1 Introduction (Peter/open)

What is a reference model, and why do we have to have one?

Distinguish RM/RA

Audience – Matt

Notional Conventions - Matt
2 The Ref Model

(intro, axioms) – Rebekah

2.1 Overview of model

[key concepts and key relationships]
The reference model for service-oriented architectures describes concepts and relationships that are fundamental in describing SOA architecture patterns (i.e. SOA reference architectures) and specific SOA architectures applied to the solution of specific problems. In general, a service-oriented architecture represents a uniform means to discover and access distributed services that invoke functionality which produces desired effects. The services hide implementation details but have associated service descriptions to provide sufficient information to understand the technical and business requirements for invoking the service. The actual decision (or agreement) to invoke a service often is contingent on understanding and complying with those requirements.
While such a description of SOA gives a flavor for why it is of interest, it is not sufficient for understanding the primary SOA concepts that must be utilized in designing a SOA and effectively using an SOA. The remainder of this section introduces the main concepts and a detailed discussion of the concepts and their relationships are in the sections that follow.

A key element of SOA is the concept of a service. In general, people and organizations create capabilities to solve or support the solution of problems they face in the course of their business. SOA is conceived as a way of making those capabilities visible and supporting standard means of access so the existing capabilities can be reused or new capabilities can be readily substituted to improve the solutions. A service is a means to access such capabilities.
To use a service, it is necessary to know it exists, what is accomplished if the service is invoked, how to invoke the service, and other characteristics to allow a prospective consumer to decide if the service is suitable for the current needs and if the consumer satisfies any requirements of the service provider to be permitted access. Such information constitutes the service description.
While the means to invoke the service tends to be the focus of much SOA discussion, other aspects of the service description carry information on constraints and policies that establish the shared expectations of the service consumer and the service provider. This is critical because the perceived power of SOA is more than a means of using known services – it is the ability to find services through which additional capability can be brought to bear to solve problems. This implies that the match between service provider and service consumer must be discoverable. This is often thought of as the service provider entering the service description into a service registry and the service consumer searching for an appropriate match to their needs, but the SOA concept of discoverability is not restricted to this single mechanism.

Lastly, the perceived power of SOA is its role as the infrastructure through which services can be combined and interact to fulfill user (both provider and consumer) expectations in a robust fashion. [Frank – say more about what you’ll include in interactions.]
The next sections provide detailed discussions of these concepts and their relationships.
2.2 Detailed discussions

2.2.1 Service - Ken
A service is a mechanism to enable access to a set of capabilities, where the access is provided using a prescribed interface and is exercised consistent with constraints and policies as specified by the service description.
A service is invoked through a service interface, where the interface comprises the specifics of how to access the underlying capabilities. There are no constraints on what constitutes the underlying capability or how access is implemented by the service provider. Thus, the service could carry out its described functionality through one or more automated and/or manual processes that themselves could invoke other available services. A service is opaque in that its implementation is hidden from the service consumer except for (1) the data model exposed through the published service interface and (2) any information included as metadata to describe aspects of the service which are needed by service consumers to determine whether a given service is appropriate for the consumer’s needs.
The consequence of exercising a service is one or more real world effects.
 The effects may include

(1) information returned in response to a request for that information,
(2) processing done in response to a request to change the state of identified entities, or
(3) some combination of (1) and (2).

Note, the user in (1) does not typically know how the information is generated, e.g. whether it is extracted from a database or generated dynamically; in (2), the user does not typically know how the state change is effected. In either case, the service consumer would need to provide input parameters defined (either required or optional) by the service and the service would return information, status indicators, or error descriptions, where both the input and output are as described by the data model exposed through the published service interface. Note that the service may be invoked without requiring information input from the consumer (other than a command to initiate action) and may accomplish its functions without providing any return or feedback to the consumer.
The description of the service concept has emphasized a distinction between a capability that represents some functionality created to address a problem or a need and the service that forms the point of access to bring that capability to bear in the context of SOA. It is assumed the capability was created and exists outside of SOA and one of the major benefits of SOA is enabling the capability to be applied to an expanded realm of relevant problems. In actual use, maintaining this distinction may not be critical (i.e. the service may be talked about in terms of being the capability) but the separation is pertinent is terms of a clear expression of the nature of SOA and the value it provides.
2.2.2 Service description – Ken

The service description represents the information needed to use a service. The concept of a SOA supports use of a service without the service consumer needing to know the details of the service implementation. However to use a service, a service consumer must know:

1. The service exists and is available;

2. The service performs a certain function or set of functions;

3. The service operates under a specified set of technical assumptions, constraints, and policies;

4. The service can be invoked through a specified means, including inputs that the service requires and outputs that will form the response to the invocation.

