
SAML 2.0: “Enhanced Client Profiles”
Solution Proposal

Work Plan Item W-5a

Frederick Hirsch, Nokia Mobile Phones
September 18, 2003
v0.4

SAML 2.0 LECP Solution Proposal 1 of 23 v0.4

1

2

3

4
5
6

Table of Contents
Introduction..3
Definitions..5
Conventions... 6
General Requirements ...7

User Agent .. 7
Liberty-Enabled Client and Proxy Profile..8

Interactions ..8
Step 1: Accessing the Service Provider .. 9
Step 3: HTTP Response with <AuthnRequest> ... 10
Step 4: HTTP Request with <AuthnRequest> ..11
Step 6: HTTP Response with <AuthnResponse> ... 11
Step 7: Posting the Form Containing the <AuthnResponse> 12
Step 10: Process Assertion...12

Liberty-Enabled Indications ..12
Processing Rules for Active Intermediaries ..14

Status Code Values for Error Conditions ..14
XML Schema Definitions.. 15

Authentication Envelope ...15
Request Envelope ..15

Element <AuthnRequestEnvelope> ... 15
Element <IDPList> .. 16

Response Envelope ... 17
Element <AuthnResponseEnvelope>.. 17

Authentication request and response .. 18
Element <AuthnRequest> ...18
Element <AuthnResponse> ... 19

Security Considerations... 22
References..23

SAML 2.0 LECP Solution Proposal 2 of 23 v0.4

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30
31
32
33
34

Introduction
Not all potential participants in a single sign-on solution will support cookies and in
many cases will not wish to support HTTP redirects or artifact retrieval. This may be true
of a range of participants, including users of web browsers on personal computers as well
as users of constrained devices such as mobile phones. The SAML technology standard
should address such concerns.

The Liberty enabled client and proxy profile has been developed as part of the Liberty
Federation Framework with these considerations in mind. A Liberty enabled client
(LEC) is one that knows or knows how to find the appropriate identity provider (IDP) for
a specific principal and service provider. A Liberty enabled proxy is a proxy that can act
as a LEC on behalf of a client. The LECP authentication profile defined in Liberty
avoids the use of cookies and redirects, enabling a client to participate in a single sign-on
system with minimal impact. The Liberty Federation Framework 1.1 has already been
requested and contributed as an input to the Oasis SAML technical committee, making
LECP available to the committee.

One example use case can be provided from the mobile domain, a domain that has a
currently installed base in the millions. These devices are often constrained in capability,
not supporting cookies and having a minimal user interface. Performance is an important
issue, making it desirable to reduce the number of protocol exchanges and complicated
user interactions. Limiting the need for repeated authentication when accessing web sites
and services is valuable for this reason. An example use case is the following simple
scenario:

1. The mobile user unlocks their handset using their secret PIN
2. Using the handset web-browser the user accesses a web site that requires

authentication. An example might be access to a financial site to obtain a bank or
equity trading account balance or recent transaction information.

3. The site requests authentication.
4. The LECP proxy (or LEC handset) is able to obtain an authentication assertion

from the IDP. An example IDP is the network operator, possible due to
contractual and billing relationships the operator has with the user. The operator
network together with handset hardware makes identification possible.

5. The authentication assertion is returned to the site on behalf of the mobile user.
6. The site provides the requested information to the handset user.

This scenario is simple, requiring little interaction with the user since it depends on the
mobile network operator relationship to the user. It is enabled through a single sign on
process. Stronger authentication might also require additional user interaction, either to
accept an authentication action or to authenticate to the network operator IDP, but this
does not change the basic operation of the use case.

SAML 2.0 LECP Solution Proposal 3 of 23 v0.4

35

36
37
38
39
40

41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73

This technology contribution to SAML 2.0 is the LECP profile as outlined in the Liberty
Federation Framework 1.1 in section 3.2.5 of the Liberty FF 1.1 Bindings and Profiles
specification [LibertyBindProf] , as well as the schema definitions for the AuthnRequest,
AuthnResponse, AuthnRequestEnvelope and AuthnResponseEnvelope elements defined
in sections 3.2 of the Liberty FF 1.1 Protocol and Schemas document
[LibertyProtSchema].

As additional Liberty specifications are made available to the SAML technical committee
then this technology contribution may be updated to reflect any necessary changes.

SAML 2.0 LECP Solution Proposal 4 of 23 v0.4

74
75
76
77
78
79

80
81

Definitions
These definitions are compatible with Liberty definitions [LibertyGloss].

Liberty-enabled client or proxy (LECP)
A Liberty-enabled client is a client that has, or knows how to obtain, knowledge about the identity provider
that the Principal wishes to use with the service provider. A Liberty-enabled proxy is an HTTP proxy
(typically a WAP gateway) that emulates a Liberty-enabled client.

Liberty-enabled client (LEC)
An entity that has, or knows how to obtain, knowledge about the identity provider that the Principal wishes
to use with the service provider.

Liberty-Enabled Client and Proxy Profile
This profile specifies interactions between Liberty-enabled clients and/or proxies, service providers, and
identity providers.

Liberty-enabled Proxy (LEP)
A Liberty-enabled proxy is a HTTP proxy (typically a WAP gateway) that emulates a Liberty-enabled
client.

Liberty-enabled User Agent or Device (LUAD)
A user agent or device that has specific support for one or more profiles of the Liberty specifications. It
should be noted that although a standard web browser can be used in many Liberty-specified scenarios, it
does not provide specific support for the Liberty protocols, and thus is not a LUAD. No particular claims
of specific functionality should be implied about a system entity solely based on its definition as a LUAD.
Rather, a LUAD may perform one or more Liberty system entity roles as defined by the Liberty
specifications it implements. For example, a LUAD-LECP is a user agent or device that supports the
Liberty LECP profile.

