[image: image1.png]OASIS)

Search Web Services Technical Committee
Scan Operation

DRAFT

October 8, 2010
CONTENTS

1
Overview and Model
1.1
Data model
1.2
Processing Model
1.3
Diagnostic Model
1.4
Explain Model
1.5
Serialization Model
2
Request Parameters
2.1
Summary of Request Parameters
2.2
Additional Description of Request Parameters
2.2.1
scanClause
2.2.2
responsePosition and maximumTerms
2.3
Serialization of Request Parameters
3
Response Elements
3.1
Summary of Response Elements
3.2
Term
3.3
Additional Description of Response Elements
3.3.1
whereInList
3.4
Example Scan Response
4
Diagnostics
5
Extensions
6
Echoed Request
7
Conformance
A.
Bindings to Lower Level Protocol (Normative)
B.
Scan XML Schema

1 Overview and Model

This is a specification of the Scan operation which is a companion operation to searchRetrieve. While the searchRetrieve operation enables searches for specific terms within the records, the scan operation allows the client to request a range of the available terms at a given point within a list of indexed terms. This enables clients to present an ordered list of values and (if supported) how many hits there would be for a search on a given term. Scan is often used to select terms for subsequent searching or to verify a negative search result.
1.1 Data model

Search engines often create indexes on the fields that they search. These indexes can consist of all or part of the contents of single fields or combinations of fields from records in their database. Some of these indexing search engines are capable of exposing the lists of search terms that they have generated. An exposable list of search terms is called a scanable index (or index when it is clear from the context that a scanable index is meant.)
Each scanable index is sorted according to an order that is defined by the server and may be different for different indexes.

1.2 Processing Model

The client provides the name of a scanable index, and a term that may or may not be in the index. The server locates either that term within the index or the term that is closest (in terms of the order defined for that index), and responds with an ordered list of terms, some before and/or some following the supplied term. The supplied term itself may or may not be in the index, and if not does not appear in the supplied list. (The numbers of terms preceding and/or following the supplied term are determined by parameters supplied in the request.)

1.3 Diagnostic Model

Diagnostics can be returned for a number of reasons. Typically, these are fatal errors and no terms will be returned along with the diagnostic.
1.4 Explain Model

The server lists the names of all indexes in its Explain file. For those indexes that are scanable, the attribute “scan” will be set to “true” in the <index> element of the index. The absence of “scan=’true’” on the <index> element is not proof that scan is not supported for that server.
1.5 Serialization Model

Requests can be sent as HTTP GET requests. Some servers support POST requests with the parameters encoded as form elements. Responses are only defined for XML, but other response serializations, such as JSON are possible through use of either the httpAccept parameter or through content negotiation (when supported).
2 Request Parameters

2.1 Summary of Request Parameters
The request parameters are summarized in the following table.

Table 1. Summary of Request Parameters.
	PRIVATE
Name
	Occurence
	Description or Reference

	scanClause
	mandatory
	See scanClause

	responsePosition
	optional
	See responsePosition and maximumTerms

	maximumTerms
	optional
	

	httpAccept
	optional
	A content type that the response should be serialized as.

	stylesheet
	optional
	A URL for a stylesheet. The client requests that the server simply return this URL in the response.

	extraRequestData
	optional
	Provides additional information for the server to process.

2.2 Additional Description of Request Parameters

Request parameters requiring additional description are described/
2.2.1 scanClause

The client supplies the parameter scanClause in the request, indicating the index to be scaned and the start point within it.
The scanClause is expressed as a complete CQL search clause: index, relation, term. The term is the position within the ordered list of terms at which to start, and is referred to as the start term.

For example, the scanClause “title==cat” indicates the index ‘title’ and start term ‘cat’.

The relation and relation modifiers may be used to determine the format of the terms returned. For example 'title any cat' will return a list of keywords, whereas 'title == cat' would return a list of full title fields. Range relations such as ‘<’, ‘>’, ‘within’ may not be used.

2.2.2 responsePosition and maximumTerms

The client supplies the parameter responsePosition in the request, indicating the position within the list of terms returned where the client would like the start term to occur. Its value is an integer. The default value is server defined.

Note that the startTerm may or may not be part of the index. The expression nearest term means the startTerm if it is part of the index, or if it is not, the term nearest (as defined by the server) to where the startTerm would have been, if it had been part of the index.

The client also supplies the parameter maximumTerms, the number of terms which the client requests be supplied in the response. Its value is a positive integer and its default value if not supplied is determined by the server.
Let P and M be the value of responsePosition and maximumTerms respectively.

The first term in the list is determined as follows.

· If P is zero or less, the nearest term is not included. The first term in the list is the term that comes Q terms after the nearest term, where Q= |P|+1. (Absolute value of P plus 1) E.g., if P=-1, then the first term in the list should be the second term following the nearest term.
· If P is positive, the first term in the list should be the term that comes Q terms before the nearest term, where Q= P-1. (E.g., if P=3, this means that the nearest term should be third in the list which means that the first term in the list should be the second term preceding the nearest term.)
· Note that if P exceeds M, then the start term is not included in the list; all members of the list precede the start term.
The actual number of terms supplied in the list SHOULD NOT exceed M, but may be fewer, for example if the end of the term list is reached.

