

 1

JavaTM API for XML Registries (JAXR) 2

Proposed Final Draft: 4/10/2002 3

This version: JAXR Version 1.0 4

 5

 6

Please send technical comments to: jaxr-experts@east.sun.com 7

Please send business comments to: jaxr-business@east.sun.com 8

 9

 10

 11

 12

 13

 14

 15

 16

Farrukh Najmi <Farrukh.Najmi@sun.com> 17
18

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 2

SUN IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU 18
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT ("AGREEMENT"). PLEASE READ 19
THE TERMS AND CONDITIONS OF THIS LICENSE CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, 20
YOU ACCEPT THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO 21
BE BOUND BY ITS TERMS, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS PAGE AND THE 22
DOWNLOADING PROCESS WILL NOT CONTINUE. 23
 24
JavaTM API for XML Registries (JAXR) Specification ("Specification") 25
Version: 1.0 26
Status: Proposed Final Draft 27
Release: 4/10/2002 28
Copyright 2002 Sun Microsystems, Inc. 29
901 San Antonio Road, Palo Alto, California 94303, U.S.A. 30
All rights reserved. 31
 32
NOTICE 33
 34
1. The Specification is protected by copyright and the information described therein may be protected by one or more U.S. 35
patents, foreign patents, or pending applications. Except as provided under the following license, no part of the Specification 36
may be reproduced in any form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and 37
its licensors, if any. Any use of the Specification and the information described therein will be governed by the terms and 38
conditions of this Agreement. By viewing, downloading or otherwise copying the Specification, you agree that you have read, 39
understood, and will comply with all of the terms and conditions set forth herein. 40
2. Sun hereby grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right 41
to sublicense), under its applicable intellectual property rights to view, download, use and reproduce the Specification 42
("Specification") only for the purpose of evaluation, which shall be understood to include developing applications intended to 43
run on an implementation of the Specification provided that such applications do not themselves implement any portion(s) of 44
the Specification. 45
 46
3. Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to 47
sublicense) under any applicable copyrights or patent rights it may have therein to create and/or distribute an Independent 48
Implementation. Such license will authorize the creation and distribution of Independent Implementations provided such 49
Independent Implementations: (i) fully implement the Spec(s) including all its required interfaces and functionality; (ii) do not 50
modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, 51
Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Spec or Specs 52
being implemented; (iii) pass the TCK for such Spec; and (d) are capable of operating on a Java platform which is certified to 53
pass the complete TCK for such Java platform, unless the Spec itself is for a Java platform, in which case this subparagraph 54
(iv) shall not apply. This subparagraph (iv) also shall not apply to those portions of the Specification (if any) that define 55
network protocols that are not specific to a Java platform. No license is granted hereunder for any other purpose. This license 56
will terminate immediately without notice from Sun if you fail to comply with (and do not promptly cure) any material 57
provision of or act outside the scope of this license. 58
 59
4. You need not include requirements (a)-(d) from the previous paragraph or any other particular "pass through" requirements 60
in any license you grant concerning the use of your Independent Implementation or products derived from it. However, except 61
with respect to implementations of the Specification (and products derived from them) by the your licensee that satisfy 62
requirements (a) through (d) from the previous paragraph, you may neither: (i) grant or otherwise pass through to your 63
licensees any licenses under Sun's applicable intellectual property rights; nor (ii) authorize your licensees to make any claims 64
concerning their implementation's compliance with the Specification. 65
 66
5. For the purposes of this Agreement, Independent Implementation shall mean an implementation of the Specification that 67
neither derives from any of Sun's source code or binary code materials nor, except with an appropriate and separate license 68
from Sun, includes any of Sun's source code or binary code materials. 69
 70
TRADEMARKS 71
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted 72
hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2EE are trademarks or registered trademarks of Sun Microsystems, 73
Inc. in the U.S. and other countries. 74
 75
DISCLAIMER OF WARRANTIES THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO 76
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, 77
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT 78

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 3

THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE 79
OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, 80
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or 81
implement any portion of the Specification in any product. 82
 83
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 84
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL 85
BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE 86
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE 87
SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-current license 88
for the applicable version of the Specification. 89
 90
LIMITATION OF LIABILITY TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS 91
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS 92
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER 93
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY 94
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS 95
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 96
 97
You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of 98
the Specification; (ii) the use or dist ribution of your Java application, applet and/or clean room implementation; and/or (iii) 99
any claims that later versions or releases of any Specification furnished to you are incompatible with the Specification 100
provided to you under this license. 101
 102
RESTRICTED RIGHTS LEGEND 103
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government 104
prime contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation 105
shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of 106
Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions). 107
 108
EXPORT CONTROL 109
You acknowledge and agree that the Specification is subject to the U.S. Export Administration Laws and Regulations. 110
Diversion of such information contrary to U.S. law is prohibited. You agree that none of the information contained in the 111
Specifications, nor any direct product therefrom, is being or will be acquired for, shipped, transferred, or re-exported, directly 112
or indirectly, to proscribed or embargoed countries or their nationals, nor be used for nuclear activities, chemical biological 113
weapons, or missile projects unless authorized by the U.S. Government. Proscribed countries are set forth in the U.S. Export 114
Administration Regulations. Countries subject to U.S. embargo are: Cuba, Iran, Iraq, Libya, North Korea, Syria, Serbia, and 115
the Sudan. This list is subject to change without further notice from Sun, and you must comply with the list as it exists in fact. 116
You certify that you are not on the U.S. Department of Commerce's Denied Persons List or affiliated lists or on the U.S. 117
Department of Treasury's Specially Designated Nationals List. You agree to comply strictly with all U.S. export laws and 118
assume sole responsibility for obtaining licenses to export or re-export as may be required 119
 120
REPORT 121
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the 122
Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is 123
provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-124
up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use 125
without limitation the Feedback for any purpose related to the Specification and future versions, implementations, and test 126
suites thereof. 127
 128
GENERAL INFORMATION 129
This Agreement constitutes the entire agreement between you and Sun and governs your use of the Specification, superseding 130
any prior agreements between you and Sun. You also may be subject to additional terms and conditions that may apply when 131
You use other Sun services, third-party content or third-party software. You must not assign or otherwise transfer the 132
Agreement nor any right granted hereunder. 133
California law and controlling U.S. federal law govern any action related to the Agreement . No choice of law rules of any 134
jurisdiction apply. The parties specifically disclaim the U.N. Convention on Contracts for the International Sale of Goods. You 135
and Sun agree to submit to the personal and exclusive jurisdiction of the courts located within the county of Santa Clara, 136
California. 137
The failure of Sun to exercise or enforce any right or provision of the Agreement does not constitute a waiver of such right or 138
provision. If a court of competent jurisdiction finds any provision of the Agreement to be invalid, the parties nevertheless 139

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 4

agree that the court should endeavor to give effect to the parties' intentions as reflected in the provision, and the other 140
provisions of the Agreement remain in full force and effect. The section titles in the Agreement are for convenience only and 141
have no legal or contractual effect. 142

143

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 5

Table of Contents 143

Introduction...13 144

Introduction...13 145

1.1 Status of this Document.. 13 146
1.2 Abstract.. 13 147
1.3 General Conventions ... 13 148
1.4 Target Audience ... 14 149
1.5 JAXR Expert Group ... 14 150
1.6 Acknowledgements.. 15 151
1.7 Relationship to Other Java APIs .. 15 152

1.7.1 JAXP .. 15 153
1.7.2 JAXB .. 15 154
1.7.3 JAX-RPC... 16 155
1.7.4 JAXM.. 16 156

1.8 Design Objectives .. 16 157
1.8.1 Goals .. 16 158
1.8.2 Non Goals ... 17 159

1.9 Caveats and Assumptions .. 17 160

2 Overview...18 161
2.1 What Is a Registry.. 18 162
2.2 Registry Use Case Scenarios .. 18 163
2.3 Participant Roles .. 20 164

2.3.1 Submitting Organization.. 20 165
2.3.2 Content Submitter .. 20 166
2.3.3 Registry Operator ... 20 167
2.3.4 Registry Guest .. 20 168

2.4 Registry Vs. Repository... 20 169
2.4.1 Repository and Repository Items .. 21 170
2.4.2 Registry and Registry Objects ... 21 171

2.5 Functionality of a Registry .. 21 172
2.5.1 Registry as Electronic Yellow Pages .. 21 173

2.5.1.1 Flexible Classification Capability..................................... 21 174
2.5.2 Registry as a Database of Relatively Static Data 22 175
2.5.3 Registry as Electronic Bulletin Board.. 22 176

2.6 Existing Registry Specifications... 22 177
2.7 Registry Provider.. 23 178
2.8 JAXR Provider .. 23 179
2.9 JAXR Client ... 23 180
2.10 Support for Multiple Registry Specifications .. 23 181

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 6

2.10.1 Capability Profiles .. 24 182
2.10.1.1 Assignment of Capability Level to Methods................. 24 183
2.10.1.2 Assignment of Capability Level to Interfaces and 184
Classes 24 185
2.10.1.3 Declaration of Capability Level by a JAXR Provider .. 24 186

2.10.2 Level 0 Profile ... 25 187
2.10.3 Level 1 Profile ... 25 188
2.10.4 Capability Level and JAXR Clients.. 25 189

2.11 Capability Levels and Registry Standards ... 25 190

3 Architecture ...26 191
3.1 JAXR Client ... 27 192
3.2 Interface Connection ... 27 193
3.3 Interface RegistryService.. 28 194
3.4 Capability-specific Interfaces ... 28 195
3.5 The JAXR Provider .. 28 196

3.5.1 JAXR Pluggable Provider ... 29 197
3.5.2 Registry-specific JAXR Provider.. 29 198
3.5.3 JAXR Bridge Providers ... 30 199

3.6 Registry Provider.. 30 200
3.7 JAXR API Package Structure... 30 201

3.7.1 Responses and Exceptions .. 31 202
3.7.2 Main Interfaces ... 31 203

4 Information Model..33 204

4.1 Information Model: Public View ... 33 205
4.1.1 RegistryObject .. 34 206
4.1.2 Organization.. 35 207
4.1.3 Service ... 35 208
4.1.4 ServiceBinding.. 35 209
4.1.5 SpecificationLink .. 35 210
4.1.6 ClassificationScheme .. 35 211
4.1.7 Classification... 36 212
4.1.8 Concept ... 36 213
4.1.9 Association.. 36 214
4.1.10 RegistryPackage .. 37 215
4.1.11 ExternalIdentifier .. 37 216
4.1.12 ExternalLink .. 37 217
4.1.13 Slot ... 37 218
4.1.14 ExtensibleObject .. 38 219
4.1.15 AuditableEvent ... 38 220
4.1.16 User .. 38 221
4.1.17 PostalAddress... 38 222

4.2 Information Model: Inheritance View... 38 223

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 7

4.2.1 RegistryEntry Interface.. 39 224
4.2.2 ExtrinsicObject Interface ... 39 225

4.3 Internationalization (I18N) Support ... 40 226
4.3.1 Interface InternationalString ... 40 227
4.3.2 Interface LocalizedString .. 40 228

4.4 Registry Audit Trail... 40 229

5 Classification of Registry Objects...41 230
5.1 Interface Classification .. 41 231
5.2 Interface ClassificationScheme ... 41 232
5.3 Taxonomy Structure and Elements ... 42 233

5.3.1 Internal Vs. External Taxonomies ... 43 234
5.3.2 Internal Vs. External Classifications .. 43 235

5.4 Interface Concept... 43 236
5.5 Internal Classification .. 44 237

5.5.1 An Example of Internal Classification ... 45 238
5.6 External Classification ... 45 239

5.6.1 An Example of External Classification.. 46 240
5.7 An Example of Multiple Classifications ... 46 241
5.8 Context-sensitive Classification... 47 242

6 Association of Registry Objects ..50 243
6.1 Example of an Association ... 50 244
6.2 Source and Target Objects... 50 245
6.3 Association Types .. 51 246
6.4 Intramural Associations ... 51 247
6.5 Extramural Association ... 52 248
6.6 Confirmation of an Association .. 53 249

6.6.1 Confirmation of Intramural Associations 53 250
6.6.2 Confirmation of Extramural Associations 54 251
6.6.3 Undoing Confirmation of Extramural Associations 54 252

6.7 Visibility of Unconfirmed Associations .. 54 253
6.8 Possible Confirmation States ... 54 254

7 Connection Management...56 255
7.1 Looking Up a ConnectionFactory.. 56 256

7.1.1 Looking Up a ConnectionFactory Using the JNDI API............... 56 257
7.1.2 Looking Up a ConnectionFactory Without Using the JNDI API56 258

7.2 Setting Connection Properties on ConnectionFactory........................... 56 259
7.2.1.1 Standard Connection Properties 57 260

7.3 Creating a JAXR Connection... 58 261
7.4 Synchronous Connections .. 58 262
7.5 Asynchronous Connections .. 58 263

7.5.1 JAXRResponse and Futures Design Pattern.............................. 59 264

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 8

7.6 Security Credentials Specification... 59 265
7.7 Federated Connections ... 60 266

7.7.1 Creating a FederatedConnection .. 60 267
7.7.1.1 Connection Configuration... 60 268

7.8 Concurrent Connections ... 60 269
7.9 Using a Connection to Access the Registry... 60 270
7.10 Closing a Connection .. 61 271
7.11 Connection Setup Sequence ... 61 272

7.11.1 Connection Creation Code Sample ... 63 273

8 Life Cycle Management..64 274
8.1 Unique Key Assignment.. 64 275
8.2 Interface LifeCycleManager ... 65 276

8.2.1 Requests, Responses and Exception Handling 65 277
8.2.2 Creating Objects Using Factory Methods 65 278
8.2.3 Saving Objects ... 66 279

8.2.3.1 Interface BulkResponse.. 66 280
8.2.3.2 Interface SaveException... 66 281
8.2.3.3 Implicit Saving of Objects ... 67 282

8.2.4 Updating Objects.. 67 283
8.2.5 Deleting Objects ... 67 284

8.2.5.1 Interface DeleteException... 68 285
8.2.6 Deprecating Objects .. 68 286
8.2.7 Undeprecating Objects.. 68 287

8.3 Interface BusinessLifeCycleManager ... 69 288
8.3.1 Save Methods... 71 289
8.3.2 Delete Methods .. 71 290

8.4 Life Cycle Management and Federated Connections 71 291

9 Query Management ...72 292

9.1 Interface QueryManager ... 72 293
9.2 Interface BusinessQueryManager... 73 294

9.2.1 Find Methods .. 75 295
9.2.1.1 Collection Parameters ... 76 296
9.2.1.2 Interface FindException .. 76 297

9.2.2 Canonical Paths Syntax for Concepts .. 76 298
9.2.2.1 Example of Canonical Path Representation.................. 76 299

9.3 Interface DeclarativeQueryManager... 77 300
9.3.1 Interface Query... 77 301
9.3.2 Creating a Query.. 78 302
9.3.3 Executing a Query ... 78 303

9.4 SQL Query Syntax ... 78 304
9.4.1 SQL Query Syntax Binding To Information Model...................... 78 305

9.5 OASIS ebXML Registry Filter Query Syntax... 78 306

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 9

9.6 Query Result ... 78 307
9.7 Federated Queries ... 79 308

10 Security Architecture ..80 309

10.1 Integrity.. 80 310
10.2 Confidentiality... 80 311
10.3 Authentication ... 81 312

10.3.1 Authentication Methods... 81 313
10.4 Authorization ... 81 314
10.5 Security Support in JAXR API.. 82 315

10.5.1 User Registration ... 82 316
10.5.2 Method Connection.setCredentials ... 82 317

Appendix A Pre-defined Enumerations...83 318
A.1 Identification of Pre-defined Enumerations .. 83 319
A.2 Enumeration ObjectType .. 83 320
A.3 Enumeration PhoneType .. 84 321
A.4 Enumeration AssociationType ... 84 322
A.5 Enumeration URLType.. 85 323
A.6 Enumeration PostalAddressAttributes .. 86 324

