<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
Oasis Security Services Bindings Model

Prateek Mishra
Chris Ferris
Jeff Hodges
<big><small>Evan Prodromou</small>
</big>
draft-sstc-bindings-model-03.html
21-May-2001

1Oasis Security Services Bindings Model

Introduction
1
Scope
1
Contents
2
General Guidelines for Specifying Protocol Bindings and Profiles
2
Process Framework for Describing and Registering Protocol Bindings and Profiles
3
Protocol Bindings
3
Profiles
7
References
12
Appendix A
13

comments to: security-bindings@lists.oasis-open.org

This document is an OASIS-Draft and is [largely] in conformance with relevant OASIS SSTC document standards as described in draft-sstc-doc-guidelines-00.txt.

Introduction

Scope

<big>Other Oasis Security Services TC subcommittees (e.g. Core Assertions and Protocol) are producing a specification of SAML security assertions and one or more SAML</big><big>
</big><big>request-response message exchanges: </big>
<big>The high-level goal of this document is to specify how: </big>
<big>(1) SAML request-response messages exchanges are mapped onto standard messaging or communication protocols. An instance of </big><big>
</big><big>of such a mapping is termed a SAML </big><big>protocol binding</big><big> ; in the context of a specific protocol <FOO> is termed a </big><big>SAML <FOO> binding</big><big>. </big><big>
</big>
<big>(2) SAML security assertions are embedded in or combined with other objects (e.g. files of various types, protocol data units of communication protocols) at an originating site, </big><big>
</big><big>communicated from an originating site to a destination site, and subsequently processed at the destination site. A set of rules</big><big>
</big><big>describing how to embed and extract SAML assertions into a framework or protocol is termed a </big><big>profile</big><big> for SAML; in the context of a </big><big>
</big><big>specific class of <FOO> objects is termed a </big><big><FOO> profile</big><big> for SAML. </big>
<big>(1) and (2) MUST be specified in sufficient detail to yield interoperability when independently implemented.</big>
Contents

<big>The remainder of this document is in four sections:</big>
· <big>General guidelines for the specification of protocol bindings and profiles. The intent here is to provide a checklist that MUST or SHOULD be filled out when developing a protocol binding or profile for a specific protocol or framework. </big>
· <big>A process framework for describing and registering proposed and future protocol bindings and profiles. </big>
· <big>Protocol bindings for selected protocols. Bindings MUST be specified in enough detail to satisfy the inter-operability requirement. </big>
· <big>Profiles for selected protocols and frameworks. Profiles MUST be specified in enough detail to satisfy the inter-operability requirement.</big>

General Guidelines for Specifying Protocol Bindings and Profiles

<big> </big>
<big>Issues that MUST be identified in each protocol binding and profile:</big><big>
</big><big>
</big><big>(1) Support for Confidentiality: can a third party view the contents of SAML messages and assertions? What mechanisms are recommended for securing confidentiality? Does the binding or profile require confidentiality?</big><big>
</big><big>
</big><big>(2) Number and type of interactions involved in each protocol binding or profile. Restrictions on applications and protocols involved in each interaction.</big><big>
</big><big>
</big><big>(3) Identification of parties involved in each interaction: how many parties are involved in the interaction? Can intermediaries be involved?</big>
<big>(4) Authentication of parties involved in each interaction: What types of authentication are acceptable?</big><big>
</big><big>
</big><big>(5) Message Integrity</big><big>
</big><big>
</big><big>(6) Error states: characterization of error states at each participant, especially those that receive and process SAML assertions or messages.</big>

Process Framework for Describing and Registering Protocol Bindings and Profiles

<big>When a profile or protocol binding is registered, the following information is supplied:</big>
<big> </big>
1. <big>Identification: specify a URI that authoritatively identifies this profile or protocol binding.</big>
2. <big>Contact information: specify the postal and electronic contact information for the author of the profile or protocol binding.</big>
3. <big>Description: the description MUST follow the general guidelines for profiles and protocol bindings given above.</big>
4. <big>Updates: references to previously registered profiles or bindings that the current entry improves or obsoletes.</big><big>
</big>
<big>ISSUE: Who will maintain the registry of profiles and bindings??</big>