	Example

Suppose

· the index consists of the following terms in this order: A,B,C,D,E,F,G,H

· nearest term is D

· maximumTerms = 3

Then:

· If startTerm= -1, The list supplied will be F,G,H

· If startTerm= 0, the list supplied will be E,F,G

· If startTerm= 1, the list supplied will be D,E,F

· If startTerm=4, the list supplied will be A,B,C

2.3 Serialization of Request Parameters

Example: Get 25 title terms centered on the word “frog”
http://myserver.com/sru? scanClause=dc.title = frog &responsePosition=13&maximumTerms=25

Example: If the last term returned by the first example was “goat”, ask for the term “goat” and the 24 terms that follow it. From a user perspective, this would be a “page down” through the ordered list of title terms

http://myserver.com/sru? scanClause=dc.title = goat &responsePosition=1&maximumTerms=25

Example: if the first term returned by the first example was “eel”, ask for the term “eel” and the 24 terms that preceed it. From a user perspective, this would be a “page up” from the original list through the ordered list of title terms

http://myserver.com/sru? scanClause=dc.title = eel &responsePosition=25&maximumTerms=25

3 Response Elements
3.1 Summary of Response Elements

The response elements are summarized in the following table.

Table 2. Summary of Response Elements.
	PRIVATE
Name
	Type
	Occurence
	Description and/or Reference

	<terms>
	sequence of <term>
	optional
	A sequence of terms which match the request. See Terms.

	<diagnostics>
	sequence of <diagnostic>
	Optional
	A sequence of non surrogate diagnostics generated during execution. See Diagnostics.

	<extraResponseData>
	xmlFragment
	Optional
	Additional information returned by the server. See Extensions.

	<echoedScanRequest>
	<echoedScanRequest>
	Optional
	The request parameters echoed back to the client in a simple XML form. See Echoed Request.

3.2 Term

The element <terms> consists of one or more element <term> each of which has the following subelements.
Table 3. Subelements of element <term>

	PRIVATE
Name
	Type
	Occurence
	Description

	<value>
	xs:string
	mandatory
	The term, exactly as it appears in the index.

	<numberOfRecords>
	xs:nonNegativeInteger
	optional
	The number of records which would be matched if the scanClause were to be searched, with the value of the <value> element substituted for the term.

	<displayTerm>
	xs:string
	optional
	A string to display to the end user in place of the term itself. For example this might add back in diacritics or capitalization which do not appear in the index.

	<whereInList>
	xs:string
	optional
	See whereInList.

	<extraTermData>
	xmlFragment
	optional
	Additional information concerning the term. See Extensions.

3.3 Additional Description of Response Elements

Response Elements requiring additional description are described.

3.3.1 whereInList

whereInList is provided as a hint about where a term occurs in an ordered index. Often, its presence will explain why fewer terms were returned than requested, but it will also occur when the requested number of terms has been returned.

The sublement <whereInList> (subelement of <term>) is optional; if supplied it MUST have one of the following values:

· 'first' (the first term in the index)
· 'last' (the last term in the index),
· 'only' (the only term in the index)
· 'inner' (an interior term)
3.4 Example Scan Response
<sru:scanResponse

 xmlns:sru="info:srw/xmlns/sru-2-0-v1"

 xmlns:diag="info:srw/xmlns/sru-2-0-diag-v1">

<sru:terms>

<sru:term>

<sru:value>cartesian</sru:value>

<sru:numberOfRecords>35645</sru:numberOfRecords>

<sru:displayTerm>Carthesian</sru:displayTerm>

</sru:term>

<sru:term>

<sru:value>carthesian</sru:value>

<sru:numberOfRecords>2154</sru:numberOfRecords>

<sru:displayTerm>CarthÉsian</sru:displayTerm>

</sru:term>

<sru:term>

<sru:value>cat</sru:value>

<sru:numberOfRecords>8739972</sru:numberOfRecords>

<sru:displayTerm>Cat</sru:displayTerm>

</sru:term>

<sru:term>

<sru:value>catholic</sru:value>

<sru:numberOfRecords>35</sru:numberOfRecords>

<sru:displayTerm>Catholic</sru:displayTerm>

<sru:whereInList>last</sru:whereInList>

<sru:extraTermData>

<myserver:ID>4456888</myserver:ID>

</sru:extraTermData>

</sru:term>

</sru:terms>

<sru:echoedScanRequest>

<sru:version>1.1</sru:version>

<sru:scanClause>dc.title="cat"</sru:scanClause>

<sru:responsePosition>3</sru:responsePosition>

<sru:maximumTerms>3</sru:maximumTerms>

<sru:stylesheet>http://myserver.com/myStyle</sru:stylesheet>

</sru:echoedScanRequest>
</sru:scanResponse>

4 Diagnostics

The following diagnostics are specific to Scan:

	General Diagnostics

	Number
	Description
	Details Format

	4
	Unsupported operation
	note
	

	Diagnostics relating to Scan

	Number
	Description
	Details Format

	120
	Response position out of range
	note
	

	121
	Too many terms requested
	note
	maximum number of terms

In addition to the Scan-specific diagnostics, most of the CQL diagnostics apply.
5 Extensions

Both in the request and in the response, additional information may be provided - in the request by an extension parameter (whose name is constructed as described next) and in the response by the <extraResponseData> element.