SAML 2.0 LECP Solution Proposal 5 of 23 v0.4

82

83

84
85
86
87

88
89
90

91
92
93

94
95
96

97
98
99

100
101
102
103
104

Conventions
The following XML namespaces are used in this document and the Liberty specifications:

• The prefix lib: stands for the Liberty namespace
http://projectliberty.org/schemas/core/2002/12

• The prefix saml: stands for the SAML assertion namespace (see [SAMLCore]).
• The prefix samlp: stands for the SAML request-response protocol namespace (see [SAMLCore]).
• The prefix ds: stands for the W3C XML signature namespace,
http://www.w3.org/2000/09/xmldsig#
• The prefix xenc: stands for the W3C XML encryption namespace,
http://www.w3.org/2001/04/xmlenc#
• The prefix SOAP-ENV: stands for the SOAP 1.1 namespace,
http://schemas.xmlsoap.org/soap/envelope (see [SOAP1.1]).

Note: The Liberty namespace may change with Liberty revisions beyond FF 1.1 to reflect
schema changes.

SAML 2.0 LECP Solution Proposal 6 of 23 v0.4

105

106

107
108
109
110
111
112
113
114
115
116

117
118

General Requirements
Note: This general requirements section is section 3.1 of the Liberty FF 1.1 Bindings and
Profiles document, with the section reference removed from item #11.
1. All HTTP requests and responses MUST be drawn from either HTTP 1.1 (see [RFC2616]) or HTTP 1.0

(see [RFC1945]). When an HTTP redirect is specified, the HTTP response MUST have a status code of
"302." According to HTTP 1.1 and HTTP 1.0, the use of status code 302 is recommended to indicate
"the requested resource resides temporarily under a different URI." The response may also include
additional headers and an optional message.

2. When https is specified as the <scheme> for a URL, the HTTP connection MUST be made over
either SSL 3.0 (see [SSLv3]) or TLS 1.0 (see [RFC2246]) or any subsequent protocols that are
backwards compatible with SSL 3.0 and/or TLS 1.0. Other security protocols MAY be used as long as
they implement equivalent security measures.

3. Messages between providers MUST have their integrity protected, confidentiality MUST be ensured
and the recipient MUST authenticate the sender.

4. Providers MUST use secure transport (https) to achieve confidentiality and integrity protection. The
initiator of the secure connection MUST authenticate the server using server-side X.509 certificates.

5. The authenticated identity of an identity provider MUST be securely available to a Principal before the
Principal presents his/her personal authentication data to that identity provider.

6. For signing and verification of protocol messages, identity and service providers SHOULD use
certificates and private keys that are distinct from the certificates and private keys applied for SSL or
TLS channel protection. Certificates and private keys MUST be suitable for long-term signatures. See
[LibertyProtSchema] for guidelines on signature verification.

7. In transactions between service providers and identity providers, requests MUST be protected against
replay, and received responses MUST be checked for correct correspondence with issued requests.
(Note: Other steps may intervene between the issuance of a request and its eventual response within a
multistep transaction involving redirections.) Additionally, time-based assurance of freshness MAY be
provided.

8. Each service provider within a circle of trust MUST be configured to enable identification of the
identity providers whose authentications it will accept, and each identity provider MUST be configured
to enable identification of the service providers it intends to serve. (Note: The format of this
configuration is a local matter and could, for example, be represented as lists of names or as sets of
X.509 certificates of other circle of trust members).

9. Circle of trust bilateral agreements on selecting certificate authorities, obtaining X.509 credentials,
establishing and managing trusted public keys, and tracking lifecycles of corresponding credentials are
assumed and not in scope for this specification.

10.The <scheme> of the URL for SOAP endpoints MUST be https.
11. All SOAP message exchanges MUST adhere to the SOAP protocol binding for Liberty.

User Agent
A user agent, unless otherwise noted in the specific profile, MUST support the following features to be
interoperable with the protocols in [LibertyProtSchema] and Liberty profiles in this document:
1. HTTP 1.0 (see [RFC1945]) or HTTP 1.1 (see [RFC2616]).
2. SSL 3.0 (see [SSL]) or TLS 1.0 (see [RFC2246]) or any subsequent protocols which are backwards

compatible with SSL 3.0 and/or TLS 1.0 either directly or via a proxy (for example, a WAP gateway).
3. Minimum maximum URL length of 256 bytes. See [LibertyGlossary] for definition.

SAML 2.0 LECP Solution Proposal 7 of 23 v0.4

119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162

Liberty-Enabled Client and Proxy Profile
Note: This is section 3.2.5 of the Liberty FF 1.1 Bindings and Profile document. Section and figure
references have been removed or updated.

The Liberty-enabled client and proxy profile specifies interactions between Liberty-enabled clients and/or
proxies, service providers, and identity providers. See Figure 1. A Liberty-enabled client is a client that has,
or knows how to obtain, knowledge about the identity provider that the Principal wishes to use with the
service provider. In addition a Liberty-enabled client receives and sends Liberty messages in the body of
HTTP requests and responses. Therefore, Liberty-enabled clients have no restrictions on the size of the
Liberty protocol messages.

A Liberty-enabled proxy is a HTTP proxy (typically a WAP gateway) that emulates a Liberty-enabled
client. Unless stated otherwise, all statements referring to LECP are to be understood as statements about
both Liberty-enabled clients as well as Liberty-enabled proxies.

The following URI-based identifier must be used when referencing this specific profile (for example,
<lib:ProtocolProfile> element of the <lib:AuthnRequest> message)

URI: http://projectliberty.org/profiles/lecp

All LECPs, in addition to meeting the common requirements for profiles , MUST indicate that it is a LECP
by including a Liberty-Enabled header or entry in the value of the HTTP User-Agent header for each HTTP
request they make. The preferred method is the Liberty-Enabled header. The formats of the Liberty-Enabled
header and User-Agent header entry are defined later in this document.

Interactions
Note: This is section 3.2.5.2 of the Liberty FF 1.1 Bindings and Profile document. Section and figure
references have been removed or updated. Material from 3.2.1 has been integrated with the steps as
required and the references to that section removed (These additions are noted with “General
recommendations for all profiles :” notes). Added ProviderID requirement in step 7.

Figure 1 illustrates the Liberty-enabled client and proxy profile for single sign-on. All generic steps are
shown - steps that are light are not necessary in the LECP profile (steps 2, 8, 9, 10 in the figure):

SAML 2.0 LECP Solution Proposal 8 of 23 v0.4

163
164

165

166
167
168
169
170
171

172
173
174

175
176

177

178
179
180
181

182
183
184
185
186

187
188

Figure 1. Liberty-enabled client and proxy profile for single sign-on
This profile description assumes that the user agent has already authenticated at the identity provider prior
to step 1. Thus, a valid session exists for the user agent at the identity provider.

