RSA Digital Signature Standards

Burt Kaliski, RSA Laboratories
I. Background
II. Forgery and provable security
III. Contemporary signature schemes
IV. Standards strategy
Part I: Background
General Model

• A signature scheme consists of three (or more) related operations

• *Key pair generation* produces a public/private key pair

• *Signature operation* produces a signature for a message with a private key

• *Verification operation* checks a signature with a public key
Types of Signature Scheme

- M_r = recoverable part
- M_{nr} = non-recoverable part

- **Appendix:** message transmitted with signature
- **Total message recovery:** message recoverable from signature
- **Partial message recovery:** part of message recoverable from signature, part transmitted
A *one-way function* $f(x)$ is easy to compute but hard to invert:
- easy: $x \rightarrow f(x)$
- hard: $f(x) \rightarrow x$

A *trapdoor* one-way function has trapdoor information f^{-1} that makes it easy to invert:
- easy: $f(x), f^{-1} \rightarrow x = f^{-1}(f(x))$

Many but not all signature schemes are based on trapdoor OWFs
RSA Trapdoor OWF

• The RSA function is

\[f(x) = x^e \mod n \]

where \(n = pq \), \(p \) and \(q \) are large random primes, and \(e \) is relatively prime to \(p-1 \) and \(q-1 \)

• This function is conjectured to be a trapdoor OWF

• Trapdoor is

\[f^{-1}(x) = x^d \mod n \]

where \(d = e^{-1} \mod \text{lcm}(p-1,q-1) \)
• An embedding operation $\mu(M)$ maps from message strings to “message representatives,” which can be input to f^{-1}
 – e.g., a hash function with padding
 – may be randomized

• Inverse operation checks whether a message representative is correct
 – in scheme with message recovery, also recovers message part

• Current RSA signature schemes differ primarily in terms of the embedding operation
• Signature generation embeds message, applies trapdoor:
 \[s = f^{-1}(\mu(M)) \]

• Signature verification applies OWF, checks against message:
 \[\mu^{-1}(f(s), M) \text{ valid?} \]
Scheme with Message Recovery

- Signature generation embeds message, applies trapdoor:
 - \(s = f^1(\mu(M_r, M_{nr})) \)
- Signature verification applies OWF, checks against \(M_{nr} \), recovers \(M_r \):
 - \(M_r = \mu^{-1}(f(s), M_{nr}) \)
Embedding Properties

• Embedding operation should have similar properties to a hash function:
 – one-way: for random \(x \), hard to find \(M \) s.t. \(\mu(M) = x \)
 – collision-resistant: hard to find \(M_1, M_2 \) s.t. \(\mu(M_1) = \mu(M_2) \)

• May also identify underlying algorithms
 – but if so, must be done with care

• Should also interact well with trapdoor function
 – ideally, mapping should appear “random”
Multiplicative Properties of RSA

- RSA function is a *multiplicative homomorphism*: for all x, y,

\[
f(\text{xy mod } n) = f(x) \cdot f(y) \mod n
\]

\[
f^{-1}(\text{xy mod } n) = f^{-1}(x) \cdot f^{-1}(y) \mod n
\]

- More generally:

\[
f^{-1}\left(\prod x_i \mod n\right) = \prod (f^{-1}(x_i)) \mod n
\]

- Property is exploited in most forgery attacks on RSA signatures, but also enhances recent security proofs.
Part II: Forgery and Provable Security
Signature Forgery

• A *forgery* is a signature computed without the signer’s private key.

• Forgery attacks may involve interaction with the signer: a *chosen-message* attack.

• Forgery may produce a signature for a specified message, or the message may be output with its signature (*existential forgery*).
Based on the multiplicative properties of the RSA function, if

\[\mu(M) = \prod \mu(M_i)^{\alpha_i} \mod n \]

then

\[\sigma(M) = \prod \sigma(M_i)^{\alpha_i} \mod n \]

Signature for \(M \) can thus be forged given the signatures for \(M_1, \ldots, M_l \) under a chosen-message attack.
Small Primes Method

• Suppose \(\mu(M) \) and \(\mu(M_1), \ldots, \mu(M_l) \) can be factored into small primes
 – Desmedt-Odlyzko (1986); Rivest (1991 in PKCS #1)

• Then the exponents \(\alpha_j \) can be determined by relationships among the prime factorizations

• Requires many messages if \(\mu \) maps to large integers, but effective if \(\mu \) maps to small integers

• Limited applicability to current schemes
Recent Generalization

• Consider $\mu(M)$, $\mu(M_1)$, ..., $\mu(M_i)$ mod n, and also allow a fixed factor
 – Coron-Naccache-Stern (1999)

• Effective if μ maps to small integers mod n times a fixed factor

• Broader applicability to current schemes:
 – ISO 9796-2 [CNS99]
 – ISO 9796-1 [Coppersmith-Halevi-Jutla (1999)]
 – recovery of private key for Rabin-Williams variants [Joye-Quisquater (1999)]
Integer Relations Method

• What if the equation

\[\mu(M) = f(t) \prod \mu(M_i)^{\alpha_i} \]

could be solved without factoring?