Protocol Bindings

HTTP

Introduction

<big>HTTP is among the most commonly used Internet application protocol today.There are any number of implementations of the protocol that allow rapid development of dynamic servers or clients. With the possible exception of SMTP mail servers, HTTP servers withstand the greatest collective load, in terms of performance, stability, and security, of any other class of software. For these reasons -- widespread use, robust implementations, and diverse development platforms -- it makes sense to leverage HTTP, and HTTP software, for the exchange of SAML messages.</big>
<big> </big>
<big>The following binding description derives from the HTTP binding provided with the AuthXML standard (see references). Note that the current version of SAML as of this writing has two different message formats, which will probably change over time. For this reason, this binding document merely refers to them as "request messages" and "response messages" without particular information about the content or structure of the message. </big>
<big> </big>
<big>Note that this document does not treat the issue of passing SAML assertions or assertion tokens from a standard Web browser to a Web server. Instead, it concentrates on using HTTP as a transport layer for SAML messages, without the restrictions that standard Web browsers impose. In most cases, this binding will be used as a service-to-service binding, rather than a user-to-service binding.</big>
<big> </big>
<big>Some design goals of this binding are as follows:</big>
<big>* Enable using existing HTTP software (Web servers, client libraries) to create SAML services.</big>
<big>* Minimize requirements for supporting the somewhat complex HTTP protocol.</big>
<big>* Minimize the information carried in HTTP headers and other data. Except in extreme situations, information should be passed as SAML.</big>
<big> </big>
<big>Readers of this document should be familiar with HTTP/1.1, which is linked in the references section.</big>
Overview

<big>The message protocol for SAML is based on a request-response metaphor. This naturally maps to the HTTP request-response method. So, for most types of interaction between systems, a request message is sent as an HTTP request, and a response message is sent as an HTTP response.</big>
<big>In the discussion that follows, the following terms are used:</big>
<big>* request message -or- request: A SAML request XML object.</big>
<big>* response message -or- response: A SAML response XML object.</big>
<big>* HTTP request: An HTTP request, as distinct from a SAML request.</big>
<big>* HTTP response: An HTTP response, as distinct from a SAML response.</big>
<big>* requester: The party sending the request.</big>
<big>* responder: The party sending the response.

</big>
 HTTP Binding

4.1. Connections
<big>As with all HTTP connections, the requester will initiate the connection. Connections MUST be one way. Multiple requests and corresponding responses MAY be sent over a single connection, per the HTTP 1.1 specification. The requester MUST only send requests through the connection, and the responder MUST only send responses through the connection. If the parties to the conversation exchange roles.</big>
<big> </big>
<big>[Rationale: most HTTP implementations have a clear delineation between HTTP client and HTTP server interfaces. Sending requests to a client implementation may cause unexpected behavior in the client.]</big>
<big> </big>
<big>The Connection header MAY be added to an HTTP request to request that the connection be closed after the response is given. "Connection: close" is the only allowed field in this header, in which case the responder MUST add the "Connection: close" header to the response and MUST close the connection after completing the response.</big>
<big> </big>
<big>If the "Connection: close" header is not added to the request, the connection will be handled per the default for the HTTP version of the request. If the HTTP version of the request is 1.0, the connection will be automatically closed by the responder. If the HTTP version is 1.1, the connection will be maintained by the responder, unless a "Connection: close" header was added to the response (See section 4.3</big>
<big>below).</big>
4.2. Request Messages
<big>A request message is bound to an HTTP request.</big>
<big>The request MUST use the POST method. The HTTP version MUST be one of"1.0" or "1.1".</big>
<big>The request MUST have a Content-Type of "text/xml".</big>
<big>The content of the HTTP request MUST be exactly one request message. Additional content MUST NOT be included in the HTTP request.</big>
<big>The Host, Date, Content-Type and Content-Length headers MUST be provided in the HTTP request and be correct. A Connection header may be added as noted above in section 4.1.</big>
<big>Additional HTTP headers MAY be provided, but parties in the conversation MUST ignore those other headers.</big>
<big>[Rationale: many existing HTTP libraries will add additional headers to an HTTP request. The intent is to ensure a minimal number of headers required to handle the binding, without requiring that implementations write their own HTTP code.]</big>
<big>Content-Encoding or Transfer-Encoding schemes MUST NOT be used.</big>
<big>[Rationale: SAML messages are relatively small and should not require chunked encoding or compression. Forbidding Content- or Transfer-Encoding will allow implementers to safely ignore these fairly advanced and costly HTTP features.]</big>
4.3. Response Messages
<big>If a request can be handled and generates a response, the response will be bound to an HTTP response message. If the responder cannot or will not generate a SAML response, the responder MUST send one of the HTTP error responses defined in section 4.6. The rest of this section will treat only successful responses.</big>
<big>[Note that success, in this context, means that a SAML response was generated. It does not mean that the request was fulfilled or have domain level meaning, such as that authorization was granted, etc. The SAML response may have failure notifications per the SAML protocol.]</big>
<big>The HTTP response MUST have a status code of 200. The HTTP version MUST be one of "1.0", "1.1".</big>
<big>The response MUST have a Content-Type of "text/xml".</big>
<big>The content of the HTTP response MUST be exactly one response message. Additional content MUST NOT be included in the HTTP response.</big>
<big>The Host, Date, Content-Type and Content-Length headers MUST be provided in the HTTP response and be correct. A Connection header may be added as noted above in section 4.1.</big>
<big>Additional HTTP headers MAY be provided, but parties in the conversation MUST ignore those other headers.</big>
<big>Content-Encoding or Transfer-Encoding schemes MUST NOT be used.</big>
4.4. Message Integrity
The integrity of both requests and responses may be preserved in one of two ways.

