

[image: image1.png]OASIS)

Reference Model for Service Oriented Architectures
Working Draft 08, 18 August 2005
Document identifier:

wd-soa-rm-08
Location:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
Editors:

C. Matthew MacKenzie, Adobe Systems Incorporated, mattm@adobe.com
Ken Laskey, Mitre Corporation, klaskey@mitre.org
Francis McCabe, Fujitsu Limited, fgm@fla.fujitsu.com
Peter Brown, Individual, peter@justbrown.net
Rebekah Metz, Booz Allen Hamilton, metz_rebekah@bah.com
Abstract:

This Service Oriented Architecture Reference Model is an abstract framework for understanding significant entities and relationships amongst them within a service-oriented environment, and for the development of consistent standards or specifications supporting that environment. It is based on unifying concepts of SOA and may be used by architects developing specific services oriented architectures or for education and explaining SOA. A reference model is not directly tied to any standards, technologies or other concrete implementation details, but it does seek to provide a common semantics that can be used unambiguously across and between different implementations.

While service-orientation may be a popular concept found in a broad variety of applications, this reference model scopes itself to the field of software architecture.

Status:

This document is updated periodically on no particular schedule. Send comments to the editor(s).
Committee members should send comments on this specification to the soa-rm@lists.oasis-open.org list. Others should visit the SOA-RM TC home page at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, and record comments using the web form available there.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the SOA-RM TC web page at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
The errata page for this specification is at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

Table of Contents

41
Introduction

1.1 What is a reference model
4
1.2 Audience
4
1.3 How to use the reference model
5
1.4 Notational Conventions
5
1.5 Relationships to Other Standards
6
2
The Reference Model
7
2.1 Overview of model
7
2.2 The Reference Model in Detail
8
2.3 Service
8
2.3.1 Service description
10
2.3.2 Descriptions and Metadata
13
2.4 Interacting with services
14
2.4.1 Information model
14
2.4.2 Behavior model
16
2.4.3 Services in context
18
2.5 Policies and Expectations
18
2.5.1 Service Policy
19
2.5.2 Services and expectations
20
2.6 Service discoverability
22
3
Conformance Guidelines
24
4
References
25
4.1 Normative
25
4.2 Non-Normative
25
Appendix A. Glossary
26
Appendix B. Acknowledgments
30
Appendix C. Notices
31

1 Introduction

1.1 What is a reference model
A reference model consists of a set of clearly defined basic concepts, axioms and relationships within a particular problem domain, independently of specific implementations, conventions, activities or organizations. The purpose of a reference model is to facilitate the design of systems, to establish a common set of terminology as it applies to the domain and to encourage best practice where possible.

 In the field of information technology, specific architectures may be developed to promote a common approach to solving particular problems. A group of such architectures – Service Oriented Architectures or SOAs – have developed over recent years with a specific mission to improve interoperability and collaboration between otherwise dissimilar services.

SOAs have received significant attention within the software design and development industry in recent times resulting in many conflicting definitions of “service-oriented architecture”. Whereas SOA architectural patterns (or reference architectures) may be developed to explain and underpin the generic design template supporting a specific SOA, a reference model is intended to provide an even higher level of commonality, with definitions that should apply to any SOA at all. The value of such a reference model is as a foundational work that can and should be used to develop architectural patterns and promote effective discourse on derived works.
The goal of this reference model document is to define the essence of the service oriented architecture paradigm, and emerge with a vocabulary and a common understanding of SOA. It should provide a normative reference that remains relevant for SOA as an abstract and powerful model, irrespective of the various and inevitable technology evolutions that we experience in this industry and that will impact on specific SOA implementations.

·
·

1.2 Audience

The intended audiences of this document non-exhaustively include:

· Architects and developers designing, identifying or developing a system based on the service-oriented paradigm.

· Standards architects / analysts developing specifications that relate to or make use of the service-oriented paradigm.

· Chief Information Officers and other decision makers seeking a "consistent and common" understanding of service oriented architecture.
1.3 How to use the reference model
New readers are encouraged to read this reference model in its entirety. Concepts are presented in an order that the authors hope promote rapid understanding.

This section introduces the conventions, defines the audience and sets the stage for the rest of the document. Non-technical readers are encouraged to read this information as it provides background material necessary to understand the nature of reference models and their use.

Section 2 introduces the Reference Model for SOAs. First, the main axioms, key concepts and relationships between those concepts are introduced followed by more detailed sections on the main concepts: a service is defined along with service description. There then follows a section detailing interaction between services, followed by service policies and expectations. Finally, being the key to a service’s actual use, the concept of service discoverability is introduced.

This section is provided for the benefit of multiple audiences:

· Non-technical readers may use this section to gain an explicit understanding of the core principles of SOA.

