementation MAY create the property of the value type itself. However, implementations MAY, instead, choose to create the property with a more general type, such as {http://docs.oasis-open.org/ns/opencsa/sdo/200911}Object or {http://docs.oasis-open.org/ns/opencsa/sdo/200911}DataObject. Applications SHOULD use meta-data introspection to determine the contents and structure of the received data objects.

	COR07110008
	Any properties created in the previous steps are local to their containing DataObject, i.e. they MUST NOT not available via the TypeHelper.getOpenContentProperty() API.

	COR08000001
	An SDO implementation MUST generate an XSD from a Type such that the XSD type round trips back to an SDO Type that is identical to the original Type.

	COR08000004
	An SDO implementation MAY include additional declarations as long as documents that validate with the generated schema also validate with the customized schema.

	COR08000002
	An SDO implementation MUST generate the Schema element with a target namespace determined by the URI of the Types that will be defined in the schema

	COR08000003
	If xmlType is set to the XSD type matching the target type’s keyType, then an SDO implementation MUST render the reference using the value of the key.

	COR08000005
	For each Type that is a dataType, type.dataType==true, an SDO implementation MUST generate an XSD SimpleType as specified.

	COR08000006
	For each Type that is not a dataType, an SDO implementation MUST generate an XSD ComplexType and a global element. The ComplexType is based on the specified pattern.

	COR08000007
	If the property is bidirectional and the opposite property has containment=true, an SDO implementation MUST generate neither an element nor an attribute; otherwise, an SDO implementation MUST generate an attribute.

	COR08000008
	When an SDO implementation generates an element it MUST base the element on the specified pattern.

	COR08000009
	When an SDO implementation generates an attribute it MUST base the attribute on the specified pattern.

	COR08020001
	An Implementation of SDO MUST respect the xmlPropertyURI attribute when rendering DataObjects in XML.

	COR08030001
	If the key type is a DataType and the reference is single-valued, the reference an SDO implementation MUST, by default, render it as an attribute.

	COR08030002
	An SDO implementation MUST render complex keys and multivalued references as elements.

	COR08030003
	Whenever a non-containment reference is redenderd in schema, whether XPath or keys are used, and regardless of whether the reference is rendered as a attribute or element, an SDO implementation MUST also annotate the attribute or element with “sdox:propertyType”.

	COR09000001
	An SDO implementation MUST do name matching based on the XML representation (i.e., the XML element or attribute names), including distinguishing between attributes and elements based on whether or not the local name was preceeded by a “@” sign.

	COR09000002
	The zero-based dot syntax to specify the index (e.g., "departments.0"), and @ sign (without meaning) to precede a property in the syntax have been deprecated in SDO 3.0, but SDO implementations MAY allow them for backwards compatibility.

	COR10000001
	An SDO implementation MUST render the ChangeSummary element if either of the conditions apply:

· Changes have been logged (getChangedDataObjects().size() > 0).
· No changes have been logged but isLogging() is true at the time of serialization.

	COR10000002
	When deserializing an empty ChangeSummary element, an SDO implemention MUST create a changeSummary object having logging==true.

	COR10010001
	When serializing a ChangeSummary, an SDO implementation MUST fill the @create attribute with references to every DataObject in the ChangeSummary’s getChangedObjects() list for which isCreated returns true.

	COR10010002
	Similarly, when serializing a ChangeSummary, an SDO implementation MUST fill the @delete attribute with references to every DataObject in the ChangeSummary’s getChangedObjects() list for which isDeleted returns true.

	COR10010003
	Deleted orphans MUST be serialized as top level elements in the changeSummary.

	COR10020001
	When serializing references to DataObjects as a value of an sdo:ref attribute, or included in ChangeSummary’s create or delete attributes, an SDO implementation MUST use IDREFs when IDs are available, and XPath expressions otherwise.

	COR10010002
	When serializing list of consecutive references to DataObjects an SDO implementation MAY use the sdo:range attribute in addition of sdo:ref. In this case the sdo:ref value MUST be a XPath and an implementation MUST raise an error if IDREF is used as sdo:ref value.

	COR10010003
	An SDO implementation MUST render the references from the ChangeSummary to objects in the document using either the sdo:ref attribute alone or using sdo:ref and sdo:range attributes.