4.4.1. XML Signature

If this technique is used, an XML digital signature MUST be added to the entire request or response. The digital signature MAY be embedded in the message, or the message MAY be embedded in the signature.

4.4.2. HTTP/S with Certificates

Alternately, the HTTP conversation may be conducted over a Secure Sockets Layer (SSL) connection. In this case, both parties (requester and responder) MUST provide digital certificates for the SSL layer.

4.5. Message Confidentiality

HTTP/S MAY be used preserve message confidentiality. If integrity is protected using XML Signatures, neither party is required to provide a digital certificate.

4.6. Errors

The following error messages may be sent by the responder for a SAML message. [Note that in the following section, the error text is not normative, but gives an indication of what the error code means. Only the error number is normative.]

For all status values besides "200", the "Connection: close" header MUST be sent, and the connection between requester and responder MUST be closed.

4.6.1. 200 OK
The responder received the request and successfully generated a response. The response may contain a SAML error code or further SAML
information. The meaning of the 200 message is "more info in SAML content."

4.6.2. 400 Bad Request

The responder received the request, but the request was ill-formed in some way. The content of the Response is undefined, but it SHOULD NOT
be a SAML message. The content of the Response MAY be a stock piece of HTML or plain text explaining the nature of the error.

[Rationale: Some HTTP server software will add stock explanations for error status codes.]

This result code is appropriate for requests with bad HTTP headers, HTTP methods other than "POST", or with syntactically incorrect SAML content.

4.6.3. 403 Forbidden

The responder has received the request, but refuses to perform a SAML message exchange with the requestor. The content of the Response is
undefined, but it SHOULD NOT be a SAML message. The content of the Response MAY be a stock piece of HTML or plain text explaining the nature of the request.

4.6.4. 500 Internal Server Error
T<big>he responder has received the request but has failed to produce a response, due to internal error. The content of the Response is</big><big>
</big><big></big><big>undefined, but it SHOULD NOT be a SAML message. The content of the Response MAY be a stock piece of HTML or plain text explaining the nature of the request.</big>
<big>Profiles</big>
Web Browser Profile

<big>The user is utilizing a standard off-the-shelf browser and SAML assertions must be conveyed from one site to another through the browser (i.e., there is no direct site-to-site interaction). The only general technique available is based on URL query strings; note that use of cookies requires that both the source and destination site belong to the same "cookie domain". While [RFC2616] does not specify any restrictions on URL length, in practice commercial web browsers and </big><big>
</big><big>application servers impose constraints on URL size [Appendix A]. This suggests the use of some form of "small" fixed-size SAML artifact, which can be carried as part of the URL query string and thereby transferred from source to destination site. The destination site would then utilize information contained within the SAML artifact to "pull" a SAML assertion from the source site to the destination site.</big>
<big> </big><big>PRIVATE "TYPE=PICT;ALT=Figure 1: SSO Diagram"
</big>

The web browser profile involves two interactions (in sequence) and three parties.