· Architects are encouraged to use this section as guidance for developing specific service oriented architectures. Section 2 and its subsections are designed to provide guidance for consistent logical divisions of components within architectures. It also helps architects adhere to the basic principles of service-oriented design.

Section 3 addresses what it might mean for an SOA-based system to be conformant with this reference model.
The glossary provides definitions of terms which are relied upon within the reference model specification but do not necessarily form part of the specification itself.
1.4 Notational Conventions
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

References are surrounded with [square brackets and are in bold text].
1.5 Relationships to Other Standards

Due to its nature, this reference model may have an implied relationship with any group that:
· Considers its’ work "Service Oriented"; and/or
· Makes (publicly) an adoption statement to use this SOA Reference Model of this TC as a base or inspiration for their work when complete.

Additionally, there are a large number of standards and technologies that are related by the fact they claim to be or are “service oriented”.

Any work that aligns with the functional areas of SOA such as the service, service description, advertising mechanism, service data model or service contract are likely to be directly related.

The reference model does not endorse any particular service-oriented architecture, or attest to the validity of third party reference model conformance claims.

2 The Reference Model

The reference model for service-oriented architectures describes concepts and relationships that are fundamental in describing SOA architecture patterns (i.e. SOA reference architectures) and specific SOA architectures applied to the solution of specific problems. In general, a service-oriented architecture represents a uniform means to discover and access distributed services that invoke functionality which produces desired effects with measurable preconditions and expectations. The services hide implementation details but have associated service descriptions to provide sufficient information to understand the technical and business requirements for invoking the service. The actual decision (or agreement) to invoke a service often is contingent on understanding and complying with those requirements.

While such a description of SOA gives a flavor for why it is of interest, it is not sufficient for understanding the primary SOA concepts that must be utilized in designing a SOA and effectively using an SOA. The remainder of this section introduces the main concepts and a detailed discussion of the concepts and their relationships are in the sections that follow.
2.1 Overview of model

A key concept of SOA is that of a service. In general, people and organizations create capabilities to solve or support the solution of problems they face in the course of their business. SOA is conceived as a way of making those capabilities visible and supporting standard means of access so the existing capabilities can be reused or new capabilities can be readily substituted to improve the solutions. A service is a means to access such capabilities.

To use a service, it is necessary to know it exists, what is accomplished if the service is invoked, how to invoke the service, and other characteristics to allow a prospective consumer to decide if the service is suitable for the current needs and if the consumer satisfies any requirements of the service provider to be permitted access. Such information constitutes the service description.

Services are accessed in order to achieve particular effects. However, the nature of SOAs are that there is an arm’s length relationship between service providers and consumers. As a result, there is a distinction to be drawn between the public interactions with a service and the private actions of the service provider and consumer. An important reason for the scalability and security attributes of SOAs is that the distinction promotes independence between service participants. We can focus on the public aspects of using a service by examining the conditions of using a service and the expectations that arise as a result of using the service. We loosely associate the service conditions with the service policies and the expectations with service contracts.
Another key concept in SOA is that of service interaction. Although services are accessed in order to achieve particular desired effects, this is effected by exchanging information between service providers and consumers. Typically this is by exchanging messages using a standardized protocol; however, there are many modalities possible for using services
Finally we identify discoverability as a key concept of SOAs. Discoverability refers to the possibility and mechanisms by which service consumers and providers can be brought together. There are many possible mechanisms by which discoverability may be achieved; SOAs are not limited to registries or repositories of service descriptions although these are undoubtedly powerful means of achieving it. Discoverability itself is a key concept for SOAs.

Figure 2‑1 - SOA Architectural Model
2.2 The Reference Model in Detail

2.3 Service
A service is a mechanism to enable access to a set of capabilities, where the access is provided using a prescribed interface and is exercised consistent with constraints and policies as specified by the service description. A service is provided by one entity for use by others, but the eventual consumers of the service may not be known to the service provider and may demonstrate uses of the service beyond the scope originally conceived by the provider.

A service is invoked through a service interface, where the interface comprises the specifics of how to access the underlying capabilities. There are no constraints on what constitutes the underlying capability or how access is implemented by the service provider. Thus, the service could carry out its described functionality through one or more automated and/or manual processes that themselves could invoke other available services. A service is opaque in that its implementation is hidden from the service consumer except for (1) the information

model exposed through the published service interface and (2) any information included as metadata to describe aspects of the service which are needed by service consumers to determine whether a given service is appropriate for the consumer’s needs. The consequence of exercising a service is one or more real world effects. The effects may include

(1) information returned in response to a request for that information, including information returned as a result of prior interactions with the service,
(2) processing done in response to a request to change the state of identified entities, or

(3) some combination of (1) and (2).