The LECP receives authentication requests from the service provider in the body of the HTTP response.
The LECP submits this authentication request as a SOAP request to the identity provider. Because this
SOAP request is between the LECP and the identity provider, TLS authentication cannot be performed
between service provider and identity provider; therefore, service providers and identity providers MUST
rely on the signature of the <lib:AuthnRequest> and the returned <saml:Assertion>, respectively,
for mutual authentication. (When implementing this profile, processing rules for steps 5, 10, and 11 defined
in 3.2.1 for single sign-on profiles MUST be followed, while steps 2, 8, and 9 MUST be omitted.
Additionally, the following rules MUST be observed as they relate to steps 1, 3, 4, 6, and 7)

Step 1: Accessing the Service Provider
In step 1, the user agent accesses the service provider with the Liberty-Enabled header (or with the Liberty-
Enabled entry in the User-Agent header) included in the HTTP request.

The HTTP request MUST contain only one Liberty-Enabled header. Hence if a proxy receives a HTTP
request that contains a Liberty-Enabled header, it MUST NOT add another Liberty-Enabled header.
However, a proxy MAY replace the Liberty-Enabled header. A proxy that replaces or adds a Liberty-
Enabled header MUST process <lib:AuthnRequest> messages as defined in steps 3 and 4 as well as
<lib:AuthnResponse> messages as specified in steps 6 and 7.

It is RECOMMENDED that a LECP add "application/vnd.liberty-request+xml" as one of its
supported content types to the Accept header.

General recommendations for all profiles :

SAML 2.0 LECP Solution Proposal 9 of 23 v0.4

189
190
191

192
193
194
195
196
197
198
199

200
201
202

203
204
205
206
207

208
209

210

It is RECOMMENDED that the HTTP Request URI contain a <query> component at its end

where

<query>=…RelayState=<return URL>…

The <query> component can be used to convey information about the originally requested resource at the
service provider. It is RECOMMENDED that the <query> parameter be named RelayState and its value be
the URL originally requested by the user agent.

It is RECOMMENDED that the HTTP request be made over either SSL 3.0 (see[SSLv3]) or TLS 1.0 (see
[RFC2246]) to maintain confidentiality and message integrity in step 1.

Step 3: HTTP Response with <AuthnRequest>
In step 3, the service provider’s intersite transfer service issues an HTTP 200 OK response to the user
agent. The response MUST contain a single <lib:AuthnRequestEnvelope> with content as defined in
[LibertyProtSchema]. If a service provider receives a Liberty-Enabled header, or a User-Agent header with
the Liberty-Enabled entry, the service provider MUST respond according to the Liberty-enabled client and
proxy profile and include a Liberty_Enabled header in its response. Hence service providers MUST support
the Liberty-enabled client and proxy profile.

The processing rules and default values for the Liberty-Enabled indications are as defined in the following
section on Indications. The service provider MAY advertise any Liberty version supported in this header,
not only the version used for the specific response.

The HTTP response MUST contain a Content-Type header with the value application/vnd.liberty-
request+xml unless the LECP and service provider have negotiated a different format.

A service provider MAY provide a list of identity providers it recognizes by including the <lib:IDPList>
element in the <lib:AuthnRequestEnvelope>. The format and processing rules for the identity provider
list MUST be as defined in [LibertyProtSchema].

Note

In cases where a value for the <lib:GetComplete> element is provided within
<lib:IDPList>, the URI value for this element MUST specify https as the URL <scheme>.

The service provider MUST specify a URL for receiving <AuthnResponse> elements, locally generated
by the intermediary, by including the <lib:AssertionConsumerServiceURL> element in the
<lib:AuthnRequestEnvelope>.

The following example demonstrates the usage of the <lib:AuthnRequestEnvelope>:
<?xml version="1.0" ?>
<lib:AuthnRequest Envelope xmlns:lib="http://projectliberty.org/schemas/core/2002/12/">
<lib:AuthnRequest >
. . . AuthnRequest goes here . . .
</lib:AuthnRequest>
<lib:AssertionConsumerServiceURL>
https://service-provider.com/LibertyLogin
</lib:AssertionConsumerServiceURL>
<lib:IDPList>
. . . IdP list goes here . . .
</lib:IDPList>
</lib:AuthnRequestEnvelope>

If the service provider does not support the LECP-advertised Liberty version, the service provider MUST
return to the LECP an HTTP 501 response with the reason phrase "Unsupported Liberty Version."

The responses in step 3 and step 6 SHOULD NOT be cached. To this end service providers and identity

SAML 2.0 LECP Solution Proposal 10 of 23 v0.4

211

212

213

214
215
216

217
218

219
220
221
222
223
224
225

226
227
228

229
230

231
232
233

234

235
236

237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252

253
254

255

providers SHOULD place both "Cache-Control: no-cache" and "Pragma: no-cache" on their
responses to ensure that the LECP and any intervening proxies will not cache the response.

Step 4: HTTP Request with <AuthnRequest>
In step 4, the LECP determines the appropriate identity provider to use and then issues an HTTP POST of
the <lib:AuthnRequest> in the body of a SOAP message to the identity provider’s single sign-on
service URL. The request MUST contain the same <lib:AuthnRequest> as was received in the
<lib:AuthnRequestEnvelope> from the service provider in step 3.

Note

The identity provider list can be used by the LECP to create a user identifier to be
presented to the Principal. For example, the LECP could compare the list of the
Principal’s known identities (and the identities of the identity provider that provides those
identities) against the list provided by the service provider and then only display the
intersection.

If the LECP discovers a syntax error due to the service provider or cannot proceed any further for other
reasons (for example, cannot resolve identity provider, cannot reach the identity provider, etc), the LECP
MUST return to the service provider a <lib:AuthnResponse> with a <samlp:Status> indicating the
desired error element as defined in [LibertyProtSchema]. The <lib:AuthnResponse> containing the
error status MUST be sent using a POST to the service provider’s assertion consumer service URL obtained
from the <lib:AssertionConsumerServiceURL> element of the <lib:AuthnRequestEnvelope>.
The POST MUST be a form that contains the field LARES with the value being the
<lib:AuthnResponse> protocol message as defined in [LibertyProtSchema], containing the
<samlp:Status>. The <lib:AuthnResponse> MUST be encoded by applying a base64 transformation
(refer to [RFC2045]) to the <lib:AuthnResponse> and all its elements.