The first interaction involves a source site, a user equipped with a browser and a destination site. The user authenticates at the source web site (step (1)), and the source web site provides a HTML page (or re-direct link) to the user browser (step (2) which includes the destination URL combined with a SAML artifact. The SAML artifact is carried as part of the destination URL query string:

<destination> ::= https://destination_URL. . .?SAMLart=<artifact body>. . .

The first interaction completes when the user attempts to access the destination URL (step (3)) and delivers both the destination URL and the SAML artifact to (a web server at) the destination site. If the destination site is unable to process this information it MUST return a "400 Bad Request" error code to the browser. Confidentiality is supported by requiring that the destination URL MUST be exposed over HTTPS (HTTP over server-side SSL).

The second interaction involves a SAML message exchange between source and destination site (step (4)) utilizing a SAML protocol binding. The destination site sends a <SAMLQuery> message to the source site, which includes information adequate to identify a SAML assertion at the source site. If the source site can find the required assertion it responds with a <SAMLQueryResponse> message which includes the desired assertion within it. Otherwise, it returns an "assertion not found" error to destination site. The selected SAML protocol binding MUST support confidentiality.

The exact format and size of the SAML artifact is somewhat implementation dependent. We would require the following properties from any implementation:

1. The SAML artifact must identify the source site to the destination site; the SAML artifact must identify the relevant assertion to the destination site.

The SAML artifact MUST be a "one-time use ticket"; once the user completes step (3) above, any further GET <destination> must fail.

The SAML artifact MUST utilize adequate crypto so that it is difficult to forge.

The SAML artifact MAY be authenticated by the source web site.

We would expect there to be a large amount of variability in the design of artifact formats. This variability is accommodated by a mandatory two byte artifact type code in the proposed representation:

<SAML_artifact> := B64 representation of <TypeCode> <Remaining artifact>
<TypeCode> := Byte1Byte2
There are many possible implentations of

<Remaining artifact> ([Core-Assertions-Examples, Shib-Impl]. Below, we describe an instance called a web browser basic profile.

Web Browser Basic Profile

<TypeCode> := 0x0001
<RemainingArtifact> := <PartnerID> <AssertionID>
<PartnerID> := byte1byte2byte3byte4
<AssertionID> := byte1byte2byte3byte4byte5byte6byte7byte8

<PartnerID> is a four byte value used by the destination site to determine source site identity. It is likely that such a value would have been agreed upon in some out-of-band way between the source and destination site. <AssertionID> MUST be drawn from a random number sequence [RFC1750] generated by the source site and serves to identify the assertion at the source site. There is no authentication component to this profile.

HTTP

[Section 6.2, S2ML] provides some discussion of an HTTP profile which is not constrained by the use of web browsers.

SOAP

PRIVATE "TYPE=PICT;ALT=Figure 2: SOAP Message Transfer"

The SOAP profile for SAML is based on a single interaction between a sending party and a receiving party. The sending party adds with one or more SAML assertions to a SOAP document and sends the message to the receiving party. The message may be sent over any protocol for which a SOAP protocol binding is available [SOAP].

SOAP provides a flexible header mechanism, which may be (optionally) used for extending SOAP payloads with additional information. A header entry is identified by its fully qualified element name, which consists of the namespace URI and the local name. All immediate child elements of the SOAP Header element MUST be namespace-qualified.

SAML assertions MUST be contained within the SOAP <Header> element contained within the SOAP <Envelope> element. Two standard SOAP attributes are available for use with header elements: actor and mustUnderstand. Use of the actor attribute is application dependent and no normative use is specified herein.

The SOAP mustUnderstand global attribute can be used to indicate whether a header entry is mandatory or optional for the recipient to process. SAML assertions MUST have the mustUnderstand attribute set to 1; this ensures that a SOAP processor to which the message is directed must be able to successfully process the SAML assertions or return a SOAP message with <Fault> element as the message body. The returned <Fault> element takes has form:

<Fault>
 <Faultcode>mustUnderstand</Faultcode>
 <Faultstring> . . .</Faultstring>
</Fault>

The following example illustrates the addition of SAML assertions to a SOAP message.