Note, the user in (1) does not typically know how the information is generated, e.g. whether it is extracted from a database or generated dynamically; in (2), the user does not typically know how the state change is effected. In either case, the service consumer would need to provide input parameters defined (either required or optional) by the service and the service would return information, status indicators, or error descriptions, where both the input and output are as described by the information model exposed through the published service interface. Note that the service may be invoked without requiring information input from the consumer (other than a command to initiate action) and may accomplish its functions without providing any return or feedback to the consumer.

The description of the service concept has emphasized a distinction between a capability that represents some functionality created to address a problem or a need and the service that forms the point of access to bring that capability to bear in the context of SOA. It is assumed the capability was created and exists outside of SOA and one of the major benefits of SOA is enabling the capability to be applied to an expanded realm of relevant problems. In actual use, maintaining this distinction may not be critical (i.e. the service may be talked about in terms of being the capability) but the separation is pertinent is terms of a clear expression of the nature of SOA and the value it provides.

2.3.1 Service description

The service description represents the information needed to use a service. It may be considered part of or the complete set of the metadata associated with a service (see Section 2.3.2)
 but in any case, the service description overlaps and shares many common properties with service metadata. In most cases, there is no one “right” set of metadata but rather the metadata content depends on the context and the needs of the parties using the associated entity. The same holds for a service description. While there are certain elements that are likely to be part of any service description, most notably the information model, many elements such as function and policy may vary. However, the mechanisms to specify the service description should be represented through use of a standard, reference-able format that can accommodate the necessary variations and lend themselves to common processing tools (such as discovery engines) to make use of the service description.
While the concept of a SOA supports use of a service without the service consumer needing to know the details of the service implementation, the service description makes available critical information a consumer needs to decide to use a service and then to affect that use. In particular, a service consumer must know:

1. The service exists and is available
;

2. The service performs a certain function or set of functions consistent with technical assumptions that underlie its functions;

3. The service operates under a specified set of constraints and policies;

4. The service will (to some extent) comply with policies as prescribed by the service consumer;

5. How to interact with the service in order to achieve the required objectives
, including the format and content of information exchanged between the service and the consumer and the sequences of information exchange that may be expected.

Subsequent sections of this document will deal with these aspects of a service in details but the following subsections will describe their relation to the service description.
2.3.1.1 Service Availability

Item 1 refers to the key requirement for a service description to include sufficient data to permit a service consumer and service provider to physically exchange information. This might range from metadata such as the location of the service and what information protocols it supports and requires to whether the service is currently available or not.
2.3.1.2

2.3.1.3 Service Functionality
Item 2 relates to the need to unambiguously express the function(s) of the service and the real world effects (see section 2.5) that result from it being invoked. This portion of the description needs to be expressed in a way that is generally understandable by service consumers but able to accommodate a vocabulary that is sufficiently expressive for the domain for which the service provides its functionality. The description of functionality may include, among other possibilities, a textual description intended for human consumption or identifiers or keywords referenced to specific machine-process-able definitions. For a full description, it may be useful to indicate multiple identifiers or keywords from a number of different collections of definitions.

Part of the description of functionality may include underlying technical assumptions that determine the limits of functionality exposed by the service or of the underlying capability. For example, the amounts dispensed by an automated teller machine (ATM) are consistent with the assumption that the user is an individual rather than a business. To use the ATM, the user must not only adhere to the policies and satisfy the constraints of the associated financial institution (see sections 2.3.1.3 for how this relates to service description and section 2.5 for a detailed discussion) but the user is limited to withdrawing certain fixed amounts of cash and a certain number of transactions in a specified period of time. The financial institution, as the underlying capability, does not have these limits but the service interface it exposes to its customers does, consistent with its assumption of the needs of the intended user. If the assumption is not valid, the user may need to use another service to access the capability.
2.3.1.4 Policies Related to a Service
Items 3 and 4 relate to the service description’s support for associating constraints and policies with a service and providing necessary information for prospective consumers to evaluate if a service will act in a manner consistent with the consumer’s constraints and policies.
In some situations the consumer may similarly provide an indication of its constraints and policies to support a service’s need to do a similar evaluation of suitability. Thus, both prospective consumers and providers are likely to use the service description (and the consumer description)
to mutually establish what section 2.4.3 refers to as the execution context
.

2.3.1.5 Service Interface

The service interface is the means referred to in Item 5 for interacting with a service. It includes the specific protocols, commands, and information exchange by which actions are initiated that result in the real world effects as specified through the service functionality portion of the service description.
The specifics of the interface are syntactically represented in a standard reference-able format. These prescribe what information needs to be provided to the service in order to exercise its functionality and/or the results of the service invocation to be returned to the service requester. This logical expression of the set of information items associated with the consumption of the service is often referred to as the service’s information model. Note, specifying the particulars of the standard reference-able format is beyond the scope of the reference model but requiring that mechanisms be available to define and retrieve such definitions are fundamental to the SOA concept. Also note that the service may be invoked without requiring information input from the consumer (other than a command to initiate action) and may accomplish its functions without providing any return or feedback to the consumer.