General recommendations for all profiles:

In step 5, the identity provider MUST process the <lib:AuthnRequest> message according to the rules
specified in [LibertyProtSchema].

If the Principal has not yet been authenticated with the identity provider, authentication at the identity
provider MAY occur in this step. The identity provider MAY obtain consent from the Principal for
federation, or otherwise consult the Principal. To this end the identify provider MAY return to the HTTP
request any HTTP response; including but not limited to HTTP Authentication, HTTP redirect, or content.
The identity provider SHOULD respect the HTTP User-Agent and Accept headers and SHOULD avoid
responding with content-types that the User-Agent may not be able to accept. Authentication of the
Principal by the identity provider is dependent upon the <lib:AuthnRequest> message content.

In case the identity provider responds to the user agent with a form, it is RECOMMENDED that the
<input> parameters of the form be named according to [RFC3106] whenever possible.

Step 6: HTTP Response with <AuthnResponse>
In step 6, the identity provider responds to the <lib:AuthnRequest> by issuing an HTTP 200 OK
response. The response MUST contain a single <lib:AuthnResponseEnvelope> in the body of a
SOAP message with content as defined in [LibertyProtSchema].

In step 6, the identity provider responds to the <lib:AuthnRequest> by issuing an HTTP 200 OK
response. The response MUST contain a single <lib:AuthnResponseEnvelope> in the body of a
SOAP message with content as defined in [LibertyProtSchema].

The identity provider MUST include the Liberty-Enabled HTTP header following the same processing rules

SAML 2.0 LECP Solution Proposal 11 of 23 v0.4

256
257

258
259
260
261
262

263

264
265
266
267
268

269
270
271
272
273
274
275
276
277
278

279

280
281

282
283
284
285
286
287
288

289
290

291
292
293
294

295
296
297

298

as defined in the section on Indications.

The Content-Type MUST be set to application/vnd.liberty-response+xml.

If the identity provider discovers a syntax error due to the service provider or LECP or cannot proceed any
further for other reasons (for example, unsupported Liberty version), the identity provider MUST return to
the LECP a <lib:AuthnResponseEnvelope> containing a <lib:AuthnResponse> with a
<samlp:Status> indicating the desired error element as defined in [LibertyProtSchema].

Step 7: Posting the Form Containing the <AuthnResponse>
In step 7, the LECP issues an HTTP POST of the <lib:AuthnResponse> that was received in the
<lib:AuthnResponseEnvelope> SOAP response in step 6. The <lib:AuthnResponse> MUST
be sent using a POST to the service provider’s assertion consumer service URL identified by the
<lib:AssertionConsumerServiceURL> element within the <lib:AuthnResponseEnvelope>
obtained from the identity provider in step 6. The POST MUST be a form that contains the field LARES
with the value being the <lib:AuthnResponse> protocol message as defined in [LibertyProtSchema].
The <lib:AuthnResponse> MUST be encoded by applying a base64 transformation (refer to
[RFC2045]) to the <lib:AuthnResponse> and all its elements. The service provider’s assertion
consumer service URL used as the target of the form POST MUST specify https as the URL scheme; if
another scheme is specified, it MUST be treated as an error by the identity provider.

If the LECP discovers an error (for example, syntax error in identity provider response), the LECP MUST
return to the service provider a <lib:AuthnResponse> with a <samlp:Status> indicating the
appropriate error element as defined in [LibertyProtSchema].

The <ProviderID> in the <lib:AuthnResponse> MUST be set to urn:liberty:iff:lecp.

The <lib:AuthnResponse> containing the error status MUST be sent using a POST to the service
provider’s assertion consumer service URL. The POST MUST be a form that contains the field named
LARES with its value being the <lib:AuthnResponse> protocol message as defined in
[LibertyProtSchema] with formatting as specified in the Liberty URL-encoding rules (section 3.1.2). Any
<lib:AuthnResponse> messages created by the identity provider MUST not be sent to the service
provider.

Step 10: Process Assertion
This is not a LECP specific step, but a general profile processing step:

In step 10, the service provider processes the <saml:Assertion> returned in the <samlp:Response> or
<lib:AuthnResponse> protocol message to determine its validity and how to respond to the Principal’s
original request. The signature on the <saml:Assertion> must be verified.

The service provider processing of the assertion MUST adhere to the rules defined in [SAMLCore] for
things such as assertion <saml:Conditions> and <saml:Advice>.

The service provider MAY obtain authentication context information for the Principal’s current session
from the <lib:AuthnContext> element contained in the <saml:advice>. Similarly, the information in the
<lib:RelayState> element MAY be obtained and used in further processing by the service provider.

Liberty-Enabled Indications
Note: This is section 3.2.5.1 of the Liberty FF 1.1 Bindings and Profiles document. Added text to anticipate
FF 1.2 submission (See this).

SAML 2.0 LECP Solution Proposal 12 of 23 v0.4

299

300

301
302
303
304

305
306
307
308
309
310
311
312
313
314
315

316
317
318

319

320
321
322
323
324
325

326
327

328
329
330

331
332

333
334
335

336
337
338

A LECP SHOULD add the Liberty-Enabled header to each HTTP request. The Liberty-Enabled header
MUST be named Liberty-Enabled and be defined as using Augmented BNF as specified in section 2 of
[RFC2616].
Liberty-Enabled = "Liberty-Enabled" ":" LIB_Version ["," 1 #Extension]
LIB_Version = "LIBV" "=" 1*absoluteURI
; any spaces or commas in the absoluteURI MUST be escaped as defined in section 2.4 of [RFC 2396]
Extension = ExtName "=" ExtValue
ExtName = (["." host] | <any field-value but ".", "," or " =">) <any field-value but "=" or ",">
ExtValue = <any field-value but ",">)

The comment, field-value, and product productions are defined in [RFC2616]. LIB_Version identifies
the versions of the Liberty specifications that are supported by this LECP. Each version is identified by a
URI. Service providers or identity providers receiving a Liberty-Enabled header MUST ignore any URIs
listed in the LIB_Version production that they do not recognize. All LECPs compliant with this
specification MUST send out, at minimum, the URI http://projectliberty.org/specs/v1 as a
value in the LIB_Version production. It SHOULD precede this with the URI urn:liberty:iff:1.2 if
it supports version 1.2 requests and knows that the identity providers available to it also support version
1.2 requests and responses. It MUST NOT include this URI if it knows that the identity providers available
to it cannot process version 1.2 messages. The ordering of the URIs in the LIB_Version header is
meaningful; therefore, service providers and identity providers are encouraged to use the first version in
the list that they support. Supported Liberty versions are not negotiated between the LECP and the service
provider. The LECP simply advertises what version it does support, and the service provider MUST return
the response for the corresponding version as defined in step 3 below.