Appendix B Semantic Equivalence of JAXR Concepts..............................86 325

Appendix C JAXR Mapping to ebXML Registry ..88 326
C.1.1 Mapping of Interfaces .. 88 327
C.1.2 Mapping of New Classes In JAXR To ebXML... 89 328
C.1.3 ebXML Functionality Not Supported By JAXR.. 89 329

Appendix D JAXR Mapping To UDDI...89 330
D.1 Mapping of UDDI Inquiry API Calls To JAXR.. 89 331
D.2 Mapping of UDDI Publisher API Calls to JAXR....................................... 90 332
D.3 Simplified UML Model For UDDI Information Model 92 333
D.4 Mapping of JAXR Attributes to UDDI.. 93 334
D.5 Mapping of UDDI Attributes to JAXR.. 93 335
D.6 Mapping of Interfaces .. 93 336

D.6.1 UDDI businessEntity.. 94 337
D.6.1.1 UDDI discoveryURL.. 95 338

D.6.1.1.1 Getting a discoveryURL from UDDI.......................... 95 339
D.6.1.1.2 Saving discoveryURL to UDDI................................... 96 340

D.6.1.2 UDDI contact.. 96 341
D.6.1.3 UDDI address .. 97 342

D.6.1.3.1 Mapping of PostalAddress During Save Operations98 343
D.6.1.3.2 Mapping of UDDI address During Find Operations 99 344

D.6.2 UDDI businessService ..100 345
D.6.3 UDDI bindingTemplate ..101 346
D.6.3.1 tModelInstanceInfo and instanceDetails................................102 347

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 10

D.6.4 tModel ..102 348
D.6.4.1 tModel Mapping to ClassificationScheme102 349
D.6.4.2 tModel Mapping to Concept ..103 350
D.6.4.3 Mapping of tModels During JAXR Find Operations103 351
D.6.4.4 Mapping to tModels During JAXR Save Operations104 352
D.6.4.5 overviewDoc ..105 353

D.7 Mapping of Common Data Types..105 354
D.7.1 keyedReference ...105 355
D.7.2 identifierBag..107 356
D.7.3 categoryBag..107 357
D.7.4 tModelBag ...107 358

D.8 Mapping of UDDI phone Element..107 359
D.8.1 Mapping of phone During Save Operations ...108 360
D.8.2 Mapping of phone During Find Operations ..108 361
D.9 Mapping of name to PersonName...108 362
D.10 Example of JAXR-UDDI Mapping ...109 363
D.11 Provider Generated id Attributes ...111 364
D.12 Supporting Taxonomy Service In JAXR UDDI Providers112 365
D.12.1 Normative Description ...112 366
D.12.2 Non-normative Description ...112 367
D.13 UDDI Functionality Not Supported By JAXR...113 368

Appendix E Value-Added Features of the JAXR API.................................114 369
E.1 Taxonomy Browsing ..114 370
E.2 Taxonomy Validation ...114 371
E.3 Smart Queries...114 372
E.4 Enhanced Data Integrity and Validation...114 373
E.5 Automatic Categorization of UDDI tModels ...115 374
E.6 Simplified Programming Model..115 375

E.6.1.1 Unification of find and get Methods ..115 376
E.6.1.2 Generic Handling of Object..115 377

E.7 Simplified User Authentication...115 378
E.8 Enforce No New References to Deprecated Objects...........................116 379

Appendix F Frequently Asked Questions ..116 380

11 References...118 381

 Table of Figures 382

Figure 1: Interoperability between diverse JAXR clients and diverse registries ..17 383

Figure 2: A Registry Use Case Scenario ...19 384

Figure 3: Registry specification family tree ..23 385

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 11

Figure 4: JAXR Architecture ...26 386

Figure 5: Interface Connection...27 387

Figure 6: Interface RegistryService...28 388

Figure 7: Capability-specific Interfaces...28 389

Figure 8: JAXR Provider ...28 390

Figure 9: JAXR Responses and Exceptions ..31 391

Figure 10: Main Interfaces defined by the JAXR API...32 392

Figure 11: Information Model Public View ...34 393

Figure 12: Information Model Inheritance View...39 394

Figure 13: Classification of Registry Objects ...41 395

Figure 14: Role of ClassificationSchemes in Classification42 396

Figure 15: Role of Concepts in Representing Taxonomy Structure44 397

Figure 16: An Example of Internal Classification ..45 398

Figure 17: An Example of External Classification...46 399

Figure 18: An Example of Multiple Classifications ..47 400

Figure 19: Context Sensitive Classification ...48 401

Figure 20: Example of RegistryObject Association ..50 402

Figure 21: Example of Intramural Association...52 403

Figure 22: Example of Extramural Association ...53 404

Figure 23: Connection Setup Sequence ..62 405

Figure 24: Pre-defined enumeration ObjectType..84 406

Figure 25: Pre-defined enumeration PhoneType..84 407

Figure 26: Pre-defined enumeration AssociationType...85 408

Figure 27: Pre-defined enumeration URLType ...86 409

Figure 28: Pre-defined enumerations for PostalAddressAttributes........................86 410

Figure 29: Simplified UML Model for UDDI Information Model...............................92 411

Figure 30: UDDI Information Model for Address...97 412

Figure 31: Semantic Equivalence and Mapping of User Defined Postal Scheme 413
to PostalAddress Attribute ...98 414

Figure 32: Example in terms of UDDI Data Structures ..110 415

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 12

Figure 33: UDDI Example Mapped to JAXR ...110 416

 417

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 13

Introduction 418

1.1 Status of this Document 419

This specification is being developed following the JavaTM Community ProcessSM 420
(JCP SM 2.0). Comments from Experts, Participants, and the broader Java 421
Developer community have been reviewed and incorporated into this 422
specification. 423
 424
This document is the JAXR Specification, version 1.0 and is the final work 425
item of the JSR093 Expert Group (EG). 426

This document has been designated as Final Release. 427

1.2 Abstract 428

This document defines the objectives and functionality for Java API for XML 429
Registries or JAXR. 430

Currently there are numerous overlapping specifications for business registries. 431
Examples include ISO 11179, OASIS, eCo Framework, ebXML and UDDI. JAXR 432
provides a uniform and standard API for accessing such registries within the 433
Java platform. 434

1.3 General Conventions 435

1. The term “registry provider” is used to describe implementations of business 436
registries conforming to various registry specifications and emerging 437
standards. 438

2. The term “JAXR provider” is used to describe implementations of the JAXR 439
API. A JAXR provider provides access to a specific registry provider or to a 440
class of registry providers that are based on a common specification. 441

3. The term “JAXR client” is used to describe client programs that access 442
business registries using the JAXR API. 443

4. The term “repository item” is used to refer to actual content (e.g. an XML 444
Schema document, as opposed to metadata about the XML Schema 445
document) submitted to a registry. The term “repository item instance” is used 446
to refer to a single instance of some repository item. 447

5. The term “registry object” is used to refer to metadata that catalogs or 448
describes a repository item. It is reflected by the RegistryObject interface in 449
the JAXR information model and its sub-interfaces. 450

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 14

6. The verb “catalogs” is often used when describing metadata classes. For 451
example, the statement “Class A catalogs B” is equivalent to the statement 452
“Class A provides metadata for B”. 453

7. This document does not include the complete API documentation generated 454
by the JavadocTM software. Partial API documentation fragments are included 455
occasionally to facilitate understanding. The reader is expected to read the 456
complete API documentation as a companion to this document. 457

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 458
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 459
this document, are to be interpreted as described in RFC 2119 [Bra97]. 460

1.4 Target Audience 461

The target audience for this specification is the community of software 462
developers who are: 463

1. Implementers of JAXR providers 464

2. Implementers of JAXR clients 465

1.5 JAXR Expert Group 466

The JAXR specification is the result of a collaborative effort and collective 467
wisdom of the JSR093 Expert Group and the companies and individuals who 468
have supported this work with their participation in the Java Community. 469
 470
Joseph Baran - Extol, Inc. 471
Ben Bernhard - IONA 472
Marco Carrer - Oracle 473
Alex Ceponkus - Bowstreet 474
Joel Farrell - IBM Corporation 475
Tom Gaskins - Hewlett-Packard Company 476
Wooyoung Kim - Individual 477
Amelia A. Lewis - Tibco Extensibility Inc. 478
Sam Lee - Oracle 479
Dale Moberg - Cyclone Commerce 480
Farrukh Najmi - Sun Microsystems 481
Eric Newcomer - IONA Technologies 482
Sanjay Patil - IONA Technologies 483
Will Raymond - Tibco Extensibility Inc. 484
Waqar Sadiq - EDS 485
Krishna Sankar - CISCO 486
Nikola Stojanovic - Encoda Systems, Inc. 487
Omar Tazi - webGain 488

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 15

Ravi Trivedi - Hewlett-Packard Company 489
Lyndon Washington - SilverStream 490
Prasad Yendluri - webMethods Corporation 491
Phil Zimmerman - BEA Systems 492

1.6 Acknowledgements 493

Graham Hamilton, Mark Hapner, Eduardo Pelegri-Llopart, Bill Shannon, Robert 494
Bissett, Irene Caruso, Peter Eakle, Joe Fialli, Maydene Fisher, Kim Haase, Steve 495
Hanna, Peter Kacandes, Nandkumar Kesavan, Tom Kincaid, Ramesh Mandava, 496
Bhakti Mehta, Ron Monzillo, Kevin Osborn, Cecilia Peltier, Karen Schaffer, Leslie 497
Schwenk, Karen Shipe, Christine Tomlinson, Sekhar Vajjhala, Peter Walker, 498
Kathy Walsh, (all from Sun Microsystems) have all made invaluable contributions 499
to the JAXR 1.0 specification. Thanks to Jeff Jackson, Karen Tegan and Connie 500
Weiss for their sponsorship and support of JAXR. 501

1.7 Relationship to Other Java APIs 502

JAXR is related to several other Java APIs for XML. In future, these APIs may 503
become part of the Java 2 Platform, Enterprise Edition (J2EETM platform). 504

1.7.1 JAXP 505

Java API for XML Processing or JAXP enables flexible XML processing from 506
within Java programs. 507

The JAXR API will make direct XML processing less important for JAXR clients. 508
However, JAXP may be used by implementers of JAXR providers and JAXR 509
clients for processing XML content that is submitted to or retrieved from the 510
registry. The JAXP API is likely to also be used in implementations of the JAXB 511
API described next. 512

1.7.2 JAXB 513

Java API for XML Binding or JAXB enables simplified XML processing using 514
Java classes that are generated from XML schemas. 515

The JAXR API will make direct XML processing less important for JAXR clients. 516
However, JAXB may be used by implementers of JAXR providers and JAXR 517
clients for processing XML content that is submitted to or retrieved from the 518
registry. 519

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 16

1.7.3 JAX-RPC 520

Java API for XML-based RPC or JAX-RPC provides an API for XML-based RPC 521
communication in the Java platform. 522

Implementations of the JAXR providers may use JAX-RPC for communication 523
between JAXR providers and registry providers that export a SOAP-based RPC 524
like interface (e.g. UDDI). 525

1.7.4 JAXM 526

Java API for XML Messaging or JAXM provides an API for packaging and 527
transporting of message based business transactions using on-the-wire protocols 528
defined by emerging standards. 529

Implementations of the JAXR providers may use JAXM for communication 530
between JAXR providers and registry providers that export an XML Messaging 531
based interface (e.g. ebXML TRP). 532

1.8 Design Objectives 533

This section describes the high level design objectives for the JAXR API. 534

1.8.1 Goals 535

The goals of this version of the specification are to: 536

1. Define a general purpose Java API for accessing business registries that 537
allows any JAXR client to access and interoperate with any business registry 538
that is accessible via a JAXR provider. 539

2. Define a pluggable provider architecture that enables support for diverse 540
registry specifications and standards. 541

3. Support a union of the best features of dominant registry specifications rather 542
than a common intersection of features. JAXR is not a least common 543
denominator API. 544

4. Ensure support for dominant registry specifications such as ebXML and UDDI, 545
while maintaining sufficient generality to support other types of registries, 546
current or future. 547

5. Ensure synergy with other Java specifications related to XML. 548

 549

Figure 1 below shows how diverse JAXR clients can interoperate with diverse 550
registries using the JAXR API. 551

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 17

 552

Diverse
Clients

J2EE
Components

Desktop
Applications

Registry
Browsers

Diverse
Registries

JAXR
API

ebXML UDDI Other

 553

Figure 1: Interoperability between diverse JAXR clients and diverse registries 554

1.8.2 Non Goals 555

This specification does not aim to define either business registry standards or 556
XML messaging standards. These standards belong in standards bodies such as 557
OASIS, W3C or IETF. Instead, this specification aims to define standard Java 558
APIs to allow convenient access from Java to emerging registry standards. 559

1.9 Caveats and Assumptions 560

It is assumed that: 561

1. The reader is familiar with UML notation. UML notation is used throughout 562
this document for most of the diagrams. 563

564

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 18

2 Overview 564

2.1 What Is a Registry 565

Most business-to-business (B2B) interactions are based on a collaborative 566
process between 2 parties that are engaged in a partnership. A registry is a 567
neutral 3rd party that helps facilitate such collaboration. A registry is available to 568
organizations as a shared resource often in the form of a web based service. A 569
registry is a key component in any Web Services architecture because it provides 570
organizations with the ability to publish, discover and utilize web services. 571
Registries enable dynamic and loosely coupled B2B collaboration. 572

[Note] While this document may present registry use 573
cases in a business-focused context, the JAXR 574
API is sufficiently general to support many 575
other types of use cases. 576

2.2 Registry Use Case Scenarios 577

Figure 2 below illustrates a few of the common use case scenarios involving a 578
business registry. The scenario shows how a registry facilitates a buyer company 579
discovering a seller company and engaging in a collaborative B2B process. 580

 581

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 19

Request Business Details

Build Local
System

ImplementationRegister Implementation Details
Register Seller Company Profile

1

3

2

6
5

4

Business Process Spes
Core Components

ebXML
Registry

Agree
 on Busin

ess

Arran
gem

ent

ebXML
Compliant

System

Query about

Seller company Profile

Download Process Specs

and Core Components

Seller Company

Buyer Company

XML

 582

Figure 2: A Registry Use Case Scenario 583

1. First, the Seller company queries a registry for specifications defining a 584
collaborative business process as well as core components that define 585
reusable XML elements used in business documents (e.g. Address, 586
Contact etc.). These specifications have previously been submitted by a 587
vertical standards organization. 588

2. The Seller then uses the specifications and core components downloaded 589
from the registry to implement their local eBusiness system with support 590
for the desired collaborative processes. 591

3. The Seller then registers information about their company, their products 592
and their services in the registry. Such information may be classified to 593
facilitate discovery by potential buyers. 594

4. A Buyer company may browse the registry by classifications etc. and 595
discover the Seller. They may also download technical specifications and 596
core components to implement their local system to support the 597
collaborative process. 598

5. The Buyer then negotiates with the Seller on an agreement to collaborate 599
in the chosen collaborative process implemented and agreed to by both 600
sides. 601