• Effective for *weak* \(\mu \)

• ISO 9796-1 broken with *three* chosen messages
 [Grieu (1999)]
A reduction proof shows that inverting the function f “reduces” to signature forgery: given a forgery algorithm F, one can construct an inversion algorithm I.

Provable security: inversion hard \rightarrow forgery hard

“Tight” proof closely relates hardness of problems
• In the *random oracle* model, certain functions are considered “black boxes”: forgery algorithm cannot look inside
 – e.g., hash functions

• Model enables reduction proofs for generic forgery algorithms — inversion algorithm hides value to be inverted in oracle outputs

• Multiplicative properties of RSA can enhance the proof
Part III: Contemporary Signature Schemes
Overview

• Several popular approaches to RSA signatures
• Approaches differ primarily in the mapping μ
• Some differences also in key generation
• Some also support Rabin-Williams (even exponent) signatures

• There are many other signature schemes based on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2); focus here is on those involving the RSA function
Schemes with Appendix

• Basic scheme
• ANSI X9.31
• PKCS #1 v1.5
• Bellare-Rogaway FDH
• Bellare-Rogaway PSS
• IEEE P1363a version of PSS
Basic Scheme

- $\mu(M) = \text{Hash}(M)$
- Pedagogical design
- Insecure against multiplicative forgery for typical hash sizes
- (Hopefully) not widely deployed
\[\mu(M) = 6b\ bb \ldots\ bb\ ba \ || \ Hash(M) \ || \ 3x\ cc \]

where \(x = 3 \) for SHA-1, 1 for RIPEMD-160

- Ad hoc design
 - cc octet for RW support

- Resistant to multiplicative forgery
 - some moduli are more at risk, but still out of range

- Widely standardized
 - IEEE 1363, ISO/IEC 14888-3
 - US NIST FIPS 186-1

- ANSI X9.31 requires “strong primes”
PKCS #1 v1.5
(RSA Encryption Standard, 1991)

• $\mu(M) = 00\ 01\ \text{ff} \ldots\ \text{ff}\ 00\ ||\ \text{HashAlgID}\ ||\ \text{Hash}(M)$

• Ad hoc design

• Resistant to multiplicative forgery
 – moduli near 2^k are more at risk, but still out of range

• Widely deployed
 – SSL certificates
 – S/MIME

• Included in IEEE P1363a; PKCS #1 v2.0 continues to support it
ANSI X9.31 vs. PKCS #1 v1.5

- Both are deterministic
- Both include a hash function identifier
- Both are ad hoc designs
 - both resist [CNS99]/[CHJ99] attacks
- Both support RSA and RW primitives
 - see IEEE P1363a contribution on PKCS #1 signatures for discussion
- No patents have been reported to IEEE P1363 or ANSI X9.31 for these mappings
Bellare-Rogaway FDH
(Full Domain Hashing, ACM CCCS ’93)

• $\mu(M) = \text{Full-Length-Hash}(m)$

• Provably secure design
 – resists any attack where hash function is considered a black box, provided that RSA is hard to invert

• Variant included in IEEE P1363a, PKCS #1 v2.1 draft
Bellare-Rogaway PSS
(Probabilistic Signature Scheme, Eurocrypt ’96)

• $\mu(M) \approx H \ || \ G(H) \oplus salt$

 where $H = \text{Hash}(salt, M)$, $salt$ is random, and G is a mask generation function

• Provably secure design

• Variant included in IEEE P1363a, PKCS #1 v2.1 draft
FDH vs. PSS

- FDH is deterministic, PSS is probabilistic
- Both are provably secure designs
 - same paradigm as Optimal Asymmetric Encryption Padding (OAEP)
- PSS has tighter security proof, is less dependent on security of hash function
- PSS-R variant supports message recovery, partial message recovery
- PSS is patent pending (but generously licensed)
IEEE P1363a Version of PSS

- $\mu(M) = G(H) \oplus [00 \ldots 01 \ || \ salt] \ || \ H \ || \ bc$

 where $H \approx \text{Hash}(salt, \text{Hash}(M))$, $salt$ is random, and G is a mask generation function

- Salt combined with $\text{Hash}(M)$ rather than M for practical and security reasons:
 - “single-pass” processing
 - provable security if $\text{Hash}(M)$ outside crypto module
 - protection against fault-analysis attacks