While this discussion refers to a standard reference-able syntax for service descriptions, we do not specify how the consumer accesses the interface definition nor how the service itself is accessed. However, it is assumed that for a service to be usable, its interface must be represented in a format that allows interpretation of the interface information.
2.3.1.6 An Example of Using Information Contained in the Service Description
The following example may help to clarify the concepts related to service and service description. To access electricity generated by the local electric utility, the service interface is the wall outlet and to use the service I need to understand what kind of plug fits the outlet. The utility assumes I will plug in devices that are compatible with the voltage they are providing and my assumption is I can safely plug in devices without these being damaged. If I am a home or business user, a constraint is I must establish an account and the contract I have with the electric utility is they will meter my usage and I will pay at a rate they prescribe. If I am a visitor to someone with a contract, the utility does not have a contract with me (and I do not have to satisfy the initial account constraint) but I still must be compatible with the service interface. The utility policy may be that in the event of high use by the community, the utility may reduce voltage or institute rolling blackouts. My implied policy is I may complain to my legislative representative if this happens frequently. The resource is the utility’s ability to generate and distribute electricity, and the service is my getting access to that electricity. The resource would exist if every device was required to be hardwired to the electric utility’s equipment but this would result in a very different service with a very different interface.
2.3.2 Descriptions and Metadata

One of the hallmarks of a Service Oriented Architecture is the degree of documentation and description associated with it; particularly machine processable descriptions – otherwise known as metadata.
The purpose of this metadata is to facilitate integration, particularly across ownership domains. By providing public descriptions, it makes it possible for potential participants to construct applications that use services and even offer compatible services with minimal human-level contact between them.

The roles of description
An important additional benefit of metadata – as opposed to informal natural language descriptions – is that it potentially permits automation in the creation of software. Both service providers and service consumers can benefit from such automation – reducing the cost of developing such systems.
For example, metadata can be used as a basis of discovery in dynamic systems, it can assist in managing a service, validating and auditing uses of services may also be simplified by rich metadata. It can help to ensure that requirements and expectations regarding the content of any data interchanged are properly interpreted and fulfilled.
2.3.2.1 The limits of description

There are well-known theoretic limits on the effectiveness of descriptions – it is simply not possible to completely specify in a completely unambiguous manner the precise semantics of a service. (This is Gödel’s incompleteness result in another guise.)

Another way of stating the above is that there will always be unstated assumptions made by the describer of a service that must be implicitly shared by readers of the description. This applies to machine processable metadata as well as to human readable documentation.
Luckily, such precision is not normally necessary either – what is required is sufficient precision to enable required functionality.

Another kind of limit of descriptions is more straightforward: describing a service (for example) does not eliminate the requirement for making a choice. For example, a service directory might have the descriptions of many services – provided by many organizations. An automatic search of that directory is therefore likely to return multiple responses to any mechanical search criteria. At some point this set of responses has to be converted into a choice of a single service in order for a service consumer (say) to perform its function. In a multi-vendor scenario, that choice must also take into account real world aspects of the service – such as who the provider of the service is and whether the service consumer can or should trust the provider. It is unlikely that such factors can be easily and securely encoded in descriptions and search criteria.
2.4 Interacting with services

Interacting with a service involves exchanging information with the service and performing actions against the service. In many cases, this is accomplished by sending and receiving messages to and from the service end-point; but there are other modes possible that do not involve explicit message sending. However, for simplicity, we often refer to message exchange as the primary mode of interaction with a service. Together the forms of information exchanged and the kinds of actions performed form the service interface – see section 2.3.1.

There are three key concepts that are important in understanding what it is involved in interacting with services – the information model, the process model

and the execution context.
2.4.1 Information model
The information model of a service is a characterization of the information that may be exchanged with the service.

The scope of the information model includes the format of documents and messages, the structural relationships within those documents and also the ontologies of terms used within those documents.

We do not, however, generally include within the information model of a service the information and data that might be stored or internally manipulation by a service. That is part of the service implementation.

2.4.1.1 Structure

Knowing the representation, structure and form of information required is a key initial step in ensuring effective interactions with a service. There are several levels of such structural information; ranging from the encoding of character data, through the use of formats such as XML, SOAP and schema-based representations.
2.4.1.2 Ontology

Particularly for messages, an important aspect of the service information model is the interpretation of strings and other tokens in the data. Loosely, one might partition the interpretation of a message into structure (syntax) and ontology (semantics); although both are part of the information model.