Item 1 relates to the concept of discoverability and is discussed in more detail in Section 2.2.5. While elements of the service description may support discoverability (e.g. by providing descriptive properties to which users can match the criteria defining their needs), it does not form an identifiable part of the service description. This reflects the point that a service description must be flexible enough to represent properties of interest to users without presuming beforehand what the set of those properties will be.
The coordination of #3 leads to a set of shared expectations between the service provider and the service consumer.

The following example may help to clarify these concepts. To access electricity generated by the local electric utility, the service interface is the wall outlet and to use the service I need to understand what kind of plug fits the outlet. The utility assumes I will plug in devices that are compatible with the voltage they are providing and my assumption is I can safely plug in devices without these being damaged. If I am a home or business user, a constraint is I must establish an account and the contract I have with the electric utility is they will meter my usage and I will pay at a rate they prescribe. If I am a visitor to someone with a contract, the utility does not have a contract with me (and I do not have to satisfy the initial account constraint) but I still must be compatible with the service interface. The utility policy may be that in the event of high use by the community, the utility may reduce voltage or institute rolling blackouts. My implied policy is I may complain to my legislative representative if this happens frequently. The resource is the utility’s ability to generate and distribute electricity, and the service is my getting access to that electricity. The resource would exist if every device was required to be hardwired to the electric utility’s equipment but this would result in a very different service with a very different interface.

2.2.3 Interaction with and amongst services – Frank

from http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
To give a detailed perspective on how to interact with a service, it can be viewed as a process. Specifically, OWL-S 1.1 defines a subclass of ServiceModel, Process, which draws upon well-established work in a variety of fields, including work in AI on standardizations of planning languages [6], work in programming languages and distributed systems [20,19], emerging standards in process modeling and workflow technology such as the NIST's Process Specification Language (PSL) [22] and the Workflow Management Coalition effort (http://www.aiim.org/wfmc), work on modeling verb semantics and event structure [21], previous work on action-inspired Web service markup [18], work in AI on modeling complex actions [13], and work in agent communication languages [15,5].

It is important to understand that a process is not a program to be executed. It is a specification of the ways a client may interact with a service. An atomic process is a description of a service that expects one (possibly complex) message and returns one (possibly complex) message in response. A composite process is one that maintains some state; each message the client sends advances it through the process.

A process can have two sorts of purpose. First, it can generate and return some new information based on information it is given and the world state. Information production is described by the inputs and outputs of the process. Second, it can produce a change in the world. This transition is described by the preconditions and effects of the process.

A process can have any number of inputs (including zero), representing the information that is, under some conditions, required for the performance of the process. It can have any number of outputs, the information that the process provides to the requester. There can be any number of preconditions, which must all hold in order for the process to be successfully invoked. Finally, the process can have any number of effects. Outputs and effects can depend on conditions that hold true of the world state at the time the process is performed. (We use the term perform instead of execute to de-emphasize the traditional picture of a single agent being responsible for the occurrence of the process.)

[also from 19 August 2005 discussion]
[image: image1.png]Outside authorities

1 Execution Context .
/ 2
h /
«

1 — create/define EC using identified constraints and policies to
create shared expectations between the consumer, providers, and

outside authority (e.g. regulators)
2 — execute the indicated process / invoke the identified services

within the defined EC, i.e. consistent with the shared expectations of
the Execution Context

2.2.4 Policies & Expectations – Frank

2.2.5 Service discoverability – Peter and Rebekah

Words above in section 2.1 say:

This implies that the match between service provider and service consumer must be discoverable. This is often thought of as the service provider entering the service description into a service registry and the service consumer searching for an appropriate match to their needs, but the SOA concept of discoverability is not restricted to this single mechanism.

from http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
In the description so far, we tacitly assumed a registry model in which service capabilities are advertised, and then matched against requests of service. This is the model adopted by registries like UDDI. While this is the most likely model to be adopted by Web services, other forms of registry are also possible. For example, when the demand for a service is higher than the supply, then advertising needs for service is more efficient then advertising offered services since a provider can select the next request as soon as it is free; furthermore, in a pure P2P architecture there would be no registry at all. Indeed the types of registry may vary widely and as many as 28 different types have been identified [26,4]. By using a declarative representation of Web services, the service profile is not committed to any form of registry, but it can be used in all of them. Since the service profile represents both offers of services and needs of services, then it can be used in a reverse registry that records needs and queries on offers. Indeed, the Service Profile can be used in all 28 types of registry.
� This should not be confused with the concept of idempotent actions where, by definition, the resource accessed by the action is not changed. In this case, the real world effect is that the requester now has a representation of the resource.