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 20

6. The two parties finally engage in the desired collaborative business 602
process and exchange business documents. 603

2.3 Participant Roles 604

This section describes the key roles played by participants (actors) within various 605
registry use case scenarios. This section is not a complete list of roles. 606

2.3.1 Submitting Organization 607

A submitting organization (SO) is an organization that submits or publishes 608
content to a registry. An SO may be an enterprise or an entity within an 609
enterprise. 610

An SO owns the content that it publishes to a registry. 611

2.3.2 Content Submitter 612

A content submitter is a user who belongs to a submitting organization and is 613
authorized to submit content on behalf of the organization. 614

2.3.3 Registry Operator 615

A registry operator is responsible for operating a registry. A registry operator has 616
special access control and authorization privileges within the registry under their 617
operation. 618

2.3.4 Registry Guest 619

A registry guest is a non-privileged casual user of the registry who simply 620
browses the data within the registry. 621

2.4 Registry Vs. Repository 622

The terms registry and repository are often used together and sometimes 623
confused with each other. 624

The following sections describe the distinction between a registry and a 625
repository and introduce the content of each. 626

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 21

2.4.1 Repository and Repository Items 627

Information published by an SO to a registry is stored in a stable store called a 628
repository. The registry maintains the repository. The repository is the holder of 629
content (e.g. DTDs, XML Schemas, WSDL documents etc.) submitted by an SO 630
to a registry. Instances of the content stored in the repository are called 631
repository items. 632

The JAXR API does not directly provide access to the repository. Instead, all 633
access to the repository is through the registry. As such, the repository is an 634
implementation detail of a registry. It is mentioned in this specification only as a 635
concept. However, neither the repository nor repository items are part of the 636
JAXR information model or API. 637

2.4.2 Registry and Registry Objects 638

When an SO submits repository items using the JAXR API, it also provides 639
additional metadata that catalogs or describes the repository items. Such 640
metadata is referred to as registry objects in the JAXR information model. 641

In summary, a repository is a holder of submitted content while a registry is a 642
catalog that describes the submitted content in the repository. It should be noted 643
that not all registries include the repository functionality. 644

2.5 Functionality of a Registry 645

This section describes the functionality that is provided by a registry. 646

2.5.1 Registry as Electronic Yellow Pages 647

Registries facilitate the creation of business relationships by providing an 648
independent online information exchange service that allows service providers 649
(e.g. sellers) to advertise their products and services, and service consumers 650
(e.g. buyers) to discover these products and services. Such an information 651
exchange service is sometimes referred to as “electronic yellow pages”. 652

2.5.1.1 Flexible Classification Capability 653

Registries provide a rich classification capability that allows content providers to 654
classify content such as organization and service descriptions in arbitrary and 655
flexible ways. For example, content submitted to the registry may be the 656
description of a business organization that is classified by the industry it belongs 657
to, the geography it is located in, the business processes it supports, and the 658
products it sells. 659

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 22

Such flexible classification capabilities of registries facilitate discovery of content 660
by interested parties. 661

2.5.2 Registry as a Database of Relatively Static Data 662

A registry (and its repository) stores metadata and data. As such, it is much like a 663
database. It stores information about: 664

o Collaborative business process descriptions that describe in XML form a 665
specific business protocol (e.g. RosettaNet PIP3A4 for purchase orders) 666

o Parties in a collaborative business process 667

o XML Schemas that define the structure of the XML documents exchanged 668
during a collaborative Business Process 669

A registry plays a role in B2B applications that is similar to that played by 670
databases in enterprise applications; it provides a way for applications to store 671
relatively static information reliably and to enable sharing of such information. 672

2.5.3 Registry as Electronic Bulletin Board 673

A registry may also provide means to exchange dynamic content between 674
parties. Examples include generic event notification, price changes, discounts, 675
promotions etc. Such dynamic capabilities allow for more Just-In-Time B2B 676
partnerships. 677

2.6 Existing Registry Specifications 678

Currently there are numerous registry specifications. Examples include OASIS, 679
eCo Framework, ebXML and UDDI. While there may be some similarity between 680
these specifications, in general these are diverse specifications. 681

JAXR API aims to be the confluence of the various registry specifications as 682
shown in Figure 3 below: 683

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 23

ISO 11179

OASIS Registry

ebXML RegistryUDDI

eCo Framework

JAXR
 684

Figure 3: Registry specification family tree 685

2.7 Registry Provider 686

A registry provider provides an implementation of a registry specification or 687
standard. Examples inc lude: 688

o A UDDI registry provider that implements the UDDI registry specifications 689

o An ebXML registry provider that implements the ebXML Registry 690
specifications 691

A registry provider is not required to implement the JAXR specification. 692

2.8 JAXR Provider 693

A JAXR Provider provides an implementation of the JAXR specification. 694
Typically, a JAXR provider is implemented to access an existing registry 695
provider. 696

2.9 JAXR Client 697

A JAXR client is a Java program that uses the JAXR API to access the services 698
provided by a JAXR provider. 699

2.10 Support for Multiple Registry Specifications 700

The JAXR API must support diverse registry specifications that vary significantly 701
in their capabilities and underlying information model. 702

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 24

JAXR aims to support diverse registry specifications by providing a broad and 703
capable API rather than a “least-common-denominator” API. To use a Java 704
analogy, the JAXR philosophy is akin to designing a Java Virtual Machine that is 705
a union of the most useful capabilities of all supported hardware platforms rather 706
than an intersection of their capabilities. This approach to supporting diverse 707
registry specifications means that not all Registries are able to support all 708
aspects of the JAXR API. 709

2.10.1 Capability Profiles 710

The JAXR API categorizes its API methods by a small number of capability 711
profiles. Currently only two capability profiles are defined (level 0 and level1). 712

2.10.1.1 Assignment of Capability Level to Methods 713

Each method in the JAXR API is assigned a capability level. The capability level 714
is defined in the API documentation for each method in a class or interface in the 715
JAXR API. 716

2.10.1.2 Assignment of Capability Level to Interfaces and Classes 717

There is no assignment of capability level to interfaces and classes in the JAXR 718
API. Capability assignment is done at the method level only. 719

2.10.1.3 Declaration of Capability Level by a JAXR Provider 720

A JAXR provider must declare the capability level for its implementation of the 721
JAXR API. A JAXR client may discover a JAXR provider’s capability level by 722
invoking methods on an interface named CapabilityProfile as defined by the 723
JAXR API. If a JAXR provider declares support for a specific capability level then 724
it implicitly declares support for lower capability levels. For example, a JAXR 725
provider that declares support for the level 1 profile implicitly declares support for 726
level 0 profile. 727

A JAXR provider must implement the functionality described by the JAXR API for 728
each method that is assigned a capability level that is less than or equal to the 729
capability level declared by the JAXR provider. 730

A JAXR provider must implement all methods that are assigned a capability level 731
that is greater than the capability level declared by the JAXR provider, to throw 732
an UnsupportedCapabilityException. A JAXR provider must never implement any 733
other behavior for methods assigned a greater than the capability level declared 734
by the JAXR provider. The reason for this restriction is that it is necessary to 735
ensure portable behavior for JAXR clients for any JAXR provider within a specific 736
capability level. 737

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 25

2.10.2 Level 0 Profile 738

Support for the level 0 profile is required to be supported by all JAXR providers. 739
The methods assigned to this profile provide the most basic registry capabilities. 740

2.10.3 Level 1 Profile 741

Support for the level 1 profile is optional for JAXR providers. The methods 742
assigned to this profile provide more advanced registry capabilities that are 743
needed by more demanding JAXR clients. Support for the Level 1 profile also 744
implies full support for the Level 0 profile. 745

2.10.4 Capability Level and JAXR Clients 746

A JAXR client may be written to use only those methods that are assigned a level 747
0. Such a client is able to access any JAXR provider in a portable manner. 748

An advanced JAXR client may also be written to methods that are assigned a 749
level 1. This level 1 client is able to access only level 1 compliant JAXR providers 750
in a portable manner. 751

2.11 Capability Levels and Registry Standards 752

JAXR providers for UDDI must be level 0 compliant. JAXR providers for ebXML 753
must be level 1 compliant. 754

755

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 26

3 Architecture 755

This chapter describes the high-level architecture for JAXR and introduces some 756
of the core interfaces. 757

Figure 4 below shows the high-level view of the JAXR architecture. It is 758
frequently referred to, within this specification. 759

 760

..........

ebXML/SOAP UDDI/ SOAP ???

Capability
Specific

Interfaces

Registry
Specific

JAXR Provider

JAXR Client

C1 C2 Cn

RS

Diverse
Registries ebXML UDDI Other

ebXML
Provide

r

UDDI
Provide

r

Other
Provide

r

JAXR Pluggable Provider

 761

Figure 4: JAXR Architecture 762

The circles represent the various interfaces implemented by the JAXR client and 763
the JAXR provider: 764

o RS represents the RegistryService interface implemented by the 765

JAXR provider. 766

o C1, C2 through Cn represent the JAXR interfaces implemented by the 767
JAXR provider that provide the various registry capabilities. These 768
interfaces are introduced later in this specification. 769

[Note] The JAXR client and the JAXR provider are 770
expected to be co-located within the same JVM 771
process in most implementations. The only 772

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 27

distribution point over the web is between the 773
JAXR provider and the registry provider 774
(between the middle and bottom tiers). 775

In the following sections, each component of the JAXR architecture is described 776
in a top-down order. Most descriptions are accompanied by a thumbnail version 777
of Figure 4. The thumbnail figure highlights the component being described by 778
pointing to it with a block arrow and showing it in red color. 779

3.1 JAXR Client 780

At the top of Figure 4 is the JAXR client. The JAXR client may be any standalone 781
Java application or an enterprise component based on J2EE technology. The 782
JAXR client uses the JAXR API to access a registry via a JAXR provider. 783

3.2 Interface Connection 784

 785

Figure 5: Interface Connection 786

A Connection object (pointed to by block arrow in Figure 5) represents a client 787

session with a registry provider using a JAXR provider. It maintains state 788
information for a specific connection. 789

A client must create a JAXR Connection to a registry provider using an 790
appropriate JAXR provider in order to employ the services of that registry using 791
the JAXR API. Chapter 7 describes the role of Connections in further detail. 792

The client uses the JAXR ConnectionFactory interface to create a Connection. 793

The JAXR Connection is not explicitly shown in Figure 4. However, the 794
RegistryService interface defined by the JAXR API is contained within a JAXR 795
Connection. 796

1. The Connection interface provides various setter methods (e.g. 797
setSynchronous, setCredentials) that allow the JAXR client to dynamically 798
alter its state, context, and preferences with the JAXR provider at any time. 799

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 28

3.3 Interface RegistryService 800

 801

Figure 6: Interface RegistryService 802

The RegistryService interface (pointed to by block arrow in Figure 6) is the 803
principal interface implemented by a JAXR provider. A registry client can get this 804
interface from its Connection to a JAXR provider. 805

The RegistryService interface provides the getter methods that are used by 806

the client to discover various capability-specific interfaces implemented by the 807
JAXR provider. It also provides a getCapabilityProfile method that allows 808

the JAXR client to access the capability profile that describes the capabilities 809
supported by the JAXR provider. 810

3.4 Capability-specific Interfaces 811

 812

Figure 7: Capability-specific Interfaces 813

The capability-specific interfaces (pointed by block arrow in Figure 7) provide 814
specific capabilities such as: 815

o Life cycle management, which is discussed in Chapter 8. 816

o Query management, which is discussed in Chapter 9. 817

Capability specific interfaces are usually named xxManager where xx represents 818
the specific capability provided by that interface. 819

3.5 The JAXR Provider 820

 821

Figure 8: JAXR Provider 822

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 29

The JAXR provider (pointed to by block arrow in Figure 8) is an implementation 823
of the JAXR API. A JAXR client accesses a registry via a JAXR provider. 824

Figure 4 shows the JAXR provider as the union of the JAXR pluggable provider 825
and the registry-specific JAXR providers. 826

[Note] The following sections describing JAXR 827
Pluggable provider, registry specific providers 828
and JAXR bridge providers are non-normative. 829
They describe an architectural vision for the 830
JAXR API. However, it should be noted that the 831
JAXR API does not define a service provider 832
interface (SPI) for plugging registry specific 833
providers into a JAXR pluggable provider. This 834
SPI is deferred to a future release of the JAXR 835
specification. 836

3.5.1 JAXR Pluggable Provider 837

The JAXR Pluggable provider implements features of the JAXR API that are 838
independent of any specific registry type. The Pluggable provider provides a 839
single abstraction for multiple registry-specific JAXR providers. It allows the client 840
to avoid being exposed to the fact that there are multiple registry-specific JAXR 841
providers performing the actual registry access. 842

An important feature of the JAXR Pluggable provider is providing a Pluggable 843
ConnectionFactory implementation that can create JAXR Connections using the 844
appropriate registry-specific JAXR provider. 845

3.5.2 Registry-specific JAXR Provider 846

The registry-specific JAXR providers implement the JAXR API in a registry-847
specific manner. A registry-specific JAXR provider plugs into the JAXR Pluggable 848
provider and is used by the JAXR Pluggable provider in a delegation pattern. The 849
contract between the JAXR Pluggable provider and a registry-specific JAXR 850
provider is currently not defined. It will be defined in a future version of this 851
specification. 852

A registry-specific JAXR provider accepts JAXR requests from the client and 853
transforms them into equivalent requests based on the specifications of the 854
target registry. It dispatches the registry-specific requests to the registry provider 855
using registry-specific protocols. 856

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 30

A registry provider processes a request from the registry-specific JAXR provider 857
and sends back a registry-specific response. The registry-specific JAXR provider 858
then transforms the registry-specific response into an equivalent JAXR response 859
that is delivered to the JAXR client. 860

From the registry provider’s perspective, its client is the registry-specific JAXR 861
provider. 862

3.5.3 JAXR Bridge Providers 863

A JAXR Bridge Provider is a type of registry-specific JAXR Provider. 864

It is likely that most registry-specific JAXR providers will be developed as bridges 865
to existing registry providers. Such JAXR providers are referred to as JAXR 866
Bridge providers. A bridge provider is not specific to any particular registry 867
instance. Instead, a bridge provider is specific to a class of registries (e.g. OASIS 868
ebXML registry, UDDI registry) and may be used to access any registry instance 869
that is compliant with the specification that defines that class of registries. 870

For example, an ebXML Bridge provider gives access to any ebXML compliant 871
registry implementation, while a UDDI bridge provider gives access to any UDDI 872
compliant registry implementation. 873

3.6 Registry Provider 874

Registry providers are shown as the bottom layer in Figure 4. These are 875
implementations of various registry specifications such as ebXML and UDDI. 876

3.7 JAXR API Package Structure 877

The JAXR API is divided into two main packages: 878

1. The javax.xml.registry.infomodel package consists of interfaces 879

that define the information model for JAXR. These interfaces define the 880
types of objects that reside in a registry and how they relate to each other. 881
The information model is discussed in detail in Chapter 4. 882

2. The javax.xml.registry package consists of the interfaces and 883

classes that define the registry access interface. 884

While the information model describes what types of objects reside in the 885
registry, the access interfaces in javax.xml.registry package define how 886

those objects are submitted to the registry and subsequently managed. Figure 10 887
shows the interfaces and classes defined by the JAXR API as defined by the 888
java.xml.registry package. The information model interfaces are described 889
in detail in Chapter 4. 890