A described information model typically has a great deal to say about the form of messages, about the types of the various components of messages and so on. However, pure type information is not sufficient to completely describe the appropriate interpretation of data. For example, within an address structure, the city name and the street name are typically given the same type – some variant of the string type. However, city names and street names are not really the same type of thing at all. Distinguishing the correct interpretation of a city name string and a street name string is not possible using type-based techniques – it requires additional information that cannot be expressed purely in terms of the structure of data.

Ontologies are formal descriptions of sets of terms in terms of the relationships between them. Most commonly, the relationships are class relationships – one term represents a concept that is a sub-class of another. However, relationships are not limited to the sub-class relationships; other aspects of concepts can also be usefully represented; such as the range of possible values given property can take and whether the property is functional or not.

The role of explicit ontologies is to provide a firm basis for selecting correct interpretations for tokens in messages. For example, in the address example above, an ontology can be used to capture the appropriate distinction between street name and city name; so much so that in many cases it is possible to automatically map the contained information from one representation to another.
More specifically, for a service to be consistent, the service should make consistent use of terms as defined in one or more ontologies. Of course, specific domain semantics are beyond the scope of this reference model; however, the reference model does address the requirement that the service interface enable providers and consumers to unambiguously identify relevant definitions for their respective domains.
2.4.2 Behavior model

The second key requirement for successful interactions with services is knowledge of the behavioral or process aspects of the service. Loosely, this can be characterized as knowledge of the actions on, responses to and temporal dependencies between actions on the service.

For example, in a News subscription service, a successful use of the service involves initially registering a subscription with the service; which will then be followed by an irregular series of one-way news items. Key to using the service is the knowledge that you must first register your preferences and then you will get messages without further prompting.

Another example is a service that supports updating a balance with a transaction. Such services are typically idempotent: i.e., they will not change their state should a subsequent interaction be attempted for the same transaction. The behavioral model of the account update service then consists of an initial communication – incorporating the transaction to log – followed by a response which includes the new balance.
2.4.2.1 Process Model

It is fairly common to partition the process model associated with a service into two levels: the particular sequences of operations needed to achieve single service exchanges and longer term transactions. These two levels may be nested – a long running transaction is often composed of sequences of exchange patterns.

For example, in a publish-and-subscribe service, there are individual operations dealing with registering a new subscription (say) and publishing a new notice (say). The longer view of a given service considers the total sequence of notifications associated with a given subscription. Another concept that may be featured in a process model is the transactional structure of a service (c.f. ACID analysis of processes).

Note that although the existence of a process model is fundamental to this Reference Model, its extent is not defined. In some architectures the process model will include aspects that are not strictly part of this reference model – for example we do not address the orchestration of multiple services – although orchestration and choreography may be part of the process model of a given architecture. At a minimum, the process model must cover the interactions with the service itself.

Choosing an appropriate representation of process models is a fine art; a representation system that can express sequences and dependencies is often Turing complete

– i.e., is effectively a programming language. The problem with Turing complete representations of processes is that processing such descriptions quickly becomes intractable for non-trivial process models. For example, the task of comparing two processes is a difficult exercise that is provably impossible in the general case. On the other hand, without some such expressive power it can be difficult to capture the required dependencies that are a natural part of process descriptions.

However, showing that two process models are equivalent is not the only requirement for representing process models. A more common requirement is simply to be able to identify the appropriate steps that must be followed for a successful interaction. This is analogous to following a recipe or executing a program – a task that is easily mechanizable.

2.4.2.2 Behavior

The behavioral model of a service is about the behavior that results in interactions with the service. Of course, a great portion of the behavior of a service may be private; however, the expected public view of a service surely includes the implied behavior of the service.

For example, in a service that represents a bank account, it is not sufficient to know that to use the service you need to exchange a given message (with appropriate authentication tokens). It is also of the essence that using the service may actually affect the bank account – withdrawing cash from it for example.

The behavior of a service is closely connected to its intended real-world effect; although not identical to it. In general, we can state that the behavior of a service (an attempt to withdraw cash from an account) results in an intended (or occasionally unintended) effect in the world: the account’s balance is lower.

2.4.3 Services in context

In an implementation, s
ervices are associated with an execution context. Or, another way of expressing this is to consider that there is a distinction between a potential service and an actual service that is capable of being interacted with. An actualized service has an execution context that determines many of the properties of the service; including attributes such as security.

For example, suppose that it were important that a given service was always executed in an authenticated context – i.e., that the service provider and the service consumer have authenticated themselves to each other. The details of how authentication is performed are not our concern here. That authentication context is an example of a particular execution context that applies to the service.

The execution context is a touchstone for many aspects of the service – what policies are in force for example, whether it is available, and so on.

2.5 Policies and Expectations

In the absence of intimate knowledge of the implementation of service providers and consumers a way of characterizing the use of a service is via the concepts of policies and expectations. We can understand what it means to interact with a service by examining the conditions on the use of the service and the expected results of using it.