Optional extensions MAY be added to the Liberty-Enabled header to indicate new information. The value
of the ExtName production MUST use the "host" ";" prefixed form if the new extension name has not
been standardized and registered with Liberty or its designated registration authorities. The value of the host
production MUST be an IP or DNS address that is owned by the issuer of the new name. By using the
DNS/IP prefix, namespace collisions can be effectively prevented without having to introduce yet another
centralized registration agency.

LECPs MAY include the Liberty-Agent header in their requests. This header provides information about
the software implementing the LECP functionality and is similar to the User-Agent and Server headers in
HTTP.

Liberty-Agent = "Liberty-Agent" ":" 1* (product | comment)

Note

The reason for introducing the new header (that is, Liberty-Enabled) rather than just using
User-Agent is that LECP may be a Liberty-enabled proxy. In that case the information
about the Liberty-enabled proxy would not be in the User-Agent header. In theory the
information could be in the VIA header. However, for security reasons, values in the VIA
header can be collapsed, and comments (where software information would be recorded)
can always be removed. As such, the VIA header is not suitable. Using the User-Agent
header for a Liberty-enabled client and the Liberty-Agent header for a Liberty-enabled
proxy was also discussed. However, this approach seemed too complex.

Originally the Liberty-Agent header was going to be part of the Liberty-Enabled header.
However, header lengths in HTTP implementations are limited; therefore, putting this
information in its own header was considered the preferred approach.

A LECP MAY add a Liberty-Enabled entry in the HTTP User-Agent request header. The HTTP User-
Agent header is specified in [RFC2616]. A LECP MAY include in the value of this header the Liberty-
Enabled string as defined above for the Liberty-Enabled header.

Note

The reason for adding information to the User-Agent header is to allow for Liberty-
enabled client products that must rely on a platform that cannot be instructed to insert new

SAML 2.0 LECP Solution Proposal 13 of 23 v0.4

339
340
341

342
343
344
345
346
347

348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366

367
368
369

370

371

372
373
374
375
376
377
378
379

380
381
382

383
384
385

386

387
388

headers in each HTTP request.

The User-Agent header is often overloaded; therefore, the Liberty-Enabled header should
be the first choice for any implementation of a LECP. The entry in the User-Agent header
then remains as a last resort.

Processing Rules for Active Intermediaries
Note: This is from section 3.2.3.1 of the Liberty FF 1.1 Protocols and Schema document.

For all profiles specifying an active intermediary, the intermediary MUST follow these processing rules:

• If the profile specifies that the message sent from the service provider to the identity provider, via the
intermediary, is wrapped in an <AuthnRequestEnvelope>:

• The intermediary MUST remove the enveloping <AuthnRequestEnvelope> before forwarding
the <AuthnRequest> element to the identity provider.

• The intermediary MAY locally generate <AuthnResponse> elements and send them to the service
provider using the <AssertionConsumerServiceURL> contained within the <AuthnRequestEnvelope>. Such
<AuthnResponse> elements MUST NOT contain any <lib:Assertion> elements. The <AuthnResponse>
elements MUST have an InResponseTo attribute set to the RequestID of the <AuthnRequest> that could not
be serviced. If the <AuthnRequest> contained a <RelayState> element, the <AuthnResponse> MUST
include a <RelayState> element with its value set to that supplied in the <AuthnRequest>. Such responses
MAY be generated as a result of local errors on the intermediary, and should indicate the underlying
reasons in the <samlp:Status> element in the <AuthnResponse>. The following are error conditions for
which second-level <samlp:StatusCode> values are defined below:

• The identity provider cannot be reached
• There is no identity provider in common between the intermediary and the service provider

• If the profile specifies that the message from the identity provider to the service provider, via the
intermediary, is wrapped in an <AuthnResponseEnvelope>:

• The intermediary MUST remove the enveloping <AuthnResponseEnvelope> before forwarding
the <AuthnResponse> element to the service provider.
• The intermediary MUST send <AuthnResponse> messages received from the identity provider to
the service provider using the <AssertionConsumerServiceURL> contained within the
<AuthnResponseEnvelope> sent by the identity provider.

Status Code Values for Error Conditions
If an error occurs in the processing at the intermediary, the following values are defined for use in second-
level <samlp:StatusCode> elements:

• lib:NoAvailableIDP: Used to indicate that none of the supported identity provider
URLs from the <IDPList> can be resolved or that none of the supported identity
providers are available.
• lib:NoSupportedIDP: Used to indicate that none of the identity providers are supported by the
intermediary.

SAML 2.0 LECP Solution Proposal 14 of 23 v0.4

389

390
391

392

393
394

395

396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411

412
413

414
415
416
417
418

419
420
421
422
423
424
425
426

XML Schema Definitions
Authentication Envelope

Request Envelope
Note: This is section 3.2.4 of the Liberty FF 1.1 Protocol and Schema document, with material removed as
appropriate since this section is specific to the LECP profile. IDPList element optionality is clarified by
putting Optional, Required after element definitions as noted in FF 1.2.

Note that in FF 1.2 the Extension element is defined rather than using XML schema “any” with
processContents=”skip” as in this contribution and the FF 1.1 schema definitions. This is relevant to the
RequestEnvelopeType and ResponseEnvelopeType elements [LibertyProtSchema1_2].