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 31

3.7.1 Responses and Exceptions 891

Figure 9 shows the various interfaces and classes defined by the JAXR API for 892
communicating Exceptions and responses. The RegistryException class is the 893
common base class for all JAXRExceptions that represent exceptions and errors 894
that occurred on the registry provider side rather than the JAXR provider side 895
during a JAXR API call. 896

 897

Figure 9: JAXR Responses and Exceptions 898

3.7.2 Main Interfaces 899

Figure 10 shows the main interfaces defined by the JAXR API. Part of the API is 900
identified as the Query API while part of it is identified as Life Cycle Management 901
API. Also part of the API is identified as providing a Business focused API while 902
part of it is identified as providing a more generic API. Details of these interfaces 903
will be provided later in this specification or in the API documentation for the 904
JAXR API. 905

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 32

 906

Figure 10: Main Interfaces defined by the JAXR API 907

 908

909

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 33

4 Information Model 909

The JAXR information model is largely based on the ebXML Registry Information 910
model as defined by [RIM] and extended to add concepts borrowed from UDDI 911
as defined by [UDDI-DS]. A normative binding to both [RIM] and [UDDI-DS] is 912
defined in Appendix C and Appendix D. 913

The information model related interfaces are defined in the JAXR package 914
java.xml.registry.infomodel. These interfaces may be viewed as 915

providing a simple Java binding to a unified information model from the dominant 916
registry specifications. The JAXR information model is the confluence of these 917
registry specifications. 918

4.1 Information Model: Public View 919

This section provides a high-level public view of the most visible objects in the 920
registry. 921

Figure 11 shows the public view of the objects in the registry and their 922
relationships as a UML class diagram. It does not show inheritance, class 923
attributes or class methods. 924

The reader is reminded that the information model does not model actual 925
repository items. 926

 927

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 34

 928

Figure 11: Information Model Public View 929

The following sections provide high-level information on the information model 930
interfaces. More background and detail may be found in the API documentation. 931

4.1.1 RegistryObject 932

The RegistryObject class is an abstract base class used by most classes in the 933
model. It provides minimal metadata for registry objects. It also provides methods 934
for accessing related objects that provide additional dynamic metadata for the 935
registry object. 936

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 35

4.1.2 Organization 937

Organization instances are RegistryObjects that provide information on 938
organizations such as a Submitting Organization. Each Organization instance 939
may have a reference to a parent Organization. An Organization may have a set 940
of Service instances. 941

4.1.3 Service 942

Service instances are RegistryObjects that provide information on services (e.g. 943
web services) offered by an Organization. A Service may have a set of 944
ServiceBinding instances. 945

4.1.4 ServiceBinding 946

ServiceBinding instances are RegistryObjects that represent technical 947
information on a specific way to access a specific interface offered by a Service 948
instance. A ServiceBinding may have a set of SpecificationLink instances. 949

4.1.5 SpecificationLink 950

A SpecificationLink provides the linkage between a ServiceBinding and one of its 951
technical specifications that describes how to use the service using the 952
ServiceBinding. For example, a ServiceBinding may have a SpecificationLink 953
instance that describes how to access the service using a technical specification 954
in the form of a WSDL document or a CORBA IDL document. 955

4.1.6 ClassificationScheme 956

A ClassificationScheme instance represents a taxonomy that may be used to 957
classify or categorize RegistryObject instances. 958

A very common example of a classification scheme in science is the 959
Classification of living things where living things are categorized in a tree-like 960
structure. Another example is the Dewey Decimal system used in libraries to 961
categorize books and other publications. ClassificationScheme is described in 962
detail in Chapter 5. A common example in eBusiness is the North American 963
Industry Classification System (NAICS), which is a classification scheme used to 964
classify businesses and services by the industry to which they belong. 965

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 36

4.1.7 Classification 966

Classification instances are used to classify a RegistryObject instance using a 967
classification scheme. The ability to classify RegistryObjects in a registry is one 968
of the most significant features provided by a registry. This is because 969
classification facilitates rapid discovery of RegistryObjects within the registry. 970
Classification is described in detail in chapter 5. 971

4.1.8 Concept 972

A Concept instance represents an arbitrary notion (or concept). It can be virtually 973
anything. While concepts may be used for many purposes, the following list 974
summarizes some of the main uses of Concepts at this time: 975

1. Concepts may be used to define the hierarchical tree structure and 976
detailed elements of a classification scheme as described earlier in 977
Section 4.1.6. The root of the tree structure is defined by the 978
ClassificationScheme instance while descendent nodes in the tree 979
structure are Concept instances. This use is described in detail in section 980
5. 981

2. Concepts may be used to define extensible enumerations for use in 982
values for certain attributes (e.g. objectType attribute in RegistryObject). 983
This is essentially a special case of defining the structure of a 984
classification scheme. This use is described in Appendix A. 985

3. Concepts may be used to serve as a proxy for content that is external to a 986
level 0 registry by providing a unique ID for the external content. This is 987
similar to the role played by tModels in UDDI when used for the purposes 988
of providing a technical finger print for content external to the UDDI 989
registry such as a WSDL document. 990

4. Concepts may be used to define namespaces for external identifiers such 991
as DUNS. 992

4.1.9 Association 993

Association instances are used to define many-to-many associations between 994
objects in the information model. Associations are described in detail in chapter 995
6. 996

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 37

4.1.10 RegistryPackage 997

RegistryPackage instances are used to group logically related RegistryObjects 998
together. A RegistryPackage may contain any number of RegistryObjects. A 999
RegistryObject may be a member of any number of RegistryPackages. 1000

4.1.11 ExternalIdentifier 1001

ExternalIdentifier instances provide identification information to a RegistryObject. 1002
Such identification may be based on well-known identification schemes such as 1003
DUNS number and Social Security Number. Such identification may also be 1004
based on proprietary identification schemes. The JAXR information model reuses 1005
the ClassificationScheme class for representation of identification schemes. 1006

4.1.12 ExternalLink 1007

ExternalLink instances provide a link to content that is managed outside the 1008
registry using a URI to the external content. This URI is contained within the 1009
externalURI attribute of ExternalLink. Unlike content managed in the repository, 1010
such external content may change or be deleted at any time without the 1011
knowledge of the registry. A RegistryObject may be associated with any number 1012
of ExternalLinks. 1013

Consider the case where a Submitting Organization submits a repository item 1014
(e.g. a WSDL document) and wants to associate some external content with that 1015
object (e.g. the Submitting Organization's home page). The ExternalLink enables 1016
this capability. A potential use of the ExternalLink capability may be in a GUI tool 1017
that displays the ExternalLinks defined for a RegistryObject. The user may click 1018
on such links and navigate to an external web page referenced by the link. 1019

When a JAXR client sets the externalURI attribute in an ExternalLink, either by a 1020
LifeCycleManager.createExternalLink call, or the ExternalLink.setExternalURI 1021
call, the JAXR provider must check if it is an HTTP URL. If so, the provider must 1022
validate that the HTTP URL points to a valid and accessible resource. If the 1023
HTTP URL is found to be invalid or inaccessible, the JAXR provider must throw 1024
an InvalidRequestException. 1025

4.1.13 Slot 1026

Slot instances provide a dynamic way to add arbitrary attributes to 1027
RegistryObject instances at runtime. This ability to add attributes dynamically to 1028
RegistryObject instances enables extensibility within the information model. 1029

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 38

4.1.14 ExtensibleObject 1030

The interface ExtensibleObject is extended by most interfaces in the JAXR 1031
information model. It provides methods that allow the addition, deletion and 1032
lookup of Slot instances. The ExtensibleObject interface provides extensibility to 1033
the JAXR information model. 1034

4.1.15 AuditableEvent 1035

AuditableEvent instances are RegistryObjects that are used to provide an audit 1036
trail for RegistryObjects. AuditableEvent is described in detail in section 4.2.1. 1037

4.1.16 User 1038

User instances are RegistryObjects that are used to provide information about 1039
registered users within the registry. Each User is affiliated with an Organization. 1040
User objects are used in the audit trail for a RegistryObject. 1041

4.1.17 PostalAddress 1042

PostalAddress defines attributes of a postal address. Currently, it is used to 1043
provide address information for a User and an Organization. 1044

4.2 Information Model: Inheritance View 1045

Figure 12 shows the inheritance or “is a” relationships between the classes in the 1046
information model. Note that it does not show the other types of relationships, 1047
such as “has a” relationships, since they have already been shown in Figure 11. 1048
Class attributes and class methods are also not shown. Detailed descriptions of 1049
methods and attributes of most interfaces and classes are available in the JAXR 1050
API documentation. 1051

The reader is again reminded that the information model does not model actual 1052
repository items. 1053

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 39

 1054

Figure 12: Information Model Inheritance View 1055

 1056

4.2.1 RegistryEntry Interface 1057

A few interfaces in the model represent high-level (coarse-grained) objects in the 1058
registry that require additional metadata such as version information and 1059
indication of the stability or volatility of the information. 1060

The RegistryEntry interface is a base interface for the interfaces in the model that 1061
require additional metadata beyond what is provided by the relatively lighter-1062
weight and more fine-grained RegistryObject interface. 1063

4.2.2 ExtrinsicObject Interface 1064

ExtrinsicObject instances provide metadata for a repository item (e.g. a WSDL 1065
document or an XML schema document) about which the registry has no prior 1066
knowledge. The ExtrinsicObject interface provides access to a repository item in 1067
the JAXR API. 1068

An ExtrinsicObject instance is required for each repository item. 1069

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 40

4.3 Internationalization (I18N) Support 1070

Some information model classes have String attributes that are I18N capable and 1071
may be localized into multiple native languages. Examples include the name and 1072
description attributes of the RegistryObject interface as defined by the 1073
set/getName and set/getDescription methods of the RegistryObject interface. 1074

The information model defines the InternationalString and the LocalizedString 1075
interfaces to support I18N capable attributes within the information model 1076
interfaces. These classes are defined below. 1077

4.3.1 Interface InternationalString 1078

This interface is used as a replacement for the String type whenever a String 1079
attribute needs to be I18N capable. An instance of the InternationalString 1080
interface composes a Collection of LocalizedString instances within it. Each 1081
LocalizedString instance provides a String value that is specific to a particular 1082
Locale and character set. The InternationalString interface provides set/get 1083
methods for adding or getting locale and character set specific String values for 1084
the InternationalString instance. Each LocalizedString within an 1085
InternationalString must have a unique Locale and character set name 1086
combination within that InternationalString. 1087

4.3.2 Interface LocalizedString 1088

This interface is used as a simple wrapper interface that associates a String with 1089
its Locale and character set. The interface is needed in the InternationalString 1090
interface where a Collection of LocalizedString instances are kept. Each 1091
LocalizedString instance has a Locale, a character set name and a String value. 1092

4.4 Registry Audit Trail 1093

This section describes the information model elements that support the audit trail 1094
capability of the registry. 1095

The getAuditTrail method of a RegistryObject returns an ordered Collection 1096

of AuditableEvents. These AuditableEvents constitute the audit trail for the 1097
RegistryObject. AuditableEvents include a timestamp for the event. Each 1098
AuditableEvent has a reference to a User instance that identifies the specific user 1099
that performed the action that resulted in an AuditableEvent. Each User is 1100
affiliated with an Organization. 1101

1102

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 41

5 Classification of Registry Objects 1102

This chapter describes in more detail, how the information model supports the 1103
classification of RegistryObjects. The ability to classify RegistryObjects is one of 1104
the most significant features provided by a registry. This is because classification 1105
facilitates rapid discovery of RegistryObjects within the registry. 1106

5.1 Interface Classification 1107

The Classification interface is used to classify RegistryObject instances. A 1108
RegistryObject may be classified along multiple dimensions by adding zero or 1109
more Classification instances to the RegistryObject. For example, an 1110
Organization may be classified by its industry, by the products it sells, by its 1111
geographical location and any other criteria. In this example, the RegistryObject 1112
would have at least three Classification instances added to it (industry, product 1113
and geography). 1114

The RegistryObject interface provides several addClassification methods to 1115

allow a client to add Classification instances to a RegistryObject. 1116

 1117

Figure 13: Classification of Registry Objects 1118

Figure 13 shows how a RegistryObject may have zero or more Classification 1119
instances defined to classify it along multiple dimensions. 1120

5.2 Interface ClassificationScheme 1121

The ClassificationScheme interface is used to represent taxonomies that may be 1122
used to provide taxonomy values that can be used to classify or categorize 1123
RegistryObject instances. 1124

[Note] The term taxonomy and ClassificationScheme are 1125

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 42

synonymous in this specification. Taxonomies 1126
are represented using a ClassificationScheme 1127
instance in the JAXR information model. 1128

A Classification instance uses a ClassificationScheme instance to identify the 1129
taxonomy used to classify its RegistryObject. The ClassificationScheme instance 1130
provides the Classification with a taxonomy system that is used by the 1131
Classification. For example, a Geography ClassificationScheme can provide a 1132
taxonomy system that defines a geography structure with continents, countries 1133
within continents, states (or provinces or other internal subdivisions) within 1134
countries and cities and towns within states. 1135

 1136

 1137

Figure 14: Role of ClassificationSchemes in Classification 1138

Figure 14 shows how a Classification is associated with exactly one 1139
ClassificationScheme instance to identify the taxonomy used to classify a 1140
RegistryObject. 1141

5.3 Taxonomy Structure and Elements 1142

A taxonomy must define its structure in terms of its constituent taxonomy 1143
elements and their relationship to each other. For example, in a Geography 1144
taxonomy the country elements are contained within continent elements as 1145
illustrated in Figure 15. 1146

A Classification instance needs some way to identify a specific taxonomy 1147
element within a taxonomy, in order to classify a RegistryObject. While a 1148
Classification uses a ClassificationScheme to identify a taxonomy for the 1149
classification, it needs additional information to identify a specific taxonomy 1150
element within that taxonomy. 1151

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 43

5.3.1 Internal Vs. External Taxonomies 1152

A taxonomy may be represented within a JAXR provider in one of the following 1153
ways: 1154

a. The taxonomy elements and their structural relationship with each other 1155
are available within the JAXR provider. This case is referred to as Internal 1156
Taxonomy since the structure of the taxonomy is available internally to the 1157
JAXR provider. 1158

b. The taxonomy elements and their structural relationship with each other 1159
are represented somewhere external to the JAXR provider and are not 1160
available to it. This case is referred to as External Taxonomy since the 1161
structure of the taxonomy is not available to the JAXR provider. 1162

Internal taxonomies provide more functionality or value to the client in the form of 1163
the ability to browse the taxonomy structure and to validate that references to a 1164
taxonomy element in a Classification are meaningful and correct. The downside 1165
of internal taxonomies is that someone needs to submit that taxonomy to the 1166
registry and to be its maintainer. 1167

In contrast, the upside of external taxonomies is that they are more resilient to 1168
changes in the taxonomy. Once a ClassificationScheme is submitted, the client 1169
can use it immediately without having to import the complete structure of that 1170
taxonomy and to maintain it as the taxonomy structure evolves. The downside of 1171
external taxonomies is that they do not support the ability to browse the 1172
taxonomy or to validate that references to a taxonomy element in a Classification 1173
are meaningful and correct. 1174

5.3.2 Internal Vs. External Classifications 1175

The Classification interface allows the classification of RegistryObjects using a 1176
ClassificationScheme whether the ClassificationScheme represents an internal 1177
taxonomy or an external taxonomy. A Classification instance that uses a Concept 1178
within an internal ClassificationScheme is referred to as an internal Classification. 1179
A Classification instance that uses a value within an external 1180
ClassificationScheme, is referred to as an external Classification. 1181

