1. Unknown

2. Bob Morgan

3. Unknown

4. Phil Hallam-Baker

5. Don Flinn

6. Simon Godik

7. Zahid Ahmed

8. Chris McClaren

9. Aravidan ?????

10. Charles Knouse

11. Larry ?????

12. Darren Plat

13. Gil Pilz

14. Irving Reid

15. Tim Moses

16. Unknown

17. Joe Pato

18. Jeff Hodges

19. Prateek Mishra

10:13 AM – (scribe arrives late as per usual)

General discussion of SAML Profiles tending towards a specific discussion of the SOAP profile.

Prateek: We want to keep it very simple; “Here is a SOAP message. This is how you attach a SAML Assertion to it”

Irving: But then you can’t use Actor Headers.

General discussion about what parts of the SOAP message need to be signed in order to “bind” the Assertion to the header.

Gil: What are the requirements?

Prateek: We need to bind the headers containing the SAML Assertion to the SOAP message.

Gil: Why isn’t this a general SOAP issue?

Jeff: It is, but “they” have not solved this problem yet, so we have to take a stab at it.

More general discussion about this topic.

Larry: Can’t we just specify that the channel-level properties (i.e. SSL) protect against the man-in-the-middle attack that we are worried about?

Simon: Put conditions within the Assertion that say “attached to” or “signed by”.

Gil: But this complicates the creation of Authn Assertions.

Simon: So what?

Prateek: Bob B pointed out that there are issues around signed hashes.

Irving: The mistakes that surround this problem are situations in which pieces of data “ride along” with the rest of the signed data. You have to make sure that you specify exactly what is attached to what (I’m not explaining this very clearly).

Joe holds a straw poll on whether or not a SOAP Profile of SAML is absolutely necessary for the SAML 1.0.

Lots of discussion about the possible options

A. No SOAP Profile of SAML

B. Client Server use of SOAP (no Actor); current spec

C. B with no signing (Security in transport of elsewhere)

D. Sign selective headers

E. Add Condition elements to the base Assertion that can contain signatures and references to bound components.

More discussion.

Discussion on the status of the SOAP security work. Things do not look good in the near term. Microsoft has gone ahead with its own spec and implementation. IBM does not agree. The W3C is not moving forward.

Vote carries to include “some form” of SOAP Profile of SAML in the spec.

Prateek lobbies for the current spec.

Chris: Is it feasible for us to say “here’s how you put the headers in the message and you have to make sure that the headers and the body must be bound together” and leave the hard part for later (presumably when the SOAP Security work is done).

More general discussion.

Bob M: The way to get the spec out on this is to make the text less normative in this area. We can offer comments and suggestions on how one might use SAML to protect SOAP messages without mandating a particular behavior.

PHB: If we are going to go from SSL security to message-level security we need to make things easier, not harder. I am suspicious of things that make specifications simpler. Our security problems stem, in part, from not having a clear enough context of how SAML is going to be used (i.e. nobody has much experience with SOAP yet).

Jeff: If we just use SSL we need to raise the flag on the areas that are not protected by SSL.

Larry: (agreeing) There are other parts of the spec, like the browser profiles, where we have been forced to fall back on transport-level security. We need to call these areas out as well.

Zahid: But option D does solve these problems.

Prateek: (missed the point)

Larry: “C” does not say “use SSL”, it just says we aren’t going to worry about the signing.

Chris: (missed)

Irving: The important difference between “C” and the other options is that we say nothing about the how/what/where of signing.

Zahid: “C” could be okay for some people, but the Microsoft Web-services security does a better job than this.

11:04 AM – Joe calls a break

11:15 AM – return from break

Joe takes straw poll that go with option “C”.

Irving: There is another option between B & C. XML DSIG allows you to cover whatever elements you want. We should specify that the SAML assertion only applies to those elements that it shares a DSIG with.

Chris: This doesn’t protect against the man-in-the-middle attack.

Irving: Well you have to trust the signer.

Irving: This means a weakening of line 828.

Prateek: We need to look into how this would be done. Currently envelope signing doesn’t have to say anything about which elements.

Irving: But an envelope signature can contain bits of XPATH that call out what elements are covered by this signature.

General discussion.

PHB: Proposes a processing model for “correct use of XML-DSIG”.

More general discussion.

Action: Compose proposed changes to SOAP Profile to indicate proposed amendment. Owner – Irving Reid
Prateek continues.