Broadly speaking, a policy represents some form of constraint or condition on the use, deployment or description of an owned entity. We are focused primarily on the concept of policy as it applies to services.

On the other hand, the expectations associated with a service revolve around the consequences of interacting with the service. Normally, there is an expected real world effect as a result of using a service – such as depositing money into an account. However, it can be difficult to characterize the real world effect of using a service, since the actions performed by a service implementation are inherently private to that provider.
 Instead it may be more effective to consider the expectations for future interactions with services.

2.5.1 Service Policy

Abstractly, a policy is a statement of the obligations, constraints or other conditions of use of a given service that expresses intent on the part of a participant. More particularly, policies are a way for expressing the relationship between the execution context and the information and process models associated with the service.

Conceptually, there are three aspects of policies: the policy assertion, the policy owner (sometimes referred to as the policy subject) and policy enforcement.
For example, the assertion: “All messages are triple-DES encrypted” is an assertion constraining the forms of messages. As an assertion, it is measurable: it may be true or false depending on whether the traffic is actually encrypted or not. Note that policy assertions are often about the way the service is realized; i.e., they are about the relationship between the service and its execution context.

A policy always represents a participant’s point of view. An assertion becomes the policy of a participant when they make it their policy – this linking is normally not part of the assertion itself. For example, if the service consumer declares that “All messages are triple-DES encrypted”, then that reflects the policy of the service consumer. This policy is one that may be asserted by the service consumer independently of any agreement from the service provider.

Finally, a policy may be enforced. Techniques for the enforcement of policies depend on the nature of the policy. From a conceptual point of view, service policy enforcement amounts to ensuring that the assertion is consistent with the real world. An unenforceable policy is not really a policy; it would be better described as a wish.

Policies potentially apply to many aspects of SOA: security, privacy, manageability, Quality of Service and so on. Beyond such infrastructure-oriented policies, participants may also express business-oriented policies – such as hours of business, return policies and so on.

Policy assertions may be, but need not be, written down in a formal machine processable form. The importance of such a machine processable form of policy depends on the purpose and applicability of the policy. In particular, where a policy declaration might affect whether a particular service is used or not, then such policies should be expressed in machine-processable form.

Languages that permit policy assertions also range in expressivity from simple propositional assertions to modal logic rules. However, the Reference Model is neutral to how a policy is represented.

A natural point of contact between service participants and policies associated with the service is in the service description. It would be natural for the service description to contain references to the policies associated with the service.

2.5.2 Services and expectations

There is nearly always a particular purpose associated with interacting with a service – the service consumer is trying to achieve some result by invoking the service, as is the service provider. At first sight, such a goal can often be expressed as “trying to get the service to do something” – this is sometimes known as the real world effect of using a service. For example, an airline reservation service can be used in order to book seats on a flight.

However, inherent to the concept of SOA is an arm’s length approach to the relationship between service providers and consumers where there are minimum assumptions made by consumers about how a service is provided, and conversely minimum assumptions made by service providers about the connectivity of consumers. This separation is key to achieving large-scale systems and also to managing the evolution of such systems.

In keeping with this assumption, a more effective way of capturing the purpose of using a service is via the concept of expectations. I.e., rather than trying to ensure that the airline reservation service has recorded our booking, we are more interested in knowing that when we arrive at the airport, the airline will agree that we do indeed have a seat on the flight.

Expectations revolve around communication and future interactions much more than present time actions. Of course, in order for the airline to know that the seat is confirmed it will likely use some kind of system for recording the reservation; but, by minimizing assumptions about how the airline fulfils its contracts, we maximize the potential for smooth interoperation.

One way to characterize the expectations associated with a service interaction involves the message traffic exchanged with the service. In a manner that is completely analogous to the service interface, we can define expectations in terms of the kinds of information that will be provided subsequently by a service – as opposed to the information that is required for a current interaction. For example, a successful interaction with a courier or package delivery service might result in a tracking number. The expectation is that presenting that tracking number to the appropriate service will result in information about the current whereabouts of the package being delivered.

The expectations arising from a use of a service may be described in much the same ways that policies are described, except that the natural container for this is the service contract.
2.5.2.1 Service Contract
Where a policy is associated with the point of view of individual participants, a contract represents an agreement between two or more participants. Like policies, contracts can cover a wide range of aspects of services: quality of service agreements, interface and choreography agreements and commercial agreements.

Thus, following the analysis above, a service contract is a measurable assertion that governs the requirements and expectations of two or more parties. Unlike policy enforcement, which is usually the responsibility of the policy owner, contract enforcement may involve disputes between the parties to the contract. The resolution of such disputes may involve appeals to higher authorities.