5.4 Interface Concept 1182

The Concept interface is used to represent taxonomy elements and their 1183
structural relationship with each other in order to describe an internal taxonomy. 1184

Concept instances are used to define tree structures where the root of the tree is 1185
a ClassificationScheme instance and each node in the tree is a Concept 1186
instance. 1187

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 44

Two Concepts may be defined as equivalent, as described in Appendix B. This is 1188
useful in use cases where we need to create a mapping between two different 1189
information model elements. For example, Concept equivalence is used in 1190
mapping the attributes of the PostalAddress interface in the information model to 1191
a Concept in an internal postal address ClassificationScheme. This is defined in 1192
detail in D.6.1.3. 1193

Figure 15 shows how Concept instances are used to represent taxonomy 1194
elements and their structural relationship with each other in order to describe an 1195
internal taxonomy. 1196

 1197

Figure 15: Role of Concepts in Representing Taxonomy Structure 1198

5.5 Internal Classification 1199

A Classification instance that is used to classify a RegistryObject using an 1200
internal taxonomy is referred to as an internal Classification. A client may call the 1201
setConcept method on a Classification and define a reference to a Concept 1202

instance from the Classification instance in order for that Classification to use an 1203
internal taxonomy. It is not necessary for the client to call 1204
setClassificationScheme for internal Classifications, because the classifying 1205
Concept already knows its root ClassificationScheme. For an internal 1206
classification, Classification.getName() must return the same value as 1207
Classification.getConcept().getName(). 1208

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 45

5.5.1 An Example of Internal Classification 1209

Figure 16 shows an example of internal classification using a Concept to 1210
represent a taxonomy element. The example classifies an Organization instance 1211
as a Book Publisher using the NAICS standard taxonomy available as an internal 1212
taxonomy. 1213

To save space, Figure 16 does not show all the Concepts between the “Book 1214
Publishers” node and the NAICS ClassificationScheme. Had they been there, 1215
they would have been linked together by the parent attribute of each Concept. 1216

 1217

Figure 16: An Example of Internal Classification 1218

5.6 External Classification 1219

A Classification instance that is used to classify a RegistryObject using an 1220
external taxonomy is referred to as an external Classification. A client may call 1221
the setValue method on a Classification and define a unique value that logically 1222

represents a taxonomy element within the taxonomy whose structure is defined 1223
externally. A client may call the setClassificationScheme method for external 1224
Classifications to define the ClassificationScheme that represents the external 1225
taxonomy. 1226

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 46

5.6.1 An Example of External Classification 1227

Figure 17 shows an example of external classification. The example uses the 1228
same scenario, where a Classification classifies an Organization instance as a 1229
Book Publisher using the NAICS standard taxonomy. However, this time the 1230
structure of the NAICS taxonomy is not available internally to the registry, and 1231
consequently there is no Concept instance. Instead, the name and value 1232
attributes of the Classification are used to identify the Book Publishers taxonomy 1233
element. Note that name is optional but value is required. 1234

 1235

Figure 17: An Example of External Classification 1236

 1237

5.7 An Example of Multiple Classifications 1238

The next example shows how a RegistryObject may be classified by multiple 1239
classification schemes. In this example, two internal ClassificationSchemes 1240
named Industry and Geography are used to classify several Organization 1241
RegistryObjects by their industry and geography. 1242

In Figure 18, in order to save space and improve readability, the Classification 1243
instances are not explicitly shown but are implied as associations between the 1244
RegistryObjects (shaded leaf node) and the associated Concepts. 1245

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 47

 1246

Figure 18: An Example of Multiple Classifications 1247

[Note] It is important to point out that the dark 1248
nodes are not part of the Concept tree. The 1249
leaf nodes of the Concept tree are Health Care, 1250
Automotive, Retail, NorthAmerica and Europe. 1251
The dark nodes are associated with the Concept 1252
tree via a Classification instance that is not 1253
shown in the figure. 1254

5.8 Context-sensitive Classification 1255

[Note] The contents of this section are for 1256
illustrative purposes only. 1257

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 48

Consider the case depicted in Figure 19, where a Collaboration Protocol Profile 1258
for ACME Inc. is classified by the Japan Concept under the Geography 1259
classification scheme. In the absence of the context for this classification, its 1260
meaning is ambiguous. Does it mean that ACME is located in Japan, or does it 1261
mean that ACME ships products to Japan, or does it have some other meaning? 1262
To address this ambiguity, a Classification may optionally be classified by 1263
another Concept (in this example named isLocatedIn) that provides the missing 1264
context for the Classification. Another Collaboration Protocol Profile for 1265
MyParcelService may be classified by the same Japan Concept, where this 1266
Classification is associated with a different Concept (in this example named 1267
shipsTo) to indicate a different context from the one used by ACME Inc. 1268

 1269

Figure 19: Context Sensitive Classification 1270

Thus, in order to support the possibility of Classification within multiple contexts, 1271
a Classification may itself be classified by any number of Classifications that bind 1272
the first Classification to Concepts that provide the missing contexts. 1273

In summary, the generalized support for classification schemes in the information 1274
model allows a submitting organization to: 1275

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 49

1. Classify a RegistryObject by submitting an internal or external 1276
Classification. 1277

2. Classify a RegistryObject along multiple facets by submitting multiple 1278
classifications. 1279

3. Qualify a classification submitted for a RegistryObject by the contexts in 1280
which it is being classified. 1281

 1282

1283

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 50

6 Association of Registry Objects 1283

A RegistryObject instance may be associated with zero or more RegistryObject 1284
instances. The information model defines an Association interface, an instance of 1285
which may be used to associate any two RegistryObject instances. 1286

6.1 Example of an Association 1287

One example of such an association is between two ClassificationScheme 1288
instances, where one ClassificationScheme supersedes the other 1289
ClassificationScheme, as shown in Figure 20. This may be the case when a new 1290
version of a ClassificationScheme is submitted. 1291

In Figure 20, we see how an Association is defined between a new version of the 1292
NAICS ClassificationScheme and an older version of the NAICS 1293
ClassificationScheme. 1294

 1295

Figure 20: Example of RegistryObject Association 1296

6.2 Source and Target Objects 1297

An Association instance represents an association between a source 1298
RegistryObject and a target RegistryObject. These are referred to as the 1299
sourceObject and targetObject for the Association instance. It is important which 1300
object is the sourceObject and which is the targetObject, because it determines 1301
the directional semantics of an Association. 1302

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 51

In the example in Figure 20, it is important to make the newer version of NAICS 1303
ClassificationScheme be the sourceObject and the older version of NAICS be the 1304
targetObject because the associationType implies that the sourceObject 1305
supersedes the targetObject (and not the other way around). 1306

6.3 Association Types 1307

Each Association must have an associationType attribute that identifies the type 1308
of that association. The associationType attribute is a reference to an 1309
enumeration Concept as defined by the extensible ClassificationScheme defined 1310
in A.4. Our example uses the predefined associationType Concept named 1311
Supersedes. 1312

6.4 Intramural Associations 1313

A common use case for the Association interface is when a User “u” creates an 1314
Association “a” between two RegistryObjects “o1” and “o2”, where association “a” 1315
and RegistryObjects “o1” and “o2” are objects that were created by the same 1316
User “u”. This is the simplest use case, where the association is between two 1317
objects that are owned by same User that is defining the Association. Such 1318
associations are referred to as intramural associations. 1319

Figure 21 below extends the previous example in Figure 20 for the intramural 1320
association case. 1321

 1322

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 52

 1323

Figure 21: Example of Intramural Association 1324

6.5 Extramural Association 1325

The information model also allows a more sophisticated use case, where a User 1326
“u1” creates an Association “a” between two RegistryObjects “o1” and “o2”, 1327
where association “a” is owned by User “u1”, but RegistryObjects “o1” and “o2” 1328
are owned by User “u2” and User “u3” respectively. 1329

In this use case the Association is being defined where either or both objects that 1330
are being associated are owned by a User different from the User defining the 1331
Association. Such associations are referred to as extramural associations. The 1332
Association interface provides a convenience method called isExtramural that 1333

returns true if the Association instance is an extramural Association. 1334

Figure 22 extends the example in Figure 20 for the extramural association case. 1335
Note that it is possible for an extramural association to have two distinct Users 1336
rather than three distinct Users as shown in Figure 22. In such a case, one of the 1337
two users owns two of the three objects involved (Association, sourceObject, and 1338
targetObject). 1339

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 53

 1340

Figure 22: Example of Extramural Association 1341

6.6 Confirmation of an Association 1342

An association may need to be confirmed by the parties whose objects are 1343
involved in that Association as the sourceObject or targetObject. This section 1344
describes the semantics of confirmation of an association by the parties involved. 1345

6.6.1 Confirmation of Intramural Associations 1346

Intramural associations may be viewed as declarations of truth and do not 1347
require any explicit steps to confirm that Association as being true. In other 1348
words, intramural associations are implicitly considered confirmed. 1349

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 54

6.6.2 Confirmation of Extramural Associations 1350

Extramural associations may be viewed as a unilateral assertion that may not be 1351
viewed as truth until it has been confirmed by the other (extramural) parties 1352
(Users “u2” and “u3” in example in section 6.5). The confirmAssociation 1353
method of the BusinessLifeCycleManager interface may be called by the 1354
extramural parties that own the sourceObject or targetObject to confirm an 1355
Association. 1356

6.6.3 Undoing Confirmation of Extramural Associations 1357

The unConfirmAssociation method on the BusinessLifeCycleManager 1358

interface may be called by the extramural parties that own the sourceObject or 1359
targetObject to undo a previous confirm on an Association. 1360

6.7 Visibility of Unconfirmed Associations 1361

Extramural associations require each extramural party to confirm the assertion 1362
being made by the extramural Association before the Association is visible to 3rd 1363
parties that are not involved in the Association. This ensures that unconfirmed 1364
Associations are not visible to 3rd party registry clients. 1365

In order for a caller to find the Associations that it needs to confirm, it can use the 1366
findCallerAssociations method of the BusinessQueryManager interface. 1367

6.8 Possible Confirmation States 1368

Assume the most general case where there are three distinct User instances for 1369
an extramural Association. This case is illustrated in Figure 22. The extramural 1370
Association needs to be confirmed by both the other (extramural) parties (Users 1371
“u2” and “u3” in example) in order to be fully confirmed. The methods 1372
isConfirmedBySourceOwner and isConfirmedByTargetOwner in the 1373

Association interface provide access to the confirmation state for both the 1374
sourceObject and targetObject. A third convenience method, called 1375
isConfirmed provides a way to determine whether the Association is fully 1376
confirmed or not. So there are the following four possibilities related to the 1377
confirmation state of an extramural Association: 1378

 1379

Confirmed By Owner of
Source Object

Confirmed By Owner of
Target Object

Comments

No No Unconfirmed

No Yes Unconfirmed (confirmed

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 55

by target owner only).

Yes No Unconfirmed (confirmed
by source owner only).

Yes Yes Confirmed.

 1380

1381

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 56

7 Connection Management 1381

This chapter specifies how a JAXR provider manages JAXR Connections. It 1382
provides details on the ConnectionFactory interface and the Connection 1383
interface. 1384

7.1 Looking Up a ConnectionFactory 1385

A JAXR ConnectionFactory object is configured in a provider-specific way to 1386
create connections with registry providers. 1387

7.1.1 Looking Up a ConnectionFactory Using the JNDI API 1388

The preferred way for a client to look up a JAXR ConnectionFactory is within the 1389
Java Naming and Directory InterfaceTM (JNDI) API. 1390

A ConnectionFactory object is registered with a naming service in a provider 1391

specific way, such as one based on the JNDI API. This registration associates 1392
the ConnectionFactory object with a logical name. When an application 1393

wants to establish a connection with the provider associated with that 1394
ConnectionFactory object, it does a lookup, providing the logical name. The 1395

application can then use the ConnectionFactory object that is returned to 1396

create a connection to the messaging provider. 1397

7.1.2 Looking Up a ConnectionFactory Without Using the JNDI API 1398

The JAXR API provides an alternative way to look up a JAXR ConnectionFactory 1399
that does not require the use of the JNDI API. This is done using the 1400
newInstance static method on the abstract class ConnectionFactory provided in 1401
the JAXR API. The newInstance method returns a JAXR ConnectionFactory. The 1402
client may indicate which factory class should be instantiated by the newInstance 1403
method by defining the system property 1404
javax.xml.registry.ConnectionFactoryClass. 1405

If this property is not set, the JAXR provider must return a default 1406
ConnectionFactory instance. 1407

7.2 Setting Connection Properties on ConnectionFactory 1408

Once a ConnectionFactory is available to the client, the client may configure the 1409
ConnectionFactory with a Properties object by calling the setProperties method 1410
on ConnectionFactory. 1411

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 57

The properties specified may be either standard properties or provider-specific 1412
properties. 1413

1. Standard properties are defined by the JAXR API. 1414

2. Provider-specific properties are defined by a specific JAXR provider. 1415

Connection configuration properties must be qualified by a package name. 1416
Standard connection configuration properties use the package 1417
javax.xml.registry, while provider-specific properties use the top-level 1418

package name for the provider (e.g. com.sun.xml.registry.ebxml). 1419

7.2.1.1 Standard Connection Properties 1420

The following table describes those connection properties that are standardized 1421
by this specification. JAXR providers may define additional properties specific to 1422
that provider. 1423

 1424

 1425

Property Data
type

Description

javax.xml.registry.

queryManagerURL
String URL to the query manager service within

the target registry provider.

javax.xml.registry.

lifeCycleManagerURL
String URL to the life cycle manager service

within the target registry provider. If un-
specified, must default to value of the
queryManagerURL described above.

javax.xml.registry.

semanticEquivalences
String Allows specification of semantic

equivalences as described in Appendix B.
javax.xml.registry.
security.
authenticationMethod

String Provides a hint to the JAXR provider on
the authentication method to be used
when authenticating with the registry
provider.

javax.xml.registry.uddi
.maxRows

Integer Specifies the maximum number of rows to
be returned for find operations. This
property is specific for UDDI providers.

javax.xml.registry.
postalAddressScheme

String Specifies the id of a ClassificationScheme
that is used as the default postal address
scheme for this connection. See D.6.1.3
for details.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 58

 1426

7.3 Creating a JAXR Connection 1427

To create a Connection to a registry provider, a client uses the 1428
createConnection method of a JAXR provider’s ConnectionFactory. 1429

 1430
public Connection createConnection() 1431
 throws JAXRException 1432

The createConnection method must check that the 1433
javax.xml.registry.queryManagerURL described above is defined. If it is 1434

not defined, then the method must throw an InvalidRequestException. The 1435
createConnection method may also check if the URL specified is a valid URL. 1436

7.4 Synchronous Connections 1437

The JAXR client uses the setSynchronous method on a Connection to 1438

dynamically alter whether it receives responses and exceptions from the JAXR 1439
provider synchronously or not. The JAXR provider must use this communication 1440
preference when processing requests on behalf of that client. 1441

If the communication preference is synchronous, the JAXR provider must 1442
process each request method call completely in a synchronous manner before it 1443
returns a non-null JAXRResponse (or a sub-interface) instance that contains the 1444
response to the request. The client thread must block until the JAXR provider has 1445
synchronously processed the request. The processing usually involves a round-1446
trip interaction with a registry provider. 1447

7.5 Asynchronous Connections 1448

The JAXR client may indicate an asynchronous communication mode by calling 1449
the setSynchronous method on a Connection with a false parameter. 1450

If the communication preference is asynchronous, each request method call 1451
returns a non-null JAXRResponse (or a sub-interface) immediately. The JAXR 1452
provider may spawn a separate thread to process the client request 1453
asynchronously. 1454