Irving: 847-848; Doesn’t like this because it violates that correct use of <saml:SubjectConfirmation>

Action: Change “subject” in 848 to “sender”. Owner – Irving Reid
(missed Jeff’s objection to some text – Jeff will fix)

Bob B: A useful addition to the example starting at line 851 would be some explanation as to how this example message would be processed.

General discussion around issues of “holder of key” and <saml:SubjectConfirmation>

4.2.3.2 Sender Vouches

Prateek: Should we apply the previous conclusion to line 977-979.

Irving: (some point I missed – basically adding “Sender Vouches” as an <SubjectConfirmation> adds nothing to the picture.

Prateek: I have already captured this issue.

PHB: I have a great deal of problem with any Assertion that does not give you a way to authenticate the subject. What use is an Assertion that can’t be used to authenticate a subject.

Irving: That’s not the issue. The question is “How can I tell whether a particular Assertion applies to a particular message?” Our current solution is to say “You include it with the message and sign the both of them”. We don’t really provide any way of verifying that the subject of the assertion and the sender of the message had anything to do with each other.

General discussion.

Prateek: There is no harm in adding “Sender Vouches” and it conveys more meaning that have no <SubjectConfirmation> at all.

Action: Compose text that explains the “man-in-the-middle” attack and our lack of any defense against it – Owner Prateek.

11:44 AM – break for lunch

12:30 PM – return from lunch

Prateek: Role of Digital Signatures in SAML

Irving: (misc edits)

Bob M: What is the intended purpose of this document?

Irving: It could be rolled into core to accompany the addition of elements.

Chris: Am worried about the statement “If you are worried about integrity, you must sign”.

Prateek: 92-108; Specifies where you don’t have to sign.

PHB: We might want to put the signature element at the beginning of Assertions rather than at the end. This makes processing easier.

Irving: 181-183; Strike the term “mandatory”. Correct processing of a partially signed XML message (as Phil said earlier) basically amounts to throwing out all the unsigned parts.

Prateek: (agrees)

Prateek: 185; Not sure what to do about this.

Irving: The intent is to see if we can get people to agree on inherited signatures and, if we can, add it to the spec.

Prateek: The only kind of signature inheritance we will support is signatures over request/response porotcols.

PHB: That’s all we should support.

General discussion about inherited signatures proposal.

Irving: XML-DSIG allows multiple signatures to exist at the same node in the DOM graph. Each of these signatures could have been generated by a different party, each of which wanted to sign this portion of the document for their own reasons. If a SAML Assertion is contained within this section, which signature does it inherit.

Prateek: This is not a problem because we only support inheritance in the context of a SAML request or response.

Irving: 206-211; We are RECOMMENDING something which is explicitly optional XML-DSIG.

General discussion of whether we should sign comments.

PHB: Recommends getting rid of comments as this makes compression easier.

Motion: Remove “SAML RECOMMENDS the Canoncial XML with Comments . . .” – Unclear outcome.

General: 208-211; Change to state that SAML implementers MUST support the signing of canonical XML w/out comments

General discussion about the “MANDATORY TO IMPLEMENT” versus the MUST/SHOULD/MAY categories with respect to CanonicalizationMethod.

Resolved wording: “SAML implementations SHOULD use Canonical XML (omits comments).”

Jeff: 203; Change “would” to a MUST.

Prateek; 214-215; Is this a shorthand for saying “everything except the digital signature”?

Chris: Yes.

General discussion about “5.4 Keyinfo”

Irving: This wording is a specific response to the proposal that we restrict signatures to RSA etc. This bit says that, not only will we not restrict the signature algorithm, we will not restrict keys, etc.

Charles: (something that I missed – relates to interoperability)

Irving: As Bob Morgan says, conforming implementations need not be interoperable.

General discussion about the decision not to mandate specific signature and/or hashing algorithm.

Resolved: Conformant SAML implementations SHOULD support the RSA1 cipher suite for signatures.

General discussion about “5.6 Binding between statements in a multi-statement assertion”

Irving: Signing a single Assertion with multiple Statements carries the same semantics as if you had signed multiple Assertions each containing a single Statement.

Simon: (general statements concerning multiple assertions; How does one request multiple assertions? What do you do with them?)

General discussion about multiple assertion semantics.

Prateek: Remove this?

Chris: No. Need to re-clarify again.

Jeff: Language needs to be cleaned up.