The LECP profile wraps the <AuthnRequest> element in an envelope. This envelope allows for extra
processing by the LEC intermediary between the service provider and the identity provider. An example of
an intermediary is a user agent or proxy. Processing rules are given in the section on Intermediary
Processing Rules. Note that the envelope is for consumption by the intermediary and is removed before the
enveloped <AuthnRequest> element is forwarded to the identity provider.

Element <AuthnRequestEnvelope>
The authentication request envelope contains the following elements:

AuthnRequest [Required]
The authentication request contained within the envelope.

ProviderID [Required]
The requester’s ProviderID.

ProviderName [Optional]
The human-readable name of the requester.

AssertionConsumerServiceURL [Required]
A URL specifying where <AuthnResponse> elements, locally generated by an intermediary, should be
sent. See the processing rules for active intermediaries specified in the section on Intermediary Processing
Rules.

IDPList [Optional]
A list of identity providers, from which, one may be chosen to service the authentication request.

IsPassive [Optional]
If "true," specifies that any intermediary between the service provider and identity provider MUST NOT
interact with the Principal. If not specified, "true" is presumed.

The schema fragment is as follows:
<xs:element name="AuthnRequestEnvelope" type="AuthnRequestEnvelopeType"/>
<xs:complexType name="AuthnRequestEnvelopeType">
<xs:complexContent>
<xs:extension base="RequestEnvelopeType">
<xs:sequence>
<xs:element ref="AuthnRequest"/ >
<xs:element ref="ProviderID"/>
<xs:element name="ProviderName" type="xs:string" minOccurs="0"/>
<xs:element name=" AssertionConsumerServiceURL" type="xs:anyURI"/>
<xs:element ref="IDPList" minOccurs="0"/>
<xs:element name= "IsPassive" type="xs:boolean" minOccurs="0"/>
</xs:sequence>
</xs:extension>

SAML 2.0 LECP Solution Proposal 15 of 23 v0.4

427

428

429
430
431
432

433
434

435

436
437
438
439
440

441
442

443
444

445
446

447
448

449
450
451
452

453
454

455
456
457
458
459

460
461
462
463
464
465
466
467
468
469
470
471
472

</xs:complexContent>
</xs:complexType>
<xs:complexType name="RequestEnvelopeType">
<xs:sequence>
<any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

Element <IDPList>
In the request envelope, some profiles may wish to allow the service provider to transport a list of identity
providers to the user agent. This specification provides a schema that profiles SHOULD use for this
purpose. The elements are as follows:

IDPList [Optional]
The container element for an IDP List.

IDPEntries [Required]
Contains a list of identity provider entries.

IDPEntry [Required]
Describes an identity provider that the service provider supports.

ProviderID [Required]
The identity provider’s unique identifier.

ProviderName [Optional]
The identity provider’s human-readable name.

Loc [Optional]
The identity provider’s URI, to which authentication requests may be sent. If present, this MUST be set
to the value of the identity provider’s <SingleSignOnService> element, obtained from their metadata
([LibertyMetadata]).

GetComplete [Optional]
If the identity provider list is not complete, this element may be included with a URI that points to where
the complete list can be retrieved.

The schema fragment is as follows:

<xs:element name="IDPList " type="IDPListType"/>
<xs:complexType name="IDPListType">
<xs:sequence>
<xs:element ref="IDPEntries"/>
<xs:element ref="GetComplete" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:element name="IDPEntry">
<xs:complexType>
<xs:sequence>
<xs:element ref="ProviderID"/>
<xs:element name="ProviderName" type="xs:string" minOccurs=" 0"/>
<xs:element name="Loc" type="xs:anyURI"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="IDPEntries">
<xs:complexType>
<xs:sequence>
<xs:element ref="IDPEntry " maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="GetComplete" type="xs:anyURI"/>

Example

SAML 2.0 LECP Solution Proposal 16 of 23 v0.4

473
474
475
476
477
478
479

480
481
482
483

484
485

486
487

488
489

490
491

492
493

494
495
496
497

498
499
500

501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526

<AuthnRequestEnvelope>
<AuthnRequest> ... </AuthnRequest>
<ProviderID>http://ServiceProvider.com</ProviderID>
<ProviderName>Service Provider X</ProviderName>
<AssertionConsumerServiceURL>http://ServiceProvider.com/lecp_assertion_consumer
</AssertionConsumerServiceURL>
<IDPList>
<IDPEntries>
<IDPEntry>
<ProviderID>http://IdentityProvider.com</ProviderID>
<ProviderName>Identity Provider X</ProviderName>
<Loc>http://www.Id entityProvider.com/liberty/sso</Loc>
</IDPEntry>
</IDPEntries>
<GetComplete>https://ServiceProvider.com/idpli st?id=604be136-fe91-441e-afb8-f88748ae3b8b
</GetComplete>
</IDPList>
<IsPassive>0</IsPassive>
</AuthnRequestEnvelope>

Response Envelope
As with the <AuthnRequest> element, some profiles MAY wrap the <AuthnResponse> element in an
envelope. This envelope allows for extra processing by an intermediary (such as a user agent or proxy)
between the identity provider and the service provider. Applicable processing rules are given in the section
on Intermediary Processing Rules. Note that the envelope is for consumption by the intermediary and is
removed prior to the forwarding of the enveloped <AuthnResponse> element to the service provider.

Element <AuthnResponseEnvelope>

The authentication response envelope contains the following elements:

Extension [Optional]

Optional container for protocol extensions established by agreement between service providers and
intermediaries. Implementors should note that this element may not contain content from the core Liberty
namespace (which is prevented at the schema level by requiring namespace="##other").

AuthnResponse [Required]
The enveloped authentication response.

AssertionConsumerServiceURL [Required]
The service provider’s URL where the authentication response should be sent. This element’s value
SHOULD be obtained from the element of the same name in the service provider’s Provider Metadata.

