Unisoft
DRAFT not for publication

Guidelines for the development of testable API specifications

Unisoft

Introduction

This document contains a series of guidelines for the development of a testable API specification. Most of these guidelines are general in nature and are borne out of experience in reviewing specifications and developing test suites for a large number of different styles of interface and protocol.

The guidelines are not specific to the DASE environment, and try not to assume any underlying language or operating environment. Indeed, the DASE service APIs themselves cover a wide spectrum of interface types and there are potential differences in style that may be needed to cater for this.

Objective

The objective of this document is to outline areas in which authors of API specifications have previously failed to provide adequate information to allow both the API service implementers and the application author to be able to general and use the API in a consistent manner.

This observation leads us to:

Guideline 1

The API should clearly specify the requirements placed on the application author (i.e. the API user) and distinguish these from the requirements placed on the service provider (i.e. the API implementers). This is most easily accomplished by use of specific English language constructs to define the requirements on each party. A suggestion is to define any affirmative clause as a requirement on the API implementers unless it contains the phrase “the application shall …”.

and

Guideline 2

The API should describe in a consistent manner any feature where the application needs to be aware of the variation between implementations. This could result in a specification of the type:

If the application takes a specified action, then the implementation may

respond in this manner or may respond in that manner.

This type of language describes the full set of options that is available to the implementers and the application code will need to ensure that it is able to correctly negotiate any response from the specified set. Also, this type of wording makes it clear that the implementers choice is limited to the set of options described and a “may respond in some other manner” is not allowed.

There may be cases where the implementation is given freedom to respond in any manner and this could result in a specification of the type:

If the application takes a specified action, then the implementation

responds in an unspecified manner.

This type of language can be used to describe the implementation’s response where a badly formed application causes extreme difficulty for the implementers to produce meaningful output.

Structure of the API description

In general, the API description should separately identify the different aspects of the API.

Guideline 3

The API for each interface should contain separate syntactic and semantic descriptions. The syntactic description should provide sufficient information for the application programmer to call the interface from source code written in the language of the specification.

The semantic description should contain sections which define the inputs and outputs of the interface and which detail the error conditions that apply to the interface. In some instances, specific interface behavior may be supplemented by a general description that is generic to a number of interfaces. The interface description should define those parts of any general description that applies. In particular the interface description should detail which, if any, error descriptions apply.

Information relating to performance metric requirements may be included in semantic description, but it is helpful if this data is separately identified.

Content of individual API descriptions

Guideline 4

The API definition should describe any state information relevant to the API call and should indicate the error conditions that occur when the API call is made while the process is not in the required state. It can be helpful to include state transition tables in a general description section that is referenced by the specific APIs affected. The state tables or the API description should specify any state transitions that occur in the case that an API call fails. The default should be that no state changes occur on call failure unless otherwise specified.

Guideline 5

The API definition for a stateless system should define the idempotency requirements associated with the receipt of a duplicate set of input data. The general rule will be that each set of data inputs will be considered independently of previous inputs. Any special rules associated with duplication should be specified, either in terms of error indication or in terms of idempotency.

Guideline 6

Where any combination of input values has a different (combinatorial) effect from the effect of the same values individually, then the effect of each such combination should be described. Error conditions associated with invalid combination of inputs should be described.

Ancillary information

There are a number of additional factors that may affect the implementation of the API and the manner in which it can be used by an application. These can affect the portability of an application or affect the system wide limits that an application needs to consider.

Guideline 7

Where there are limits on the number of instances of a particular entity that the system is expected to support, the API should define those limits either in absolute terms or via a means to interrogate those limits. The interrogation feature should be an API call (or set of API calls) that allows separate interrogation of each limit value. The API call may also include feature interrogation to determine whether a required facility is available.

Guideline 8

Where an application is required to use a specific set of values to satisfy portability constraints or to enable the correct information to be passed to other parts of the system, these values should be fully specified. Where values may differ between implementations, this should be made clear in the specification and a suitable mnemonic used to identify the value.

Guideline 9

Where an interface relies on the specifications contained in another standard or specification, the API description should reference the necessary part of that specification. The reference should, where possible be to an existing specification rather than to a future or changeable version.

DRAFT

Not for publication