 PRIVATE "TYPE=PICT;ALT=Figure 3: SOAP document with inserted assertions"

In the absence of a [XML-Encryption] specification, confidentiality has to be ensured by selection of a SOAP protocol binding which preserves confidentiality. This would include, for example, HTTPS, S/MIME or some proprietary encryption scheme understood by both sender and recipient.

OPEN ISSUE: The step of adding SOAP assertions to a SOAP message must itself be secured. Once assertions are packaged together with a business payload, some form of message integrity check is required to ensure that neither component has been tampered with or changed. Any solution would seem to require some extension to the assertion element schema as described in [draft-sstc-core-0.7].

Two solutions have been proposed on the security services archive [message-integrity]: (1) a hash of the business payload should be placed in the assertion (2) public key of the sending party is included in the assertion. In case (2), the entire package (assertion + payload) must further be signed using the sending parties private key. Solution (1) has the advantage that it does not require any PKI but it does require that each assertion be obtained in the context of a specific business payload. It does not support the "re-use" of an assertion for multiple payloads.

BEEP

References

[AuthXML] AuthXML: A Specification for Authentication Information in XML.

http://www.oasis-open.org/committees/security/docs/draft-authxml-v2.pdf

[BEEP] The Blocks Extensible Exchange Protocol Core

http://www.normos.org/ietf/draft/draft-ietf-beep-framework-11.txt

[Glossary] OASIS Security Services TC: Glossary.
http://www.oasis-open.org/committees/security/docs/draft-sstc-hodges-glossary-02.html

[S2ML] S2ML: Security Services Markup Language, Version 0.8a, January 8, 2001.

http://www.oasis-open.org/committees/security/docs/draft-s2ml-v08a.pdf

[SASL] Simple Authentication and Security Layer (SASL)

http://www.ietf.org/rfc/rfc2222.txt

[Shib] Shiboleth Overview and Requirements
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html

HYPERLINK "http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html"
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html

[Straw2] Oasis Security Services Use Cases And Requirements, Straw Man Draft 2, 9 Feb 2001
http://unique.outlook.net/~evan/a2mluc/usecases-strawman-2.html
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-requirements-00.html
[Shib-Impl] Ariel Glenn, David L. Wasley, A Possible Model for a Shibboleth Implementation, Version 1.4,
http://middleware.internet2.edu/shibboleth/docs/draft-glenn-shibboleth-model-00.pdf
[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1

[RFC1750] Randomness Recommendations for Security

[SOAP] Simple Object Access Protocol (SOAP) 1.1 , W3C Note 08 May 2000

Appendix A

http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP

The information in this article applies to:

Microsoft Internet Explorer (Programming) versions 4.0, 4.01, 4.01 SP1, 4.01 SP2, 5, 5.01, 5.5

SUMMARY

Internet Explorer has a maximum uniform resource locator (URL) length of 2,083 characters, with a maximum path length of 2,048 characters. This limit applies to both POST and GET request URLs.

If you are using the GET method, you are limited to a maximum of 2,048 characters (minus the number of characters in the actual path, of course).

POST, however, is not limited by the size of the URL for submitting name/value pairs, because they are transferred in the header and not the URL.

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, does not specify any requirement for URL length.

REFERENCES

Further breakdown of the components can be found in the Wininet header file. Hypertext Transfer Protocol -- HTTP/1.1 General Syntax, section 3.2.1

Additional query words: POST GET URL length

Keywords : kbIE kbIE400 kbie401 kbGrpDSInet kbie500 kbDSupport kbie501 kbie550 kbieFAQ

Issue type : kbinfo

Technology :

Issue: 19971110-3 Product: Enterprise Server

Created: 11/10/1997 Version: 2.01

Last Updated: 08/10/1998 OS: AIX, Irix, Solaris

Does this article answer your question?

Please let us know!

Question:

How can I determine the maximum URL length that the Enterprise server will accept? Is this configurable and, if so, how?

Answer:

Any single line in the headers has a limit of 4096 chars; it is not configurable.

issue: 19971015-8 Product: Communicator, Netcaster

Created: 10/15/1997 Version: all

Last Updated: 08/10/1998 OS: All

Does this article answer your question?

Please let us know!

Question:

Is there a limit on the length of the URL string?

Answer:

Netscape Communicator and Navigator do not have any limit. Windows 3.1 has a restriction of 32kb (characters). (Note that this is operating system limitation.) See this article for information about Netscape Enterprise Server.

<map></map>