The schema fragment is as follows:
<xs:element name="AuthnResponseEnvelope" type="AuthnResponseEnvelopeType"/>
<xs:complexType name="AuthnResponseEnvelopeType">
<xs:complexContent>
<xs:extension base="ResponseEnvelopeType">
<xs:sequence>
<xs:element ref="AuthnResponse"/>
<xs:element name="AssertionConsumerServiceURL" type="xs:anyURI"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ResponseEnvelopeType">
<xs:sequence>
<any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

3.2.4.2. Example
<AuthnResponseEnvelope>
<AuthnResponse> ... </AuthnResponse>
<AssertionConsumerServiceURL>
http://ServiceProvider.com/lecp_assertion_consumer

SAML 2.0 LECP Solution Proposal 17 of 23 v0.4

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546
547
548
549
550
551

552

553

554

555
556
557

558
559

560
561
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

580
581
582
583
584

</AssertionConsumerServiceURL>
</AuthnResponseEnvelope>

Authentication request and response
Note: This is from section 3.2 of Liberty FF 1.1 Protocols and Schemas. Added clarifying text on multiple
audience elements (line 691), and multiple statements (line 697).

Element <AuthnRequest>
The <AuthnRequest> is defined as an extension of samlp:RequestAbstractType. The RequestID attribute
in samlp:RequestAbstractType has uniqueness requirements placed on it by, which require it to have the
properties of a nonce.

The elements of the request are as follows:

ProviderID [Required]
The requester’s unique identifier.

IsPassive [Optional]
If "true," specifies that the identity provider MUST NOT interact with the Principal and MUST NOT take
control of the user interface from the service provider. If "false," the identity provider MAY interact with
the user and MAY temporarily take control of the user interface for that purpose. If not specified, "true" is
presumed.

ForceAuthn [Optional]
Controls whether the identity provider authenticates the Principal regardless of whether the Principal is
already authenticated. This element is specified only when <IsPassive> is "false." If <ForceAuthn> is
"true," specifies that the identity provider MUST always authenticate the Principal, regardless of whether
the Principal is presently authenticated. If "false," specifies that the identity provider MUST re-authenticate
the user only if the Principal is not presently authenticated. If not specified, "false" is presumed. The
protocol profile that the requester wishes to use for the response. If the element is not specified, the
default protocol profile is http://projectliberty.org/profiles/brws-art, defined in [LibertyBindProf].

Federate [Optional]
Specifies that the service provider wishes to federate the Principal’s identity at the service provider with the
Principal’s identity at the identity provider. If the element is not specified, it is presumed that the service
provider does not wish to federate the identity.

ProtocolProfile [Optional]
The protocol profile that the service provider wishes to use for the response. If the element is not specified,
the default protocol profile is http://projectliberty.org/profiles/brws-art, defined in [LibertyBindProf].

AuthnContext [Optional]
Information describing which authentication context the requester desires the identity provider to use in
authenticating the Principal.

RelayState [Optional]
This contains state information that will be relayed back in the response. This data SHOULD be integrity
protected by the request author and MAY have other protections placed on it by the request author. An
example of such protection is confidentiality.

id [Optional]
Identifier used to identify this element in the signature. See section 3.1.5, Signature 351 Verification for
more information.

AuthnContextComparison [Optional]
If set to "exact", then the identity provider is asked to match at least one of the specified <AuthnContext>
elements exactly. This can also be set to "minimum", which asks that the identity provider use a context that

SAML 2.0 LECP Solution Proposal 18 of 23 v0.4

585
586

587
588
589

590
591
592
593

594

595
596

597
598
599
600
601

602
603
604
605
606
607
608
609

610
611
612
613

614
615
616

617
618
619

620
621
622
623

624
625
626

627
628
629

he feels is at least as good as any specified in the <AuthnContext> or "better", which means that the they
can use any context better than any that were supplied. If not specified, this is assumed to be "exact".
The <Scoping> element may contain the following elements:

AuthnContextClassRef [Optional]
The ordered set of authentication context class references the service provider desires the identity provider
to use in authenticating the Principal.

AuthnContextStatementRef [Optional]
The ordered set of exact authentication statements the service provider desires the identity provider to use
in authenticating the Principal.

The schema fragment defining the element and its type is as follows:

<element name="AuthnRequest" type="lib:AuthnRequestType"/>
<complexType name="AuthnRequestType">
<complexContent>
<extension base="samlp:RequestAbstractType">
<sequence>
<element ref="lib:ProviderID"/>
<element name="ForceAuthn" type="boolean" minOccurs="0"/>
<element name="IsPassive" type="boolean" minOccurs="0"/>
<element name="Federate" type="boolean" minOccurs="0"/>
<element ref="lib:ProtocolProfile" minOccurs="0"/>
<element ref="lib:AuthnContext" minOccurs="0"/>
<element ref="lib:RelayState" minOccurs="0"/>
<element name="AuthnContextComparison" type="lib:AuthnContextComparisonType" minOccurs="0"
maxOccurs="1"/>
</sequence>
<attribute name="id" type="ID" use="optional"/>
</extension>
</complexContent>
</complexType>
<simpleType name="AuthnContextComparisonType">
<restriction base="string">
<enumeration value="exact"/>
<enumeration value="minimum"/>
<enumeration value="better"/>
</restriction>
</simpleType>
<element name="RelayState"/>
<element name="ProtocolProfile" type="anyURI"/>
<element name="AuthnContext">
<complexType>
<choice>
<element name="AuthnContextClassRef" type="anyURI" maxOccurs="unbounded"/>
<element name="AuthnContextStatementRef" type="anyURI" maxOccurs="unbounded"/>
</choice>
</complexType>
</element>

Element <AuthnResponse>
The response is either an <AuthnResponse> element containing a set of authentication assertions or a set
of artifacts the service provider can dereference into a set of authentication assertions.

SAML 2.0 LECP Solution Proposal 19 of 23 v0.4

630
631
632

633
634
635

636
637
638

639

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676
677
678

All authentication assertions generated by an identity provider for a service provider MUST be of type
AssertionType. The <Subject> element in any subject statement MUST be of type SubjectType.
If the service provider registered a name identifier for the Principal (see 3.3), the <saml:NameIdentifier>
element in the <saml:Subject> element MUST be the service provider-provided name identifier for the
Principal. Otherwise, <saml:NameIdentifier> MUST be the most current name identifier supplied by the
identity provider. The <IDPProvidedNameIdentifier> MUST contain the most recent name identifier
supplied by the identity provider.

All authentication statements MUST be of type AuthenticationStatementType.