	COR10030001
	If the Type is sequenced, then the serialized change summary MUST contain the complete sequence of elements and intermixed text as it existed at the point that logging was started, with elements that are still represented in the final document containing only an sdo:ref attribute pointing to that respective element in the serialized graph.

	COR10040001
	Where changes made were only to data type properties of a data object, an SDO implementation MUST include a copy of data object in the ChangeSummary element, but the copy MUST contain only the properties that have changed, showing their old values.

	COR10040002
	If a multivalued property was modifed, an SDO implementation MUST reproduce the entire list.

	COR10040003
	If the multivalued property’s type is not a dataType, an SDO implementation MUST render unaltered elements as references to the corresponding object in the final document using either the sdo:ref attribute to indicate single elements or the sdo:range attribute to indicate a block.

	COR10040004
	If an old value is not present in the ChangeSummary, it is assumed not to have changed. If a property was not set when logging began, an SDO implementation MUST represent the old state in the ChangeSummary using an “unset” attribute.

	COR10040005
	If the deleted object was formerly contained, an SDO implementation MUST serialize a deep copy of the object in-place, as part of the modification to the parent object.

C. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
We would like to thank Matthew Adams , Joshua Auerbach (IBM), David Bau, John Beatty, David Booz (IBM), Adam Bosworth, Graham Barber (IBM), Kevin Bauer (IBM), Jerome Beau (DataDirect Technologies), Michael Beisiegel (IBM), Henning Blohm (SAP), Michael Carey, Graham Charters (IBM), Gang Chen (IBM), Shane Claussen (IBM), Ed Cobb, Brent Daniel (IBM), George DeCandio (IBM), Jean-Sebastien Delfino (IBM), Scott Dietzen, Jean-Jacques Dubray (SAP), Mike Edwards (IBM), Emma Eldergill (IBM), Raymond Ellersick (IBM), Don Ferguson (IBM), Christopher Ferris (IBM), Paul Fremantle, Kelvin Goodson (IBM), John Green (IBM), Andy Grove (RogueWave Software), Omar Halaseh (Oracle), Larry Harris (Oracle), Laurent Hasson (IBM), Eric Herness (IBM), Rob High (IBM), Michael Ho (Sybase), Steve Holbrook (IBM), Sridhar Iyengar (IBM), Anish Karmarkar (Oracle), Jagan Karuturi (IBM), Dan Kearns, Stephen J Kinder (IBM), Regis Le Brettevillois (DataDirect Technologies), Elena Litani (IBM), Matthew Lovett (IBM), Angel Luis Diaz (IBM), Fuhwei Lwo (IBM), Ed Merks (IBM), Denny McKinney (Oracle), Adam Messinger, Martin Nally (IBM), Simon Nash (IBM), Peter Niblett (IBM), Karla Norsworthy (IBM), Howard Operowsky (IBM), Rahul Patel (Oracle), Bertrand Portier (IBM), Barbara Price (IBM), Jim Rhyne (IBM), Fabio Riccardi, Mike Rowley, Timo Salo (IBM), Edward Slattery (IBM), Denise Smith (Oracle), Shaun Smith (Oracle), Dave Steinberg (IBM), Andrew Spyker (IBM), James Taylor, Sachin Thatte (Oracle), Arnaud Thiefaine, Colin Thorne (IBM), Greg Truty (IBM), Celia Tung (IBM), Lionel Villard (IBM), Seth White (BEA), Kevin Williams (IBM), Geoffrey Winn (IBM), Helena Yan (Oracle), Wing Yew Poon (Oracle), and George Zagelow (IBM).