Like policies, contracts may be, but need not be, expressed in a machine processable form. Where a contract is used to codify the results of a service interaction, it is good practice to represent it in a machine processable form – that would facilitate automatic service composition for example. Where a contract is used to describe over-arching agreements between service providers and consumers then the priority is likely to make such contracts readable by people.

A variant of the policy concept is the agreement or contract. A contract has all the same features as a policy with one key addition: the concept of agreement – contracts are policies that have been agreed to by participants governed by the policy; policies do not need agreement only enforcement.

2.5.3

2.5.3.1

2.5.3.2

2.6 Service discoverability
A key concept of the SOA Reference Model is the discoverability of services; which is an important aspect of bringing together the service provider and consumer: A service provider must be capable of making details of the service (notably service description and policies) available to potential customers; and customers must be capable of finding that information.

This might (and commonly does) involve a service provider entering the service description into a service registry and the service consumer searching for an appropriate match to their needs. In a pure P2P architecture there would be no registry at all. The SOA concept of discoverability is not restricted to any single mechanism.

Service Discoverability requires that the service description and policy – or at least a suitable subset thereof – be available in such a manner and form that, directly or indirectly, an awareness of the existence and capabilities of the service can become known to potential consumers. The extent to which the discovery is “pushed” by the service provider, “pulled” by a potential consumer, subject to a probe or another method, will depend on many factors.

For example: a service provider may advertise and promote their service by either including it in a service directory or broadcasting it to all consumers; potential consumers may broadcast their particular service needs in the hope that a suitable service responds with a proposal or offer or a service consumer might also “probe()” an entire network to determine if suitable services exist. When the demand for a service is higher than the supply, then by advertising their needs, potential consumers are likely to be more effective then service providers advertising offered services.

One way or another, the potential consumer must acquire a sufficient description as a prelude to evaluating whether the service matches their expectations and, if so, how to proceed to establish a contract and invoke the service.

In some contexts there are advantages to a registry model in which service capabilities are advertised, and then matched against requests of service. Such models should ideally allow for the capture of information both of service offers and service requests, so that it can be used in a reverse registry that records needs and queries on offers as well as, or instead of, records of service offers.

Specific SOA reference architectures and implementations will prescribe the mechanisms for actual service discovery, ensuring a service’s presence and availability, and failure conditions and error handling.

3 Conformance Guidelines

The authors of this reference model envision that architects may wish to declare their architecture is conformant with this reference model. Conforming to a Reference Model is not generally an easily automatable task – given that the Reference Model’s role is primarily to define concepts that are important to SOAs rather than to give guidelines for implementing systems.

However, we do expect that any given Service Oriented Architecture will reference the concepts outlined in this specification. As such, we expect that any design for a system that adopts the SOA approach will

· Have entities that can be identified as services as defined by this Reference Model,
· Such entities will have descriptions associated with them,
· Service entities will have identifiable interaction models, including models of the information exchanged by the services and the temporal behavior of the services

· It should be possible to identify a means by which consumers of services and providers of services are able to engage; and
· That there will be identifiable aspects of service entities that correspond to the policies relating to the conditions of use of services and to the expectations that result from interacting with services.

It is not appropriate for this specification to identify best practice with respect to building SOA-based systems. However, the ease with which the above elements can be identified within a given SOA-based system could have significant impact on the scalability, maintainability and ease of use of the system.

4 References

4.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

4.2 Non-Normative

[W3C WSA]
W3C Working Group Note "Web Services Architecture", http://www.w3.org/TR/ws-arch/ , 11 February 2004

Appendix A. Glossary

Terms that are used within this Reference Model are often also found in other specifications. In order to avoid potential ambiguity, this glossary locally scopes the definitions of those terms for the purpose of this Reference Model and thus overrides any other definitions.

Advertising (or Announcement of Availability)

A means of conveying the existence of and sharing awareness about a service to potential consumers.

Agent (requester or provider)

An entity acting on behalf and with the authority of another entity and charged to fulfill a task.

Architecture

A set of artifacts (that is: principles, guidelines, policies, models, standards and processes) and the relationships between these artifacts, that guide the selection, creation, and implementation of solutions aligned with business goals.

Software architecture is the structure or structures of an information system consisting of entities and their externally visible properties, and the relationships among them.

Authentication

The act by which an agent establishes – to an agreed level of confidence – the identity of another entity.

(Service) Consumer

An entity which intends to make use of a service.

Contract

The syntactic, semantic and logical constraints governing the use of a service.

Data Model

A Data Model is the abstract paradigm used in the invocation and consumption of a service. It is expressed as a set of information items associated with the use of a service.

Discovery

The act of detecting and gaining understanding of the nature of a service.

Encapsulation

The act of hiding internal specifications of an entity from the user of that entity, in such a way that the internal data and methods of the entity can be changed without changing the manner in which the entity is used. What is seen by the user is only an interface, or service.