Identity providers MUST include a <saml:AudienceRestrictionCondition> element that specifies
the intended consumers of the assertion. One <saml:Audience> element MUST be set to the intended
recipient’s ProviderID. The recipient MUST validate that it is the intended viewer before using the
assertion.

The assertion MAY contain additional <saml:Audience> elements that specify other intended relying
parties.

Identity providers MAY include a SessionIndex attribute in resulting authentication statements, which is
used to aid the identity provider in managing multiple sessions with the Principal. If the identity provider
includes this SessionIndex attribute, subsequent messages from the service provider to the identity
provider that are session- dependent MUST include this SessionIndex attribute.

Identity providers MAY include other types of statements in the assertion(s) returned, depending on
agreements between providers and other specifications that provide additional functionality. Any such
statements that include a name identifier representing the Principal MUST be consistent with the
identification semantics dictated by the <NameIDPolicy> element. This is particularly relevant if the
"onetime" policy is in effect; a temporary identifier or an otherwise obfuscated and protected value MUST
be used.

Each assertion in the <AuthnResponse> message MUST be individually signed by the identity provider
(that is, each assertion must contain a Signature element which signs only the assertion). It is
RECOMMENDED that the signature be omitted from the <AuthnResponse> itself, but signing of the
message is not forbidden.

The type AuthnResponseType is extended from samlp:ResponseType. The response contains the following
elements:

ProviderID [Required]
The identity provider’s unique identifier.

RelayState [Optional]
This contains state information being relayed.

id [Optional]
Identifier used to identify this element in a signature. See section 3.1.5, Signature Verification for more
information.

The schema fragment is as follows:
<element name="AuthnResponse" type="lib:AuthnResponseType"/>
<complexType name="AuthnResponseType">
<complexContent>
<extension base="samlp:ResponseType">
<sequence>
<element ref="lib:ProviderID"/>
<element ref="lib:RelayState" minOccurs="0"/>
</sequence>

SAML 2.0 LECP Solution Proposal 20 of 23 v0.4

679
680
681
682
683
684
685

686

687
688
689
690

691
692

693
694
695
696

697
698
699
700
701
702

703
704
705
706

707
708

709
710

711
712

713
714
715

716
717
718
719
720
721
722
723
724

<attribute name="id" type="ID" use="optional"/>
</extension>
</complexContent>
</complexType>

SAML 2.0 LECP Solution Proposal 21 of 23 v0.4

725
726
727
728

Security Considerations
When the LECP profile is used with a Liberty Enabled Proxy (LEP) and WAP 1.0 then the LEP
functionality may be integrated with the WAP gateway. This does not introduce a significant change to the
WAP 1.0 security model which already does not allow end-end SSL/TLS connections through it.

When using WAP 2.0 which allows SSL/TLS to pass through it, use of a LEP requires the WAP gateway to
terminate SSL/TLS so that HTTP headers may be modified at the gateway to support LECP. This can
impact service provider attempts to use an end-end SSL/TLS connections with the terminal unless
additional care is taken.

SAML 2.0 LECP Solution Proposal 22 of 23 v0.4

729
730
731
732

733
734
735
736

References
[LibertyBindProf] Rouault, J., & Wason, T., eds. (January 2003). “Liberty Bindings and Profiles
Specification,” Version 1.1. Liberty Alliance Project, <http://www.projectliberty.org/specs/>.

[LibertyGloss] Mauldin, H., & Wason, T., eds. (January 2003). “Liberty Architecture Glossary,” Version
1.1. Liberty Alliance Project, <http://www.projectliberty.org/specs/>.

[LibertyProtSchema] Beatty, J., & Kemp, J., eds. (January 2003). “Liberty Protocols and Schema
Specification,” Version 1.1. Liberty Alliance Project, <http://www.projectliberty.org/specs/>.

[LibertyProtSchema1_2] Cantor, S. & Kemp, J., eds. (July 2003). “Liberty Protocols and Schema
Specification,” Version 1.2-14. Liberty Alliance Project,
<https://www.projectliberty.org/specs/draft-lib-arch-protocols-schema-v1.2-14.pdf>

[RFC1945] Berners-Lee, T., Fielding, R., Frystyk, H. (May 1996). “Hypertext Transfer Protocol --
HTTP/1.0,” RFC 1945. The Internet Engineering Task Force, <http://www.rfc-editor.org/rfc/rfc1945.txt>
[18 December 2002].

[RFC2045] Freed, N., Borenstein, N. (November 1996). “Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies,” RFC 2045. The Internet Engineering Task Force,
<http://www.rfc-editor.org/rfc/rfc2045.txt> [18 December 2002].

[RFC2246] Dierks, T.,& Allen, C. (January 1999). “The TLS Protocol Version 1.0,” RFC 2246. The
Internet Engineering Task Force, <http://www.rfc-editor.org/rfc/rfc2246.txt> [18 December 2002]

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (June
1999). “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616. The Internet Engineering Task Force,
<http://www.rfc-editor.org/rfc/rfc2616.txt> [18 December 2002].

[RFC3106] Eastlake, D., & Goldstein, T. (April 2001). “ECML v1.1: Field Specifications for E-
Commerce,” RFC 3106. The Internet Engineering Task Force, <http://www.rfc-editor.org/rfc/rfc3106.txt>
[18 December 2002].

[SAMLCore] Hallam-Baker, P., Maler, E., eds. (05 Nov. 2002). “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML),” Version 1.0, OASIS Standard. Organization for the
Advancement of Structured Information Standards, <http://www.oasis-
open.org/committees/security/#documents> [18 December 2002].

[SOAP1.1] D. Box et al. (May 2000). “Simple Object Access Protocol (SOAP) 1.1,” Note. World Wide
Web Consortium, <http://www.w3.org/TR/SOAP> [18 December 2002].

[SSLv3] Freier, A. O., Karlton, P., & Kocher, P. (November 1996). “The SSL Protocol,” Version 3.0,
Internet Draft 02. Internet Engineering Task Force,
<http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt> [18 December 2002].

SAML 2.0 LECP Solution Proposal 23 of 23 v0.4

737
738
739

740
741

742
743

744
745
746

747
748
749

750
751
752

753
754

755
756
757

758
759
760

761
762
763
764

765
766

767
768
769