5.1 Extension Request Parameter

An extension parameter takes on the name of the extension. It must begin with 'x-' : lower case x followed by hyphen. (SRU will never define a parameter with a name beginning with 'x-').

The extension definition MUST supply a namespace. It is recommended that the extension name be 'x-' followed by an identifier for the namespace, again followed by a hyphen, followed by the name of the element within the namespace.

 example
http://z3950.loc.gov:7090/voyager?...&x-info4-onScanFail=search
Note that this convention does not guarantee uniqueness since the extension name will not include a full URI. The extension owner should try to make the name as unique as possible. If the namespace is identified by an 'info:srw' URI , then the recommended convention is to name the extension "x-infoNNN-XXX" where NNN is the 'info:srw' authority string, and XXX is the name of the extension. Extension names MUST never be assigned with this form except by the proper authority for the given 'info' namespace.

5.2 Extension Response Element: extraResponseData

An extension definition may (but need not) define a response, to be carried via the extraResponseData element. The extension definition indicates the element names, from the extension’s namespace, which will carry the response information.

 example:

<sru:extraResponseData>

 <auth:token xmlns:auth="info:srw/extension/2/auth-1.0">

 277c6d19-3e5d-4f2d-9659-86a77fb2b7c8

 </auth:token>

 </sru:extraResponseData>
5.3 Behavior

The response may include extraResponseData for a given extension only if the request included the extension parameter for that extension, and the extension definition prescribes a response. Thus, an SRU response may never include unsolicited extraResponseData. For example the response may contain cost information regarding the query or information on the server or database supplying the results. This data must, however, have been requested.

If the server does not recognize an extension supplied in an extension parameter, it may simply ignore it. (For that matter, even if the server does recognize the extension, it may choose to ignore it.) If the particular request requires some confirmation that it has been carried out rather than ignored, then the extension designer should define a response. There may even be an element defined in the response for the server to indicate that it did recognize the request but did not carry it out (and even an indication why). However, the server is never obliged to include a response. Thus though a response may be included in the definition of an extension, it may never be designated as mandatory.

Thus, the semantics of parameters in the request may not be modified by extensions, because the client cannot be assured that the server recognizes the extension. On the other hand, the semantics of parts of the response may be modified by extensions, because the client will be aware that the extension has been invoked, because extensions are always invoked by the client: the response semantics may be changed by an extension only if the client specifically requests the change. Even when a client does request a change in response semantics, it should be prepared to receive regular semantics since servers are at liberty to ignore extensions.

5.4 Echoing the Extension Request

 If the server chooses to echo the request to transform the extension parameter into XML, properly namespaced (the extension parameter name will not transform to a valid element in the SRU namespace). If it encounters an unrecognized element and cannot determine the namespace, the server may either make its best guess as to how to transform the element, or simply not return it at all. It should not, however, add an undefined namespace to the element as this would invalidate the response.

6 Echoed Request

Very thin clients, such as a web browser with a stylesheet, may not have the facility to have recorded the request that generated the response it has just received. The server may thus echo the request back to the client via the response element <echoedScanRequest>. There are no request elements associated with this functionality, the server may choose to include it or not within a response.
<echoedSearchRetrieveRequest> includes subelements corresponding to request parameters, using the same name.

Echoed Request Example

<echoedScanRequest>

 <scanClause>dc.title = dinosaur</scanClause>

 <startPosition>1</startPosition>
 <maximumTerms>20</maximumTerms>

</echoedSearchRetrieveRequest>

In addition to the echoed parameters, note the sub-elements <xQuery> and <baseUrl>.
<xQuery> represents an XCQL rendering of the query. (See XCQL Annex of CQL specification.)

Note: This has two benefits.

· The client can use XSLT or other XML manipulation to modify the query without having a CQL query parser.

· The server can return extra information specific to the clauses within the query.
<baseURL> allows the client to reconstruct queries by simple concatenation, or retrieve the Explain document to fetch additional information such as the title and description to include in the results presented to the user.
7 Conformance

An SRU server must be prepared to at least return SRU diagnostic 4 (Unsupported operation) in response to a scan request.
A. Bindings to Lower Level Protocol (Normative)

B. Scan XML Schema

5
SWS Scan DRAFT * DRAFT * DRAFT * DRAFT * DRAFT * DRAFT * August 5 2010

Page 12 of 14