Action: Craft “cleaned up” language. Owner – Bob Morgan
1:28 PM – Bindings and Profile Done (break)

1:38 PM – return from break

PHB – Core 20

PHB: Eve’s suggestions are largely non-controversial. Basically re-orgs and additional explanatory text.

PHB: Multiple Subjects

A. Multiple subjects implicitly refer to the same principal. This was criticized since it seemed to be creating an assertion via a “back door”.

B. Each of the multiple subjects stand on its own. No relationship is implied between the subjects.

General discussion of the use cases that justify this feature.

Irving: My real concern is the processing model of the relying party that receives one of these. Do they make individual queries against each of the subjects or do they make a single query against the complete list of subjects? Also, what if each the subjects is identified using a different namespace? What if I, as a relying party, don’t understand some of these namespaces.

Bob M: Across the board we could add multiples of everything. Do we need to?

General discussion about the semantics.

Bob M: The simplifying assumption is that, a query on any subject will return the same results as a query on any other subject.

Gil: General rant against multiple <NameIdentifier>s

Resolved: Remove multiple <NameIdentifier>s from <Subject>. Owner – Phil.

Irving: (as proxy for Bob B) Relation of <SubjectConfirmation> and <NameIdentifier>s is that, if there are N <NameIdentifier>s and 1 <SubjectConfirmation>, then the <SubjectConfirmation> applies to all the <NameIdentifier>s.

Irving: General negative comments about <AssertionSpecifier> (missed most of it – apparently you can just copy it yourself).

Prateek: Not happy with removal of <AssertionSpecifier> although he’s forgotten exactly why he needs it.

Action: Investigate the original requirement for an <AssertionSpecifier> Is it still necessary given the revised <Assertion> structure.. Owner – Committee at large.

PHB: I think the original intent was to preserve the legal semantics of “so and so said this person was authenticated.”

Irving: Those semantics are different than simple inclusion. They are closer to “depends upon”.

Jeff: (history of the <AssertionSpecifier>)

More discussion. It turns out that Irving was wrong. A single <Assertion> can contain multiple <SubjectStatement>s.

Jeff: Original intent was to allow an Attrib Assertion to point back at an Authn Assertion saying “The subject of this Attrib Assertion is the same as the subject of that Authn Assertion”.

Irving: Important point: Assertions no longer have a unique <Subject>. The ability to have multiple <SubjectStatements>s means that you can have an <Assertion> with multiple <Subject>s.

General discussion about the conflict between <MultipleAssertion> and <SingleAssertion>.

Simon: What are the semantics of a package of assertions?

Chris: Why do you care? Ignore the parts you don’t need.

Irving: What if you can’t parse the parts you would like to ignore (i.e. Authorization Decision Assertions) because you thought you never you would see them.

Prateek: The original intent was to be able to ask a party “Tell me everything you know about Alice” and get back an Authn Assertion and a bunch of Attrib Assertions.

PHB: Perhaps we should revise the request protocol to constrain the response to only return one type of Assertion.

Chris: I’m not sure I like this.

More discussion.

PHB:

1. Ask for attributes and all you get is attributes.

2. Sender responds to query and additional provides information that it “feels” it is important.

3. Requester supplies a Boolean that says “You may/may not send me additional Assertions that I didn’t ask for”.

4. Return to the original “responds” element that allows the requester to specify what it would like to see.

(Phil structures a vote on these options).

The vote is very close but option 1 seems to be the clear winner. The ruling junta overrides the will of the majority and imposes 2 on everybody. A small revolt is violently suppressed. A revote is held and 4 wins.

Chris: Why is this better? How do we extend to new <Statement> types?

General discussion about how the “responds” element (Jeff doesn’t like the name) would work: is XML thingy – you can call out the <Statement> types that you like. You can even call out the base <Statement>, which is equivalent to option 2.

(stuff that I missed about Attributes)

Irving: Shouldn’t we use XSI types that allow you to specify, at run time, what the type of an AttributeValue is?

PHB: I need an example of how this is used.

Chris: You can’t use this in practice because there are no parsers that support this.

Simon: But this is an important point. SAML can’t specify all the schema that may need to be validated.

Chris: What we are trying to here is save the implementer from having to devise all these wrapping elements.

(missed some discussion – seems to refer to LDAP-DSML)

Prateek: DSML doesn’t do anything very intelligent.

