1.1 Interactions with services

Interacting with a service involves exchanging information with the service and performing actions against the service. In many cases, this is accomplished by sending and receiving messages to and from the service end-point; but there are other modes possible that do not involve explicit message sending. However, for simplicity, we often refer to message exchange as the primary mode of interaction with a service. Together the forms of information exchanged and the kinds of actions performed form the service interface.

There are three key concepts that are important in understanding what it is involved in interacting with services – the information model, the process model

and the execution context.
1.1.1 Information model
The information model of a service is a characterization of the information that may be exchanged with the service.

The scope of the information model includes the format of documents and messages, the structural relationships within those documents and also the ontologies of terms used within those documents.

We do not, however, generally include within the information model of a service the information and data that might be stored or internally manipulation by a service. That is part of the service implementation.

1.1.1.1 Structure

Knowing the representation, structure and form of information required is a key initial step in ensuring effective interactions with a service. There are several levels of such structural information; ranging from the encoding of character data, through the use of formats such as XML, SOAP and schema-based representations.
1.1.1.2 Ontology

Particularly for messages, an important aspect of the service information model is the interpretation of strings and other tokens in the data. Loosely, one might partition the interpretation of a message into structure (syntax) and ontology (semantics); although both are part of the information model.

A described information model typically has a great deal to say about the form of messages, about the types of the various components of messages and so on. However, pure type information is not sufficient to completely describe the appropriate interpretation of data. For example, within an address structure, the city name and the street name are typically given the same type – some variant of the string type. However, city names and street names are not really the same type of thing at all. Distinguishing the correct interpretation of a city name string and a street name string is not possible using type-based techniques – it requires additional information that cannot be expressed purely in terms of the structure of data.

Ontologies are formal descriptions of sets of terms in terms of the relationships between them. Most commonly, the relationships are class relationships – one term represents a concept that is a sub-class of another.
However, relationships are not limited to the sub-class relationships; other aspects of concepts can also be usefully represented; such as the range of possible values given property can take and whether the property is functional or not.
The role of explicit ontologies is to provide a firm basis for selecting correct interpretations for tokens in messages. For example, in the address example above, an ontology can be used to capture the appropriate distinction between street name and city name; so much so that in many cases it is possible to automatically map the contained information from one representation to another.
1.1.2 Behavior model

The second key requirement for successful interactions with services is knowledge of the behavioral or process aspects of the service. Loosely, this can be characterized as knowledge of the actions on, responses to and temporal dependencies between actions on the service.
For example, in a News subscription service, a successful use of the service involves initially registering a subscription with the service; which will then be followed by an irregular series of one-way news items. Key to using the service is the knowledge that you must first register your preferences and then you will get messages without further prompting.

Another example is a service that supports updating a balance with a transaction. Such services are typically idempotent: i.e., they will not change their state should a subsequent interaction be attempted for the same transaction. The behavioral model of the account update service then consists of an initial communication – incorporating the transaction to log – followed by a response which includes the new balance.

1.1.2.1 Process Model

It is fairly common to partition the process model associated with a service into two levels: the particular sequences of operations needed to achieve single service exchanges and longer term transactions. These two levels may be nested – a long running transaction is often composed of sequences of exchange patterns.

For example, in a publish-and-subscribe service, there are individual operations dealing with registering a new subscription (say) and publishing a new notice (say). The longer view of a given service considers the total sequence of notifications associated with a given subscription. Another concept that may be featured in a process model is the transactional structure of a service (c.f. ACID analysis of processes).

Note that although the existence of a process model is fundamental to this Reference Model, its extent is not defined. In some architectures the process model will include aspects that are not strictly part of our model – for example we do not address the orchestration of multiple services – although orchestration and choreography may be part of the process model of a given architecture. At a minimum, the process model must cover the interactions with the service itself.

Choosing an appropriate representation of process models is a fine art; a representation system that can express sequences and dependencies is often Turing complete

– i.e., is effectively a programming language. The problem with Turing complete representations of processes is that processing such descriptions quickly becomes intractable for non-trivial process models. For example, the task of comparing two processes is a difficult exercise that is provably impossible in the general case. On the other hand, without some such expressive power it can be difficult to capture the required dependencies that are a natural part of process descriptions.

However, showing that two process models are equivalent is not the only requirement for representing process models. A more common requirement is simply to be able to identify the appropriate steps that must be followed for a successful interaction. This is analogous to following a recipe or executing a program – a task that is easily mechanizable.

1.1.2.2 Behavior

The behavioral model of a service is about the behavior that results in interactions with the service. Of course, a great portion of the behavior of a service may be private; however, the expected public view of a service surely includes the implied behavior of the service.

For example, in a service that represents a bank account, it is not sufficient to know that to use the service you need to exchange a given message (with appropriate authentication tokens). It is also of the essence that using the service may actually affect the bank account – withdrawing cash from it for example.

The behavior of a service is closely connected to its intended real-world effect; although not identical to it. In general, we can state that the behavior of a service (an attempt to withdraw cash from an account) results in an intended (or occasionally unintended) effect in the world: the account’s balance is lower.

1.2 Services in context

In an implementation, s
ervices are associated with an execution context. Or, another way of expressing this is to consider that there is a distinction between a potential service and an actual service that is capable of being interacted with. An actualized service has an execution context that determines many of the properties of the service; including attributes such as security.

For example, suppose that it were important that a given service was always executed in an authenticated context – i.e., that the service provider and the service consumer have authenticated themselves to each other. The details of how authentication is performed are not our concern here. That authentication context is an example of a particular execution context that applies to the service.

The execution context is a touchstone for many aspects of the service – what policies are in force for example, whether it is available, and so on.

� http://en.wikipedia.org/wiki/Turing_completeness

�Didn’t we decide to call this the “behavioral aspects” or is the behavioral aspect simply a sub-aspect of it?

�Process model seems more accurate

�“in terms of” is more accurate than "with respect to" when it comes to ontologies

�Not sure what this says. I think that the two key features of ontology languages like OWL are the ability to define classes (and sub-classes) and the ability to model properties of classes. In practice, I suspect that the former is more used; and the second is too hard for most people to grok.

�Good idea. Will replace with a less abstract example!

�Reference to Alan Turing???

�Does it? It may imply it only if one thinks it implies such. In itself, I think a service’s behavior is somewhat inert.

�Yes, informally. E.g., one might imagine that updating a bank account with a transaction is part of the expectations associated with the bank service; even though the outsider can never see that update going on.

�I would prefer something like Running services, or executing services.