- Salt can be omitted for FDH-like scheme
Schemes with Message Recovery

- Basic scheme
- ISO/IEC 9796-1
- ISO/IEC 9796-2
- Bellare-Rogaway PSS-R
- IEEE P1363a version of PSS-R
Basic Scheme

• \(\mu(M_r) = M_r \)

• Another pedagogical design ("textbook RSA")

• Insecure against various forgeries, including existential forgery
 – attacker can select signature \(s \) then “recover” \(M_r = f(s) \)

• Again, hopefully not widely deployed
• $\mu(M_r) = \pi^*(m_{l-1}) \; \pi'(m_{l-2}) \; m_{l-1} \; m_{l-2}$
 $\pi(m_{l-3}) \; \pi(m_{l-4}) \; m_{l-3} \; m_{l-4} \; ...$
 $\pi(m_3) \; \pi(m_2) \; m_3 \; m_2$
 $\pi(m_1) \; \pi(m_0) \; m_0 \; 6$

where m_i is the i^{th} nibble of M_r and π^*, π' and π are permutations

• Ad hoc design with significant rationale

• *Not* resistant to multiplicative forgery [CHJ99] [Grieu 1999]
 – may still be appropriate if applied to a hash value

• Moderately standardized
• $\mu(M_r, M_{nr}) \approx 6a \ || \ M_r \ || \ H \ || \ bc$

• $\mu(M_r) = 4b \ bb \ \ldots \ \ bb \ ba \ || \ M_r \ || \ H \ || \ bc$

where $H = \text{Hash} \ (M_r, M_{nr}) \ or \ \text{Hash} \ (M_r)$
 – (assumes modulus length is multiple of 8)
 – general format allows hash algorithm ID

• Ad hoc design

• Not resistant to multiplicative forgery if hash value is 64 bits or less [CNS99]
 – may still be appropriate for larger hash values

• Newly standardized
Bellare-Rogaway PSS-R
(Probabilistic Signature Scheme with Recovery, 1996)

• $\mu(M_r, M_{nr}) \approx H \parallel G(H) \oplus [salt \parallel M_r]$

where $H = \text{Hash}(salt, M_r, M_{nr})$, $salt$ is random, and G is a mask generation function

• Provably secure design

• Variant included in IEEE P1363a, draft revision of ISO/IEC 9796-2
IEEE P1363a Version of PSS-R

- \[\mu(M_r, M_{nr}) = G(H) \oplus [00 \ldots 01 \mid M_r \mid salt] \mid H \mid bc \]

 where \(H \approx \text{Hash}(salt, M_r, \text{Hash}(M_{nr})) \), \(salt \) is random, and \(G \) is a mask generation function

- Extension of PSS variant
 - PSS variant is special case where \(M_r \) is null
Part IV: Standards
Standards vs. Theory vs. Practice

- ANSI X9.31 is widely standardized
- PSS is widely considered secure
- PKCS #1 v1.5 is widely deployed

- How to harmonize signature schemes?
 - (primary question for signature schemes with appendix; related question for message recovery)
Challenges

• Infrastructure changes take time
 – particularly on the user side

• ANSI X9.31 is more than just another encoding method, also specifies “strong primes”
 – a controversial topic

• Many communities involved
 – formal standards bodies, IETF, browser vendors, certificate authorities
• What if a weakness were found in ANSI X9.31 or PKCS #1 v1.5 signatures?
 – no proof of security, though designs are well motivated, supported by analysis
 – would be surprising — but so were vulnerabilities in ISO/IEC 9796-1,-2

• PSS embodies “best practices,” prudent to improve over time
Proposed Strategy

• Short term (1-2 years): Support both PKCS #1 v1.5 and ANSI X9.31 signatures for interoperability
 – e.g., in IETF profiles, FIPS validation
 – FIPS 186-2 schedule allows PKCS #1 v1.5 for an 18-month transition period, FPKI TWG is requesting a further extension

• Long term (2-5 years): Move toward PSS
 – upgrade in due course — e.g., with AES algorithm, new hash functions
 – separate assurance requirements from interoperability
 • e.g., key sizes, key protection, “strong primes”
Standards Work

• PSS, PSS-R standardization work in progress in various forums:
 – IEEE P1363a
 – PKCS #1 v2.1
 – ISO/IEC 9796-2 revision

• Coordination ongoing, ballot target Spring 2001

• Promotion in other forums planned
 – ANSI X9.31
 – FIPS
 – IETF
Conclusions

• Several signature schemes based on RSA algorithm
 – varying attributes: standards, theory, practice

• Recent forgery results on certain schemes, security proofs on others

• PSS a prudent choice for long-term security, harmonization of standards