Irving: But DSML doesn’t try to impose syntax on the value like LDAP does.

General discussion. Chris favors the generalized use of “any”. Phil is proposing something I don’t understand.

Action: Can XML Schema Instances be used to define attribute values? Owner – Eve.

Jeff: What we’re trying to do is decide whether we want to leave core-20 alone, accept Phil’s proposal, or do something else.

PHB: Do you people think that it is important to use the attribute scheme without pulling in foreign XML schema?

(simple straw poll taken – as is usual with this crowd the results of the straw poll are quickly washed away by a reframing of the question on which the poll was conducted)

Bob M: The real losing situation is if party A needs Boolean and party B needs Boolean and they both define “Boolean”. We should use pre-defined, agreed upon schema.

(more general discussion)

Chris: Because the “any” is processed “lax” you can do what Phil wants without adding additional overhead.

Decision: Leave core-20 as it is regarding this issue.

Action: Write up description of how to use this facility to do “what you want”. Owner – Chris.

Discussion about “query context” for Attribute queries. Particular requestors may only be allowed to see certain attributes. Shib requires this to work properly.

PHB: This problem is way more general than Shibboleth.

Prateek: There is an Attribute Query, but it is not “standalone”, it is within the context of “Prateeks Attribute Query”.

Jeff: (history of Query Context)

Gil: Is this a matter of Attribute authz policy?

Bob M: Not really. Its an issue about where you do the processing to determine which attributes you would like to release. The subject asks for their own attributes and scopes the attributes by the target of their destination. The Attrib Authority does the work of figuring out which attributes should be forwarded to the target so the subject does not have to go through all their attributes and figure it out for themselves.

(Some discussion of extending the <AttributeQuery> type)

(More general discussion)

Simon: Don’t confuse Attrib queries and Authz queries.

(More discussion)

Chris: I see why you want this, but I don’t understand why this only applies to Attribute Assertions and not other types of Assertions.

Irving: Clearly, if we were going to authorization correctly, all Authorization Decision Assertions would come accompanied by a whole list of context objects.

Simon: Can we add an Environment element near the top of our generalized query type and apply it across all the different queries.

Gil: Is it a URI?

Simon: OK.

Bob M: We were thinking a string, but a URI would do as well.

Larry: Are we thinking that the requester would only get back the attributes allowable under the <Environment>.

Gil: No. Bob M said that its just an advisory type thingy . . .

(more discussion)

Joe: (expands on how this is an actually an additional service on top of the base SAML services)

Chris: (basically makes suggestion to table this discussion for later)

Joe: This proposal has been on the table for a while. It has raised other discussions. We need to move on this now.

Joe: Proposal is to modify the schema as illustrated.

Jeff: The proposers will have to supply text that describes this element.

(lapse into parliamentary procedure)

Vote: To include the proposed change (<AttributeQueryContext>). Passes

(The glaring lack of a quorum is allowed to pass without anyone “officially” commenting on it).

(more discussion)

Prateek: This is now a MUST SUPPORT in every implementation of SAML.

Jeff: The semantics need to be nailed down but the following is clear: Every SAML attribute query has this as an element. No SAML Attribute Authority should crash or otherwise behave “badly” simply because this element occurs.

Action: Craft language that describes the semantics of the AttributeQueryContext. Owner - Bob M, Scott Cantor, Prateek
Larry: I think Passport has this capability.

(more discussion)

Prateek: (moves to reconsider)

Gil: (explains semantics that would get Prateek out of his pickle)

Prateek: (defers his motion to reconsider)

Other issues/proposals

Simon: Attribute Authority information Authentication Assertion

Prateek: Generally we have assumed that there is some sort of background configuration that links PEP/PDP’s with Attribute Authority. This moves beyond that to make it dynamic.

Chris: In the absence of any clear text that describes how this would work, I can’t even vote on this. What if I have a list of trusted Attrib Authorities and I get an Authn Assertion that specifies an Authority that I have never heard of?

Prateek: Why isn’t static good enough?

Irving: The email thread is very clear on this.

(someone): This could be done with a proxy.

Simon: I don’t want to have to write 10 different proxies for every different kind of request. I would end up with a completely closed framework.

Prateek: The real issue here is inter-interprise interoperability.

Irving: Marlena said that the real world example was a federation of colleges and universities, each of which maintained its own Attribute Authority.

Prateek: Then there is no conflict between this and the static list of Attribute Authorities.