[Note] In this version of the specification, 1455
asynchronous communication mode is not required 1456
within a J2EE container environment. The reason 1457
is that asynchronous mode support typically 1458
requires threads, sockets and so on, which are 1459
not allowed within a J2EE component. 1460

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 59

7.5.1 JAXRResponse and Futures Design Pattern 1461

The JAXRResponse returned immediately by the JAXR provider may not be 1462
immediately available. It uses a “futures” design pattern [Futures1, Futures2]. 1463

For an asynchronous request, a JAXR Provider will immediately give the client 1464
back a JAXRResponse instance even though its value is not available. Internally, 1465
the JAXR Provider will allocate a globally unique request ID. It is suggested that 1466
this ID be a DCE 128 bit UUID. This request ID is available to the client via the 1467
getRequestId method on JAXRResponse. The JAXR Provider must maintain 1468

the mapping between request IDs and JAXRResponse instances so that when a 1469
reply arrives from the registry provider at some time in the future, it can find the 1470
corresponding JAXRResponse instance and deliver the reply to the instance. 1471
This causes the value in the JAXRResponse instance to become available. 1472

If a client attempts to read a value from a JAXRResponse that is not yet 1473
available, the JAXR provider must cause the caller to be blocked. Alternatively, a 1474
caller may examine a JAXRReponse for the availability of its value before 1475
attempting to read its value (and potentially blocking). The availability of the 1476
value may be polled by getStatus method, which must return 1477

STATUS_UNAVAILABLE when invoked on a JAXRResponse with a undefined 1478
value. In addition an isAvailable method on JAXRResponse is also provided 1479

as a convenience. The isAvailable method on JAXRResponse returns true or 1480

false depending upon whether the value is available or not. 1481

Having a reference to a JAXRResponse does not block the client thread. The 1482
client thread is blocked only when it tries to access the reply contained in a 1483
JAXRResponse and the reply is not available. 1484

7.6 Security Credentials Specification 1485

The JAXR client uses the setCredentials method to dynamically alter its 1486

security credentials. These credentials provide details on the security-related 1487
identity associated with the client. An example of a credential is a username and 1488
password combination. The JAXR provider must use the credentials defined in 1489
the Connection instance at any given time when processing client requests. This 1490
may require having to re-authenticate with the registry provider in response to the 1491
setCredentials call when appropriate. The setCredentials method is 1492

described in more detail in section 10.5.1 within the context of JAXR security 1493
features. 1494

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 60

7.7 Federated Connections 1495

The JAXR API defines an interface named FederatedConnection. The 1496
FederatedConnection interface is a specialized sub-interface of the Connection 1497
interface. The FederatedConnection interface defines a single logical connection 1498
to multiple registry providers. A FederatedConnection is used in performing 1499
distributed or federated queries against target registry providers while treating 1500
them as a single logical registry provider. Federated queries are described in 1501
Section 9.7. The federated connection capability is optional in this version of the 1502
specification. 1503

7.7.1 Creating a FederatedConnection 1504

To create a federated connection to multiple registry providers, a client uses the 1505
createFederatedConnection method of a JAXR provider’s 1506

ConnectionFactory. 1507

 1508
public FederatedConnection createFederatedConnection(Collection connections) 1509
throws JAXRException 1510

7.7.1.1 Connection Configuration 1511

The client must specify a Collection of Connection instances to the 1512
createFederatedConnection method. These connections may be primitive 1513
connections or federated connections. 1514

7.8 Concurrent Connections 1515

A single JAXR client may concurrently maintain multiple connections. Each non-1516
federated connection uses a single JAXR provider to access a single registry 1517
provider. 1518

Collectively, these connections may concurrently access multiple registry 1519
providers. 1520

Connection implementations must be thread-safe implementations. 1521

7.9 Using a Connection to Access the Registry 1522

Once a JAXR client has created a Connection using a ConnectionFactory, it can 1523
then use the Connection to access various capability specific interfaces. For 1524
example, it may use the Connection to: 1525

a. Access the lifecycle management functionality of the JAXR provider to 1526
create, update and delete objects in the target registry provider. 1527

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 61

b. Access the query management functionality of the JAXR provider to find 1528
and retrieve objects from the target registry provider. 1529

The client must first get access to a RegistryService interface by calling the 1530

getRegistryService method on the Connection. The client may then call 1531

appropriate methods on the RegistryService interface to get references to 1532

various capability specific interfaces. For example, it may call the 1533
getBusinessLifeCycleManager method to get the 1534
BusinessLifeCycleManager interface for that Connection. 1535

7.10 Closing a Connection 1536

A JAXR provider typically allocates significant resources outside the JVM on 1537
behalf of a Connection. These resources include a network connection between 1538
the JAXR provider and the target registry provider shown at the bottom of Figure 1539
4. The network connection between a JAXR provider and a target registry 1540
provider is represented in Figure 4 by the block arrows marked ebXML/SOAP 1541
etc. The technical details of such network connections are registry provider-1542
specific and therefore outside the scope of this specification. 1543

In order to conserve system resources, clients should close Connections when 1544
they are no longer needed. A client closes a Connection by calling the close 1545

method on it. 1546

7.11 Connection Setup Sequence 1547

Figure 23 illustrates the sequence of events during a typical JAXR Connection 1548
establishment. 1549

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 62

 1550

Figure 23: Connection Setup Sequence 1551

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 63

7.11.1 Connection Creation Code Sample 1552

import javax.xml.registry.*; 1553
 1554
……….. 1555
 1556
//Add system property to define which provider specific ConnectionFactory to use 1557
System.setProperty("javax.xml.registry.ConnectionFactoryClass", 1558
 "com.sun.xml.registry.uddi.ConnectionFactoryImpl"); 1559
 1560
//Create ConnectionFactory using class specified in System property and static newInstance 1561
//method. 1562
ConnectionFactory factory = ConnectionFactory.newInstance(); 1563
 1564
//Define connection configuration properties 1565
Properties props = new Properties(); 1566
props.put("javax.xml.registry.queryManagerURL", "http://java.sun.com/uddi/inquiry"); 1567
props.put("javax.xml.registry.lifeCycleManagerURL", "http://java.sun.com/uddi/publish"); 1568
 1569
//Create the connection passing it the configuration properties 1570
factory.setProperties(props); 1571
Connection connection = factory.createConnection(); 1572
 1573
Set credentials = new HashSet(); 1574
…. 1575
connection.setCredentials(credentials); 1576
connection.setSynchronous(false); 1577
 1578
RegistryService rs = connection.getRegistryService(); 1579
 1580
//Now get one or more capability specific interfaces 1581
BusinessLifeCycleManager lcm = rs.getBusinessLifeCycleManager(); 1582

1583

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 64

8 Life Cycle Management 1583

This chapter specifies those aspects of the JAXR API that deal with managing 1584
the life cycle of registry objects. Examples of life cycle management operations 1585
include the ability to create, update and deleted registry objects. 1586

Life cycle management interfaces are designed for use by the Submitting 1587
Organization or the publisher of registry metadata and content. 1588

[Note] Some life cycle management requests may be 1589
privileged operations and require 1590
authentication and authorization. Security 1591
aspects of life cycle management is discussed 1592
in Chapter 10. 1593

The JAXR API provides the following interfaces for managing life cycle of registry 1594
objects: 1595

o Interface LifeCycleManager provides complete support for all life cycle 1596
management needs using a generic API. 1597

o Interface BusinessLifeCycleManager extends the LifeCycleManager 1598
interface and provides the most common life cycle management 1599
capabilities for the key business objects in the information model in an 1600
explicit API. 1601

8.1 Unique Key Assignment 1602

As specified in the information model, every RegistryObject in the registry has a 1603
unique key. This key is usually generated by the registry provider. Some registry 1604
providers, such as ebXML Registry providers, optionally allow the submitter to 1605
specify this unique key. 1606

The JAXR API allows a client to specify a key for a RegistryObject when 1607
submitting it to the registry. The client-supplied key must be used as the key for 1608
the object within the target registry provider, if all of the following conditions are 1609
true: 1610

o The client supplies a key. 1611

o The registry provider supports client supplied keys 1612

o The client-supplied key is in a format acceptable by the specification 1613
governing the target registry. For example ebXML Registry specification 1614
requires client-supplied keys to be UUID based URNs. 1615

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 65

A JAXR provider must ignore client-supplied keys if any of the above conditions 1616
are not met. In this case, the registry provider is expected to generate the unique 1617
key. 1618

8.2 Interface LifeCycleManager 1619

This interface provides complete support for all life cycle management needs 1620
using a generic API. 1621

8.2.1 Requests, Responses and Exception Handling 1622

The LifeCycleManager interface provides several methods that allow clients to 1623
make lifecycle requests with the target registry. Examples include: 1624

o deleteObjects 1625

o deprecateObjects 1626

o saveObjects 1627

o unDeprecateObjects 1628

Each of these methods returns a BulkResponse object. The BulkResponse 1629
contains the Collection of response objects and may contain a Collection of 1630
RegistryException instances in case the request resulted in errors within the 1631
target registry provider. 1632

If the JAXR provider detects an error in a client request prior to contacting the 1633
target registry provider, then the JAXR provider must throw a JAXRException. 1634
The JAXR provider must not catch runtime exceptions such as 1635
NullPointerException, since they are indicative of a programming error in the 1636
JAXR provider or the JAXR client. Instead, the JAXR provider should catch 1637
errors in a client request before they lead to potential runtime exceptions (e.g. 1638
NullPointerException). In such cases, the JAXR provider must throw a 1639
JAXRException that provides a clear indication as to the error in the client 1640
request and how to fix the error. 1641

However, if the error is detected by the target registry provider, then the 1642
RegistryException is included within the BulkResponse instance’s Collection of 1643
RegistryExceptions. 1644

8.2.2 Creating Objects Using Factory Methods 1645

The LifeCycleManager interface has several factory methods that follow the 1646

naming pattern create<interface> where <interface> represents the name 1647

of an interface in the javax.xml.registry.infomodel package. 1648

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 66

These factory methods are used by clients to create different types of objects 1649
defined by the information model. 1650

There is also a generic factory method called createObject, which allows 1651

clients to create any type of information model object. This method is useful for 1652
tool vendors who create tools supporting the JAXR API. 1653

8.2.3 Saving Objects 1654

An object created using a factory method initially exists only in memory. It is not 1655
saved in a registry provider until it is saved explicitly. The LifeCycleManager 1656
interface provides a saveObjects method for this purpose. 1657

 1658
public BulkResponse saveObjects(java.util.Collection objects) 1659
 throws JAXRException 1660

The saveObjects method is used to create or update metadata and content. 1661

This method saves a heterogeneous Collection of objects that are instances of 1662
RegistryObject sub-interfaces. Each such object in the collection is stored into 1663
the registry. Implementations must traverse object references from the object 1664
being saved and save them implicitly. 1665

8.2.3.1 Interface BulkResponse 1666

The BulkResponse interface is returned by many methods in the API where the 1667
response needs to include a Collection of objects. The BulkResponse interface is 1668
described here in the context of save methods. It behaves similarly in other 1669
usage contexts. 1670

Each save method returns a BulkResponse instance. The BulkResponse 1671

instance contains a Collection of keys that are accessed via the 1672
getCollection method. These keys are for those objects that were saved 1673

successfully. The BulkResponse may also contain a Collection of 1674

SaveException instances as described next. 1675

8.2.3.2 Interface SaveException 1676

In event of a partial success where only a subset of objects was saved 1677
successfully, the getStatus method of the BulkResponse must return 1678
JAXRResponse.STATUS_WARNING. In this case, a Collection of 1679
SaveException instances is included in the BulkResponse instance. The 1680

SaveExceptions provide information on each error that prevented some 1681

objects in the save method Collection from being saved successfully. 1682

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 67

Note that the SaveExceptions are returned as part of the BulkResponse 1683

instead of being thrown, in order to allow the BulkResponse to be returned 1684

despite the exception. 1685

 1686

8.2.3.3 Implicit Saving of Objects 1687

A JAXR provider must traverse object references from the object being saved 1688
and save them implicitly. For example, if the client saves an Organization 1689
explicitly, then the JAXR provider must implicitly save any Classifications, 1690
Associations, ExternalIdentifiers, Services, ServiceBindings etc., that are 1691
reachable from the Organization being saved. 1692

8.2.4 Updating Objects 1693

An object that is created and subsequently saved to the target registry provider 1694
can be updated by modifying the object in memory. Such updated objects must 1695
be saved using save methods such as saveObjects in order to be updated in the 1696
registry. The LifeCycleManager interface does not provide update methods that 1697
are distinct and separate from save methods. 1698

8.2.5 Deleting Objects 1699

An object that is created and subsequently saved to the target registry provider 1700
may be deleted from the target registry using a delete method of 1701
LifeCycleManager such as deleteObjects. 1702

 1703
public BulkResponse deleteObjects (java.util.Collection keys) 1704

 throws JAXRException 1705

The deleteObjects method is used to delete previously submitted RegistryObject 1706
instances. 1707

This method specifies a uniform Collection of Key instances identifying pre-1708
existing objects in the registry. 1709

An attempt to remove a RegistryObject while it is still the target of references 1710
may result in an InvalidRequestException that is returned within the 1711
BulkResponse, if the registry provider enforces such deletion constraints. 1712

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 68

8.2.5.1 Interface DeleteException 1713

This exception is used in the event of failure or partial success during a delete 1714
operation. A Collection of instances of this exception is returned in the 1715
BulkResponse for a delete method invocation if delete exceptions are 1716
encountered. 1717

8.2.6 Deprecating Objects 1718

Deprecating an object is an alternative to deleting it. Deprecating an object marks 1719
it as obsolete and likely to be deleted sometime in the future. 1720

An object that is created and subsequently saved to the target registry provider 1721
may be deprecated from the target registry using a deprecate method of 1722
LifeCycleManager such as deprecateObjects. 1723

 1724
public BulkResponse deprecateObjects(java.util.Collection keys) 1725
 throws JAXRException 1726

 1727

The deprecateObjects method is used to deprecate previously submitted 1728
RegistryObject instances. 1729

This method specifies a uniform Collection of Key instances identifying pre-1730
existing objects in the registry. Deprecating an object marks it as becoming 1731
obsolete. A deprecated object may remain in the registry for some time before it 1732
is deleted. 1733

Once an object is deprecated, the JAXR provider must not allow any new 1734
references (e.g. new Associations, Classifications and ExternalLinks) to that 1735
object to be submitted. If a client makes an API call that results in a new 1736
reference to a deprecated object, the JAXR provider must throw a 1737
java.lang.IllegalStateException within a JAXRException. However, existing 1738
references to a deprecated object continue to function normally. 1739

8.2.7 Undeprecating Objects 1740

A deprecated object may be undeprecated using the unDeprecateObjects 1741
method of LifeCycleManager. 1742

 1743
public BulkResponse unDeprecateObjects(java.util.Collection keys) 1744

 throws JAXRException 1745

 1746

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 69

The unDeprecateObjects method is used to un-deprecate previously deprecated 1747
RegistryObject instances. 1748

This method specifies a uniform Collection of Key instances identifying pre-1749
existing deprecated objects in the registry. 1750

Once an object is undeprecated, the JAXR provider must again allow new 1751
references (e.g. new Associations, Classifications and ExternalLinks) to that 1752
object to be submitted. 1753

8.3 Interface BusinessLifeCycleManager 1754

Interface BusinessLifeCycleManager defines a simple business-level API 1755
for life cycle management of some important high-level interfaces in the 1756
information model. This interface provides no new functionality beyond that of 1757
LifeCycleManager. The goal of defining this interface is to provide an API similar 1758
to that of the publisher’s API in UDDI. The intent is to provide a familiar API to 1759
UDDI developers. 1760

The BusinessLifeCycleManager interface provides the ability to explicitly submit, 1761
update or delete instances of the most important high-level interfaces in the 1762
information model. These high-level interfaces include: 1763

o Interface Organization 1764

o Interface Service 1765

o Interface ServiceBinding 1766

o Interface Concept 1767

 1768

 1769

Method Summary

 void confirmAssociation(Association assoc)
 Confirms this Association by the User associated with the
caller.