D. Non-Normative Text

E. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	CD2-Rev1
	8.11.2010
	Ron Barack
	Resolved Issues

27, 34, 35, 38, 41, 55, 62, 69, 72, 99, 120, 148, 151, 156, 157, 159, 168, 169, 170, 171, 172, 173, 175

	CD1-Rev2
	29.9.2009
	Ron Barack
	Resolved Issues:

44, 116, 122, 164, 167

	CD1–Rev1
	20.7.2009
	Ron Barack
	First set of resolutions for CD 2

Resolved Issues:

22, 56, 139, 141, 150, 154, 158, 160, 161, 162

	4
	16.12.2008
	Frank Budinsky
	Committee Draft 1

	3
	12.12.2008
	Frank Budinsky
	Resolved issues:

1,2,5,66,67,71,82,83,118,

119,124,125,129,133,135,145

	2
	26.11.2008
	Frank Budinsky
	Merge 2.1.1 changes

	1
	2.7.2008
	Bryan Aupperle
	Refactor

� EMBED Unknown ���

� EMBED Unknown ���

Client

Client

Client

Service

(persistence mechanism)

Service

(persistence mechanism)

Service

(persistence mechanism)

Type Length

 Int value

Type Length

 Int value

Property facets

 many = true

Type Facet

 abstract = true

type

Type Length

 Int value

Type

applies to

�I don’t think this example really adds anything. Should we remove it?

�Current State is not mentioned anywhere else in the document. Why are we wasting a section definitng this term?

�and

�I think we should consider moving this section, and 4.5, to chapter 5. Otherwise we are describing the metamodel in 2 places.

�This seems to imply a compliance point, that I’m relatively certain not everyone wants. Or do we? In any case, we either need a compliance point or to re-word.

�Is something missing?

�What are we allowing by these statements?

�This schema is not listed in any of the namespace documents nor is in the CD02 package.

�This statement is not clear – values of what?

�There should be a reference.

�Which table – need a reference.

�Add a reference

�Needs either a list or a reference.

�Needs either a list or a reference.

�I would also like to say here that includes and imports are “expanded in place”.

�What is bding restricted by this?

�“SDO code generator tool”, what is that, and what is the XSD to which it is adding annotations. Implementations *can* do name mangling, but it is centainly not required. Why not just say that SDO provides other means of identifying the objects. For instance, and anonymous type can ve accessed through property.getType.

�Remove this section since generating is out-of-scope. There are also a lot of problems with the text, eg, the use of “requires”

�Something is missing here.

�Depends on resolution of issue 181.

�See resolution to 184. Should be “the default value for the type, as defined in the implementation language.” Or are we saying xs:int maps to intObject?

�Remove. Covered in the section on facets.

�Fix alignment and text color

�Fix text color

�Does this invite unnecessary controversy? Does it add anything to the spec?

�This is COR07040001

�This is 7.1 point 12

�What does this say?

�See 7.1 point 4

�This is covered in 7.4.2

�Compliance point?

�In general, I don’t think we should handle redefines, except maybe when the original type has never been read. And in this case, the redefubed is just something else that is expanded “in place” and doesn’t need to be called out in a separate bullet.

�I think we should add some wording about not allowing types to be redefined.

�Why MAY?

�We’ve no added this restriction to type and property, so can remove it here.

�Fix text color

�Having cleared up move/ delete, do we still need this paragraph?

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 136
SDO Core Specification Version 3.0

13 November 2009

Copyright © OASIS® 2003, 2008. All Rights Reserved.

Page 76 of 132

[image: image1.png]OASIS)

[image: image22.wmf]Consumer

(

Presentation

Layer

,

Composite

,

...)

Data Access

Service

(

actually a

specific

business logic

encapsulation

,

e

.

g

.

the

Order service

)

keep

operate

[image: image23.wmf]Consumer

(

Presentation

Layer

,

Composite

...)

Data Access

Service

(

actually a

specific

business logic

encapsulation

,

e

.

g

.

the

Order service

)

call for update

[image: image24.wmf]Consumer

(

Presentation

Layer

,

Composite

...)

Data Access

Service

(

actually a

specific

business logic

encapsulation

,

e

.

g

.

the

Order service

)

call

provide

[image: image25.wmf]Consumer

(

Presentation

Layer

,

Composite

,

...)

Data Access

Service

(

actually a

specific

business logic

encapsulation

,

e

.

g

.

the

Order service

)

keep

operate

_1309261698.vsd
Consumer
(Presentation Layer,
Composite, ...)

Data Access Service
(actually a specific business logic encapsulation, e.g. the Order service)

keep

operate

_1309261699.vsd
Consumer
(Presentation Layer,
Composite...)

Data Access Service
(actually a specific business logic encapsulation, e.g. the Order service)

call for update