Framework

A set of assumptions, concepts, values, and practices that constitutes a way of viewing the current environment.

Interface

A named set of operations that characterize the behavior of an entity.

Mediation

The transformation, routing, validation and processing of messages.

Message

A serialized set of data that is used to convey a request or response from one party to another.

Metadata

A set of properties of a given entity which are intended to describe and/or indicate the nature and purpose of the entity and/or its relationship with others.

Negotiation

A process that seeks to establish an acceptable basis for a contract between agents for the provision of a service.

Ontology

Represents an agreement within a specific environment of the meanings to be associated with different concepts and their relations to each other.

Opaqueness

The extent to which an agent is able to interact successfully with a service without detecting how the service is implemented.

Policy

A statement of obligations, constraints or other conditions of use of a given service. When a specific set of entities accept such a policy, a contract is usually established.

Reference Model

A reference model is an abstract framework for understanding significant relationships among the entities of some environment that enables the development of specific architectures using consistent standards or specifications supporting that environment.

A reference model is based on a small number of unifying concepts. A reference model is not directly tied to any standards, technologies or other concrete implementation details, but it does seek to provide a common semantics that can be used unambiguously across and between different implementations.

(Service) Requester or provider

An agent that interacts with a service in order to achieve a goal

Security

A set of policies and measures designed to ensure that agents in an environment can only perform actions that have been allowed. Security in a specific environment is an agreed compromise between meeting the needs of agents and maintaining the integrity of the environment.

Semantics

A conceptualization of the implied meaning of information, shared between the service consumer and the service provider, that requires words and/or symbols within a usage context.

Service

A behavior or set of behaviors offered by one entity for use by another according to a policy and in line with a service description.

Service description

A set of information describing a service, sufficient to allow a potential consumer to ascertain, where appropriate:

- the identity of (and/or information about) the service provider;

- the policies, parameters and terms of use of the service;

- the procedures and constraints governing invocation of the service,

and thus determine whether the service meets the expectations and requirements of the consumer. Acceptance of the service description by a consumer does not of itself imply a contract to use the service.

Service Oriented Architecture (SOA)

A software architecture of services, policies, practices and frameworks in which components can be reused and repurposed rapidly in order to achieve shared and new functionality. This enables rapid and economical implementation in response to new requirements thus ensuring that services respond to perceived user needs.

SOA uses the object-oriented principle of encapsulation in which entities are accessible only through interfaces and where those entities are connected by well-defined interface agreements or contracts.

Appendix B. Acknowledgments

The following individuals were members of the committee during the development of this specification:

[TODO: insert cte. Members]

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights, which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2005. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� This should not be confused with the concept of idempotent actions where, by definition, the resource accessed by the action is not changed. In this case, the real world effect is that the requester now has a representation of the resource.

� http://en.wikipedia.org/wiki/Turing_completeness

� A similar analysis applies to service consumers: just how a consumer of a service decides which requests to make is something that the service provider cannot determine.

�Changed it to information model. Because it is a more general concept

�A later section talks about an "information model" and it may be appropriate to change all references to "data model".

�Deleted because it is repetitious

�Appendix C had been deleted. Replaced with text from old semantic section

�We've discussed this before but in writing this section it seems that an important concept is not only that there is a service and it's the service I want to use, and I know how to invoke the service, but also some mechanism that lets me know the service is available to be invoked or it can't. It is an implementation decision whether to inform the consumer in advance (or for the consumer to be able to check) about availability or to generate a fault if the service is not accessible. But something on availability/presence seems to be needed.

�Reworded away from invoke to interaction.

�This is the ifirst that we have heard of the consumer description!

�Propose deleting.

�Deleted as unnecessary. Shoot me.

�You can shoot me here too.

�Didn’t we decide to call this the “behavioral aspects” or is the behavioral aspect simply a sub-aspect of it?

�Process model seems more accurate

�Reference to Alan Turing???

�Does it? It may imply it only if one thinks it implies such. In itself, I think a service’s behavior is somewhat inert.

�Yes, informally. E.g., one might imagine that updating a bank account with a transaction is part of the expectations associated with the bank service; even though the outsider can never see that update going on.

�I would prefer something like Running services, or executing services.

�Have deleted text on contract life cycle – as not being critical to the SOA itself.

�Suggest that this sentence does not add anything. And its potentially confusing.

�Again, it may not be the service provider that provides this description. Ask Wal-Mart or GM

�May also not be automated. The URL for the service may be well-known – to be found on the side of a bus.

�Sufficient, rather than full

�There are also significant scalability issues with registries.

�I have redrafted this to better reflect the nature of a reference model.

�This section needs more discussion.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 29
2
OASIS SOA Reference Model

18 August 2005
Copyright © OASIS Open 2005. All Rights Reserved.
Page 19 of 30