 BulkResponse deleteAssociations(java.util.Collection associationKeys)
 Deletes the Associations corresponding to the specified
Keys.

 BulkResponse deleteClassificationSchemes(java.util.Collection schemeKeys)
 Deletes the ClassificationSchemes corresponding to the
specified Keys.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 70

 BulkResponse deleteConcepts(java.util.Collection conceptKeys)
 Deletes the Concepts corresponding to the specified Keys.

 BulkResponse deleteOrganizations(java.util.Collection organizationKeys)
 Deletes the organizations corresponding to the specified
Keys.

 BulkResponse deleteServiceBindings(java.util.Collection bindingKeys)
 Deletes the ServiceBindings corresponding to the specified
Keys.

 BulkResponse deleteServices(java.util.Collection serviceKeys)
 Deletes the services corresponding to the specified Keys.

 BulkResponse saveAssociations(java.util.Collection associations,
boolean replace)
 Saves the specified Association instances.

 BulkResponse saveClassificationSchemes(java.util.Collection schemes)
 Saves the specified ClassificationScheme instances.

 BulkResponse saveConcepts(java.util.Collection concepts)
 Saves the specified Concepts.

 BulkResponse saveOrganizations(java.util.Collection organizations)
 Saves the specified Organizations.

 BulkResponse saveServiceBindings(java.util.Collection bindings)
 Saves the specified ServiceBindings.

 BulkResponse saveServices(java.util.Collection services)
 Saves the specified Services.

 void unConfirmAssociation(Association assoc)
 Undoes a previous confirmation of this Association by the
User associated with the caller.

 1770

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 71

8.3.1 Save Methods 1771

The BusinessLifeCycleManager interface defines a set of save methods, 1772

one for each key interface (e.g. saveOrganizations). Each save method takes a 1773
Collection as parameter so it can save multiple objects of the type associated 1774
with the save method. That Collection contains objects that are instances of the 1775
type associated with the save method. For example, the saveOrganizations 1776

method accepts a Collection of Organization instances. If the Collection contains 1777
an object whose type does not match the save method, the implementation must 1778

throw an UnexpectedObjectException. 1779

Note that a client must save an object using the appropriate save method when a 1780
setter method on the object is called by the client. Calling the setter method 1781
without saving the object will not save the modified object to the target registry. 1782

The save methods of BusinessQueryManager are a convenience for those who 1783
prefer an explicit API. Calling a save method of BusinessQueryManager should 1784
have the same effect as calling the saveObjects method in LifeCycleManager. 1785

8.3.2 Delete Methods 1786

The BusinessLifeCycleManager interface defines a set of delete methods, 1787

one for each key interface (e.g. deleteOrganizations etc.). Each delete method 1788

takes a Collection as parameter so it can delete multiple objects of the type 1789
associated with the delete method. The Collection is homogeneous and 1790

contains keys to objects that are being deleted. For example, the 1791
deleteOrganizations method accepts a Collection of Key instances where 1792

each Key is the Key for an Organization instance. If the Collection contains a key 1793
whose object type does not match the delete method, the implementation must 1794

throw an UnexpectedObjectException. 1795

The delete methods of BusinessQueryManager are a convenience for those who 1796
prefer an explicit API. Calling a delete method of BusinessQueryManager should 1797
have the same effect as calling the deleteObjects method in LifeCycleManager. 1798

8.4 Life Cycle Management and Federated Connections 1799

Life cycle management operations are not supported by federated connections 1800
as represented by a FederatedConnection. The getLifeCycleManager and 1801

getBusinessLifeCycleManager methods of RegistryService from a 1802
FederatedConnection must throw UnsupportedCapabilityException. 1803

1804

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 72

9 Query Management 1804

This section specifies those aspects of the JAXR API that deal with querying the 1805
registry for registry object (metadata) and repository item (content) instances. 1806
Query management interfaces are designed for use by any non-privileged 1807
registry user, typically through a specialized JAXR client, such as a Registry 1808
Browser tool or an intelligent web agent (digital assistant). 1809

[Note] Security aspects of query management are 1810
discussed in Chapter 10. 1811

 1812

The API provides a common QueryManager interface as well as two specialized 1813

sub-interfaces: 1814

o Interface BusinessQueryManager 1815

o Interface DeclarativeQueryManager 1816

9.1 Interface QueryManager 1817

Interface QueryManager provides a common base class for all other specialized 1818
QueryManager sub-classes in the API. It has the following methods: 1819

 1820

Method Summary

 RegistryObject getRegistryObject(java.lang.String id)
 Gets the RegistryObject specified by the Id.

 RegistryObject getRegistryObject(java.lang.String id,
java.lang.String objectType)
 Gets the RegistryObject specified by the Id and type of
object.

 BulkResponse getRegistryObjects()
 Gets the RegistryObjects owned by the caller.

 BulkResponse getRegistryObjects(java.util.Collection objectKeys)
 Gets the specified RegistryObjects.

 BulkResponse getRegistryObjects(java.util.Collection objectKeys,
java.lang.String objectTypes)
 Gets the specified RegistryObjects.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 73

 BulkResponse getRegistryObjects(java.lang.String objectType)
 Gets the RegistryObjects owned by the caller, that are
of the specified type.

 RegistryService getRegistryService()
 Returns the parent RegistryService that created this
object.

 1821

9.2 Interface BusinessQueryManager 1822

Interface BusinessQueryManager provides a simple business-level API that 1823

provides the ability to query for the most important high-level interfaces in the 1824
information model. 1825

Many of the methods in this interface take similar arguments and have the same 1826
return type: 1827

findQualifiers - a Collection of find qualifiers as defined by the FindQualifier 1828
interface. It specifies qualifiers that effect string matching, sorting, and boolean 1829
predicate logic and so on. 1830

namePatterns - a Collection that may consist of either String or LocalizedString 1831
objects. Each String, or value within a LocalizedString, is a partial or full name 1832
pattern with wildcard searching as specified by the SQL-92 LIKE specification. 1833
Unless otherwise specified in findQualifiers, this is a logical OR and a match on 1834
any name qualifies as a match for this criteria. 1835

classifications - a Collection of Classifications that classify the object. It is 1836
analogous to a catgegoryBag in UDDI. Unless otherwise specified in 1837
findQualifiers, this is a logical AND and requires a match on ALL specified 1838
Classifications to qualify as a match for this criteria. A transient Classification 1839
may be created by the programmer using LifeCycleManager.createClassification 1840
to use in this Collection. 1841

specifications - a Collection of RegistryObjects that represent (proxy) a 1842
technical specification. It is analogous to a tModelBag in UDDI. Unless otherwise 1843
specified in findQualifiers, this is a logical AND and requires a match on ALL 1844
specified Specifications to qualify as a match for this criteria. 1845

externalIdentifiers - a Collection of ExternalIdentifiers that provide an external 1846
identifier for the object using an identification scheme such as DUNS. It is 1847
analogous to an identifierBag in UDDI. Unless otherwise specified in 1848
findQualifiers, this is a logical AND and requires a match on ALL specified 1849

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 74

Classifications to qualify as a match for this criteria. A transient ExternalIdentifier 1850
may be created by the programmer using 1851
LifeCycleManager.createExternalIdentifier to use in this Collection. 1852

externalLinks - Ia Collection of ExternalLinks that link the object to content 1853
outside the registry. It is analogous to an overviewDoc in UDDI. Unless otherwise 1854
specified in findQualifiers, this is a logical AND and requires a match on ALL 1855
specified ExternalLinks to qualify as a match for this criteria. 1856

BulkResponse - Contains Collection of objects returned by the find methods. 1857

 1858

 1859

Method Summary

 BulkResponse findAssociations(java.util.Collection findQualifiers,
java.lang.String sourceObjectId,
java.lang.String targetObjectId,
java.util.Collection associationTypes)
 Finds all Associations that match ALL of the criteria
specified by the parameters of this call.

 BulkResponse findCallerAssociations(java.util.Collection findQualif
iers, java.lang.Boolean confirmedByCaller,
java.lang.Boolean confirmedByOtherParty,
java.util.Collection associationTypes)
 Finds all Associations owned by the caller that match
ALL of the criteria specified by the parameters of this call.

 ClassificationScheme findClassificationSchemeByName(java.util.Collection fi
ndQualifiers, java.lang.String namePattern)
 Find a ClassificationScheme by name based on the
specified name pattern.

 BulkResponse findClassificationSchemes(java.util.Collection findQua
lifiers, java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection externalLinks)
 Finds all ClassificationSchemes that match ALL of the
criteria specified by the parameters of this call.

 Concept findConceptByPath(java.lang.String path)
 Find a Concept based on the path specified.

 BulkResponse findConcepts(java.util.Collection findQualifiers,

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 75

java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)
 Finds all Concepts that match ALL of the criteria
specified by the parameters of this call.

 BulkResponse findOrganizations(java.util.Collection findQualifiers,
java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection specifications,
java.util.Collection externalIdentifiers,
java.util.Collection externalLinks)
 Finds all Organizations that match ALL of the criteria
specified by the parameters of this call.

 BulkResponse findRegistryPackages(java.util.Collection findQualifie
rs, java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection externalLinks)
 Finds all RegistryPackages that match ALL of the
criteria specified by the parameters of this call.

 BulkResponse findServiceBindings(Key serviceKey,
java.util.Collection findQualifiers,
java.util.Collection classifications,
java.util.Collection specifications)
 Finds all ServiceBindings that match ALL of the criteria
specified by the parameters of this call.

 BulkResponse findServices(Key orgKey,
java.util.Collection findQualifiers,
java.util.Collection namePatterns,
java.util.Collection classifications,
java.util.Collection specifications)
 Finds all Services that match ALL of the criteria
specified by the parameters of this call.

 1860

9.2.1 Find Methods 1861

The BusinessQueryManager interface defines a set of find methods for each 1862
key interface. Most find methods can return multiple objects of the type 1863
associated with the find method that match the specified search criteria. 1864

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 76

9.2.1.1 Collection Parameters 1865

Any Collection parameter that is a Collection of objects is a homogeneous 1866
collection of objects of the appropriate type. If the Collection contains an object 1867
whose type is unexpected, the implementation must throw an 1868
UnexpectedObjectException. 1869

Unless noted otherwise, all Collection parameters in the JAXR API have the 1870
following usage semantics. If the Collection is null, the JAXR provider must treat 1871
it as if it were an empty Collection. A JAXR provider may use null Collection 1872
values as a hint to optimize the processing of the Collection. 1873

9.2.1.2 Interface FindException 1874

This exception is used in the event of failure or partial success during a find 1875
operation. A Collection of instances of this exception is returned in the 1876
BulkResponse for a find method invocation if FindExceptions are encountered. 1877

9.2.2 Canonical Paths Syntax for Concepts 1878

In the findConceptByPath method, the desired Concept is indicated via a 1879

canonical representation that uniquely identifies the absolute path leading from 1880
the ClassificationScheme to that Concept. 1881

The canonical path representation is defined by the following BNF grammar: 1882

 1883
canonicalPath ::= '/' schemeId conceptPath 1884
conceptPath ::= '/' conceptValue 1885
 | '/' conceptValue (conceptPath)? 1886
 1887

In the above grammar, schemeId is the id attribute of the ClassificationScheme 1888
instance, and conceptValue is defined by NCName production as defined by 1889
http://www.w3.org/TR/REC-xml-names/#NT-NCName. 1890

9.2.2.1 Example of Canonical Path Representation 1891

The following canonical path represents the Concept with value ‘UnitedStates’ 1892
with a parent Concept with value ‘NorthAmerica’ under a ClassificationScheme 1893
with id ‘Geography-id’. 1894

 1895
/Geography-id/NorthAmerica/UnitedStates 1896

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 77

9.3 Interface DeclarativeQueryManager 1897

Interface DeclarativeQueryManager provides a more flexible generic API 1898

that provides the ability to perform ad hoc queries using a declarative query 1899
language syntax. Currently the only declarative syntaxes supported are SQL-92 1900
and OASIS ebXML Registry Filter Queries. Note that support of SQL queries is 1901
optional for OASIS ebXML Registries. If the target registry does not support SQL 1902
queries then methods calls on DeclarativeQueryManager should throw 1903
UnsupportedCapabilityException. 1904

 1905

 1906

 1907

Method Summary

 Query createQuery(int queryType, java.lang.String queryString)
 Creates a Query object given a queryType (for example,
QUERY_TYPE_SQL) and a String that represents a query in the
syntax appropriate for queryType.

 BulkResponse executeQuery(Query query)
 Executes a query as specified by query paramater.

 1908

9.3.1 Interface Query 1909

The Query interface encapsulates a query in a declarative query language. 1910
Currently a Query can only be defined using an SQL-92 syntax or the OASIS 1911
ebXML Registry query syntax. In future support for other query languages such 1912
as XQuery may be added. 1913

 1914

 1915

Method Summary

 int getType()
 Gets the type of Query (e.g. SQL).

 java.lang.String toString()
 Must print the String representing the query.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 78

 1916

9.3.2 Creating a Query 1917

A JAXR client must first create a Query object to encapsulate its query in a 1918

supported declarative query syntax such as SQL. This is done by calling the 1919
createQuery factory method on the DeclarativeQueryManager. A JAXR 1920

provider may optionally perform client-side validation of the SQL query syntax 1921
and throw an InvalidRequestException when an invalid query is specified. 1922

In the absence of such validation, it is expected that the registry provider will 1923
detect the error, in which case a RegistryException will be returned in the 1924
BulkResponse. 1925

9.3.3 Executing a Query 1926

A JAXR client executes a declarative query encapsulated by a Query instance 1927

by invoking the executeQuery method of the DeclarativeQueryManager, 1928
giving it the Query object as parameter. 1929

9.4 SQL Query Syntax 1930

The syntax for the SQL Query is defined by a stylized use of a proper subset of 1931
the “SELECT” statement of Entry Level SQL defined by ISO/IEC 9075:1992, 1932
Database Language SQL [SQL], extended to include sql invoked routines 1933

(also known as stored procedures) as specified in ISO/IEC 9075-4 [SQL-PSM]. 1934

9.4.1 SQL Query Syntax Binding To Information Model 1935

The SQL Queries are defined based upon the query syntax defined in [RIM] and 1936
a relational schema that is an algorithmic binding to the information model as 1937
described in the section titled “SQL Query Syntax Binding To [RIM]” in [RIM]. 1938

9.5 OASIS ebXML Registry Filter Query Syntax 1939

The [ebRS] specification defines the filter query syntax for the OASIS ebXML 1940
Registry. This syntax is an XML syntax defined by an XML Schema. 1941