Chris: This is still not safe.

Irving: It’s a matter of policy. You can have a list of AA’s that you trust. You get “a hint” of another AA in the Authn Assertion. If you don’t trust that AA, then don’t get Assertions from there.

(general discussion – do you reject the request or try to make the decision without the attributes you would have received from the suspect Authorities)

General: It seems like a good idea to follow the above model.

Decision: Proposal tabeled until Simon provides more text.

Tim Moses: an old proposal – auth method identifiers to be discussed on concall

Charles Knouse: Request for a failure reason in SAML responses

Proposal raised at F2F #4. Proposal mailed to the list on 8/30/2001.

(general discussion about everything except this proposal)

Phil: This brings us back to the general problem of error handling. If you send a request that the receiver cannot parse you should get back a SOAP error. If you send a well-formed request that the receiver has no answer for you should get back a “success – but I don’t have any answers.

Zahid: Are you saying we should always reuse SOAP fault codes?

(general discussion)

Charles: (Quotes the text explaining the SOAP fault code. General consensus is that this would be good text to steal)

(discussion of which language should be used to describe this text)

Decision (by straw poll): Include this feature in core.

Chris: I have a bunch of issues and questions.

Reconciliation between Bindings and Core (Prateek)

<SubjectConfirmation>s used in SOAP Profile.

<HolderOfKey>

Phil: HolderOfKey is too general. There are many authentication protocols which use this concept. We might want to use it as a root element for a lattice of authentication protocols that use this method.

Irving: Not at all. HolderOfKey simply says “In order to trust this assertion you must verify, by whatever means you deem appropriate, that the subject referred to in this assertion actually holds the referenced key”. Whether the relying party does this via SSL-with-client-certs, signed blobs, challenge and response, is outside the scope of SAML

Action: Grab Irving’s description of how “HolderOfKey” is supposed to work and include in core. Owner – Prateek

(general investigation of the history on HolderOfKey)

Proposal on the table is to add a section, 5.1.8, that describes HolderOfKey (no schema mods).

<SenderVouches>

Prateek: No change to schema. This is a constant.

Jeff: And we only use this in one profile of SAML?

Prateek: Correct. HolderOfKey is used in one profile and SenderVouches is used in another.

Jeff: There was a comment that SenderVouches is only a poor man’s way of doing delegation.

Proposals is tabled.

Chris – Multiple Assertions are in?

(general discussion – its in the core 20 doc, this hasn’t been changed)

Chris: I would move, based on our discussion today, that we remove MultipleAssertions and rename it “Assertion”.

(general discussion – why was single there?)

Irving: The simplistic reason is that simple applications that only every wanted to deal with singles would never have to deal with multiplicities.

Chris: The effort of adding a loop around the processing is much easier than having to worry about the difference between MultipleAssertion and SingleAssertion.

Action: Write up changes to core 20 to make this so. Owner - Chris
Chris – conflicting statements problem

Chris: What happens when you receive an Assertion that contains unreconcilable differences.

(general discussion about when this might happen)

PHB: You have to look at the circumstances under which the contradictory assertions might be issued.

1. Two asserts from the same issuer, same time but contradict.

2. Two asserts from the same issuer, different time, but contradict.

3. Two asserts from different issuers (unknown time), but contradict.

SAML has no Assertion life-cycle management (revocation, etc.)

Irving: This isn’t even a SAML problem.

Bob M: Conformance is not about doing anything useful. You can be conformant implementation that simply returns failures for every request. Are you useful, no, but you are conformant.

Chris: Ok, so I won’t use the word “conformant” but the problem still remains. Phil’s examples are very browser-centric, but what about a document-centric view.

Joe: This is an XACML problem, a policy-model problem. SAML is only responsible for the syntax of the assertions, not the syntax of the assertions.

Resolution: Above text. Owner - Chris
Jeff: Draft some text and see where it fits.

Simon: Is there some normative text that describes the processing of <SubjectConfirmation> in the PDP?

Irving: The browser profile language specifies that the <SubjectConfirmation> needs to be processed, but it doesn’t say how.

(general – no)

Irving: You are asking for another profile.

Prateek: When an assertion is driven into a profile, then you need to worry about how you got the assertion. Outside of a specific profile there isn’t enough context to answer this question in a meaningful way.

Chris: SAML Security Considerations

(4:44 PM – scribe goes offline)