9.6 Query Result 1942

The executeQuery method returns a BulkResponse that contains a 1943
homogeneous collection of objects. The type of objects is defined by the FROM 1944
clause of the query. For example, SELECT from Organization WHERE … 1945

returns a Collection of Organization instances. 1946

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 79

9.7 Federated Queries 1947

A client may issue a federated query against multiple registry providers as if they 1948
were a single logical registry provider. A federated query is issued in a manner 1949
similar to a non-federated query by calling a method on either the 1950
BusinessQueryManager or DelarativeQueryManager interfaces. The only 1951

difference is that the client must use the BusinessQueryManager or 1952

DelarativeQueryManager interface that was obtained from a RegistryService 1953
of a FederatedConnection instance rather than of a primitive Connection. 1954
Federated query capability is an optional feature of a JAXR provider for version 1955
1.0. 1956

1957

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 80

10 Security Architecture 1957

The JAXR API does not specify its own security mechanisms. Instead, the API 1958
defines some minimal methods that allow implementations to choose their 1959
underlying security mechanism. 1960

The minimal security-related methods in the JAXR API are aligned with the Java 1961
Authentication and Authorization Service (JAAS) and Java Secure Socket 1962
Extension (JSSE) specifications. These are a standard part of the Java 2 1963
Platform, Standard Edition (J2SETM) version 1.4 software. Support for earlier 1964
versions of the J2SE software is available through stand-alone versions of these 1965
packages. 1966

10.1 Integrity 1967

To ensure the integrity of a JAXR request to the target registry provider, the 1968
JAXR API provides the ability for the request to the registry provider to be signed 1969
using a digital certificate. All Level 1 JAXR providers must be capable of sending 1970
signed requests to the registry provider and receiving signed responses from the 1971
registry provider. 1972

The JAXR client does not directly sign requests, nor does it validate signed 1973
responses. Instead, this functionality is delegated to the Level 1 JAXR provider. 1974

10.2 Confidentiality 1975

To ensure the confidentiality of a JAXR request to the target registry provider, all 1976
JAXR providers (Level 0 and above) must be able to use SSL to communicate 1977
with a registry that is accessible over the HTTPS protocol. Use of the HTTPS 1978
protocol is transparent to the JAXR client except for the fact that the URL defines 1979
‘https’ as the protocol. 1980

Level 1 JAXR providers may be capable of sending encrypted requests to the 1981
registry provider and receiving encrypted responses from the registry provider. 1982

The JAXR client does not directly encrypt requests, nor does it decrypt incoming 1983
encrypted responses from the registry. Instead, this functionality is delegated to 1984
the Level 1 JAXR provider. 1985

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 81

10.3 Authentication 1986

From the perspective of the target registry provider, it is the JAXR provider, not 1987
the JAXR client, that is the registry provider’s client. The JAXR provider must 1988
authenticate with the registry provider as specified by the specification governing 1989
the registry provider (e.g. ebXML Registry, UDDI). Typically, such authentication 1990
occurs on certain privileged requests. For example, in UDDI, authentication is 1991
needed only on requests that use the UDDI publishing API to submit, update, or 1992
delete content. 1993

In all cases, the JAXR provider initiates the authentication requests, while the 1994
registry provider performs the actual authentication. 1995

The JAXR client does not directly initiate authentication. It does not need to know 1996
when authentication with the target registry is necessary nor how it must be 1997
done. Instead, this functionality is delegated to the JAXR provider. 1998

10.3.1 Authentication Methods 1999

A JAXR provider may support multiple authentication methods. A JAXR client 2000
may specify a particular authentication method using the 2001
javax.xml.registry.security.authenticationMethod connection 2002

property. If the provider does not support the specified authentication method 2003
then it must throw UnsupportedCapabilityException during the 2004
ConnectionFactory.createConnection call. The following authentication 2005

methods have been defined as normative authentication methods: 2006

o UDDI_GET_AUTHTOKEN is the get_AuthToken protocol defined by 2007
[UDDI_API2]. 2008

o HTTP_BASIC is the HTTP basic authentication as specified in RFC2068. 2009

o CLIENT_CERTIFICATE 2010

o MS_PASSPORT is the Microsoft Passport authentication mechanism. 2011

A provider may support one or more of these methods as well as additional 2012
provider-specific methods. 2013

10.4 Authorization 2014

The JAXR provider does not perform any authorization decisions. All requests 2015
from the client are relayed to the registry provider, along with any required 2016
authentication tokens. The registry provider may perform authorization checks in 2017
a registry provider-specific manner and report any authorization errors. The 2018
JAXR provider must map any such registry provider-specific errors to a 2019
JAXRException and deliver it to the client. 2020

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 82

10.5 Security Support in JAXR API 2021

The following section describes the support for security features in the JAXR API. 2022

10.5.1 User Registration 2023

The JAXR API does not provide any support for registration of User credentials 2024
with a registry provider. Such user registration is a one-time activity that must be 2025
performed out-of-band with respect to the JAXR API. 2026

10.5.2 Method Connection.setCredentials 2027

public void setCredentials(Set credentials) 2028

 throws JAXRException 2029

Allows the client to set the security credentials for the user that is currently 2030
associated with the client. The term credential has the meaning defined by the 2031
JAAS API. A credential may be any java.lang.Object instance that is supported 2032
as a credential type by the JAXR provider. 2033

A JAXR provider must support credentials in the form of either a digital certificate 2034
and private key or a username and password combination. A JAXR provider may 2035
support other forms of security credentials. A JAXR provider is not required to 2036
support certain forms of credentials if they are not supported by the target 2037
registry provider. For example, if digital certificates are not supported by UDDI, 2038
then a JAXR UDDI provider need not support digital certificate credentials. 2039

When a JAXR client specifies a digital certificate as a credential, it must do so 2040
using an instance of the javax.security.auth.x500.X500PrivateCredential class as 2041
defined by the JAAS API. 2042

When a JAXR client specifies a username and password combination as a 2043
credential, it must do so using an instance of the 2044
java.net.PasswordAuthentication class. This class is a simple container for a 2045
username and password. 2046

A JAXR provider must be able to use the appropriate credential from the 2047
credentials set for the Connection by the last setCredentials call and authenticate 2048
with the registry provider in a provider-specific manner. 2049

If a client dynamically changes its credentials, the change has no impact on the 2050
pre-existing RegistryService instance within that Connection. Nor does it have 2051
any impact on any information model objects created within that Connection. 2052

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 83

Appendix A Pre-defined Enumerations 2053

This section defines the pre-defined enumerations used by the JAXR API. These 2054
enumerations are defined as Concept hierarchies (a ClassificationScheme and a 2055
set of child Concepts). 2056

The enumerations are listed using the following notational convention. Each 2057
enumeration is a separate section within this appendix. The name of the 2058
ClassificationScheme of each enumeration is the name of the enumeration and is 2059
used as the section title. 2060

A.1 Identification of Pre-defined Enumerations 2061

A client may identify the ClassificationScheme for a pre-defined enumeration 2062
using the name of the ClassificationScheme in the en_US locale. Consequently, 2063
the ClassificationScheme for a pre-defined enumeration must always have a 2064
name defined in en_US locale. So to identify a Concept with value of “Service” 2065
within the pre-defined enumeration ObjectType in a findConceptByPath call, a 2066
client writes the following code: 2067
 2068
Concept serviceConcept = bqm.findConceptByPath(‘/ObjectType/Service’); 2069

 2070

A.2 Enumeration ObjectType 2071

The ObjectType enumeration is used in the getObjectType method of 2072
RegistryObject. 2073

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 84

 2074

Figure 24: Pre-defined enumeration ObjectType 2075

A.3 Enumeration PhoneType 2076

This enumeration is used in the getPhoneType method of TelephoneNumber. 2077

 2078

Figure 25: Pre-defined enumeration PhoneType 2079

A.4 Enumeration AssociationType 2080

This enumeration is used in the getAssociationType method of Association. 2081

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 85

 2082

Figure 26: Pre-defined enumeration AssociationType 2083

A.5 Enumeration URLType 2084

This enumeration is used in classifying a ServiceBinding according to the type of 2085
access point it supports. 2086

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 86

 2087

Figure 27: Pre-defined enumeration URLType 2088

A.6 Enumeration PostalAddressAttributes 2089

This enumeration is used to provide a mapping from the attributes of the 2090
PostalAddress class to any user-defined taxonomy. 2091

 2092

Figure 28: Pre-defined enumerations for PostalAddressAttributes 2093

Appendix B Semantic Equivalence of JAXR Concepts 2094

This appendix describes those aspects of the JAXR API that allow the definition 2095
of semantic equivalence between two Concepts in potentially two different 2096
ClassificationSchemes. 2097

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 87

When two Concepts are semantically equivalent, they represent the same notion 2098
or concept. It does not matter which node is the source and which is the target, 2099
since the semantics of this association implicitly apply bi-directionally. 2100

An example of the use of semantic equivalence is in the PostalAddress mapping 2101
for UDDI providers. 2102

A JAXR provider must allow a client to define semantic equivalences on a per-2103
connection basis using the javax.xml.registry.semanticEquivalences 2104

connection property. A JAXR provider may provide the ability to define the 2105
semantic equivalences in a provider-specific manner as global defaults for the 2106
provider. 2107

Each semantic equivalence is specified as a separate tuple in the single 2108
javax.xml.registry.semanticEquivalences connection property. Each 2109

individual semantic equivalence tuple consists of the id of two equivalent 2110
concepts separated by a comma ‘,’ separator. Within the property value, 2111
individual semantic equivalence tuples are separated by the ‘|’ character. 2112

The format is described below: 2113

 2114
javax.xml.registry.semanticEquivalences=<id1>, <id2> | <id3>, <id4> | …. 2115

Spaces are allowed between tokens. The backslash ‘\’ character may be used as 2116
a continuation indicator, as allowed by Java property file syntax. 2117

An example follows below. Each property is on the same line but is shown 2118
wrapped due to the formatting limits of this document. 2119

A JAXR provider must ignore a semanticEquivalence property that is invalid for 2120
some reason (for example, the id specified was not that of a Concept). In such 2121
cases, the JAXR provider should emit a suitable warning to the user. 2122

 2123
javax.xml.registry.semanticEquivalences= \ 2124
urn:uuid:0a1324f7-6d4a-4d73-a088-9ab1d00c9a91, \ 2125
urn:uuid:23a5feac-26b9-4525-82fc-997885a0e6a2 | \ 2126
urn:uuid:1acf6ed2-cd6e-4797-aad8-8937a3cff88b, \ 2127
urn:uuid:152d6f28-cb56-4e5d-9f55-96b132def0e4 2128
 2129

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 88

Appendix C JAXR Mapping to ebXML Registry 2130

This appendix describes how the JAXR information model maps to the ebXML 2131
Registry information model defined in [ebXML-RIM]. Note that the JAXR 2132
information model used [ebXML-RIM] as its starting point. Consequently, the 2133
mapping from JAXR to ebXML Registry is often direct. 2134

C.1.1 Mapping of Interfaces 2135

Table 1 describes the mapping between the interfaces in the ebXML and JAXR 2136
information models respectively. Both models use UML interfaces and classes. 2137

 2138

Table 1: Mapping of ebXML Interfaces to JAXR Interfaces 2139

EbXML JAXR Description

Association Association Identical definition

AuditableEvent AuditableEvent Identical definition

Classification Classification Identical definition

ClassificationNode Concept Name change only

EmailAddress EmailAddress Identical definition

ExternalIdentifier ExternalIdentifier Identical definition

ExternalLink ExternalLink Identical definition

ExtrinsicObject ExtrinsicObject Identical definition

Organization Organization Identical definition

RegistryPackage RegistryPackage Identical definition

PersonName PersonName Identical definition

PostalAddress PostalAddress Identical definition

RegistryEntry RegistryEntry Factored slots-related methods
into ExtensibleObject

RegistryObject RegistryObject Change name of Id attribute to
Key

Service Service Identical definition

ServiceBinding ServiceBinding Identical definition

Slot Slot Identical definition

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 89

SpecificationLink SpecificationLink Identical definition

TelephoneNumber TelephoneNumber Identical definition

User User Identical definition

Versionable Versionable Identical definition

C.1.2 Mapping of New Classes In JAXR To ebXML 2140

JAXR Description

ExtensibleObject Factored slots-related methods from
RegistryObject into ExtensibleObject. No impact
on mapping.

Key Maps to an id of type String. No real impact on
mapping.

 2141

C.1.3 ebXML Functionality Not Supported By JAXR 2142

The following table declares all ebXML functionality that is not accessible via 2143
JAXR API. Any potential omissions from this list are specification errors and 2144
should be reported. 2145

 2146

ebXML
Feature

Disposition Description

 Currently, all functionality of OASIS
ebXML Registry is supported.

Appendix D JAXR Mapping To UDDI 2147

This appendix describes how the JAXR information model maps to the UDDI 2148
XML data structure as defined in version 2.0 of the UDDI specification [UDDI-2149
DS]. UDDI data structures are described in an XML format. 2150

D.1 Mapping of UDDI Inquiry API Calls To JAXR 2151

The following table shows the mapping from UDDI Inquiry API methods to JAXR 2152
methods. Unless otherwise qualified, the JAXR interface is 2153
BusinessQueryManager. 2154

 2155
2156

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 90

 2156

D.2 Mapping of UDDI Publisher API Calls to JAXR 2157

The following table shows the mapping from UDDI Publisher API methods to 2158
JAXR methods. Unless otherwise qualified, the JAXR interface is 2159
BusinessLifeCycleManager. 2160

 2161

UDDI Method BusinessLifeCycle-
Manager Method

Comments

add_publisherAssertions saveAssociations,
confirmAssociation

No comments

delete_binding deleteServiceBindings No comments

UDDI Method Business-
QueryManager

Method

Comments

find_binding findServiceBindings No comments

find_business findOrganizations No comments

find_related_business findAssociations Will require traversing the
association to get the related
business in separate API call

find_service findServices No comments

find_tModel findConcepts,
findClassification-
Schemes

No comments

get_bindingDetail Not needed Handled transparently by
JAXR provider

get_businessDetail Not needed Handled transparently by
JAXR provider

get_businessDetailExt Unsupported Use RegistryService.
makeRegistrySpecificRequest

get _serviceDetail Not needed Handled transparently by
JAXR provider

get_tModelDetail Not needed Handled transparently by
JAXR provider

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 91

delete_business deleteOrganizations No comments

delete_publisherAssertions deleteAssociations No comments

delete_service deleteServices No comments

delete_tModel deleteClassification-
Schemes and
deleteConcepts

In UDDI delete_tModel does
not delete the tModel. It
simply hides it from
find_tModel calls. The
QueryManager.getRegistry-
Object calls will still return the
deleted tModel after a
deleteConcepts or
deleteClassificationSchemes
call.

discard_authToken Not needed Handled transparently by
JAXR provider

get_assertionStatusReport BusinessQuery-
Manager.-
findCallerAssociations

No comments

get_authToken Not needed Handled transparently by
JAXR provider

get_publisherAssertions BusinessQuery-
Manager.-
findCallerAssociations

JAXR provider must
transparently authenticate
with UDDI provider

get_registeredInfo QueryManager.
getRegistryObjects(
objectType)

JAXR provider must
transparently authenticate
with UDDI provider

save_binding saveServiceBindings No comments

save_business saveOrganizations No comments

save_service SaveServices No comments

save_tModel saveClassificationSche
mes and saveConcepts

No comments

set_publisherAssertions saveAssociations No comments

 2162

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 92

D.3 Simplified UML Model For UDDI Information Model 2163

 2164

Figure 29: Simplified UML Model for UDDI Information Model 2165

Figure 29 shows a simplified UML model representing the UDDI information 2166
model. Note that the model is not an exact rendering of the UDDI information 2167
model but has been simplified to aid the reader’s understanding. 2168

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 93

D.4 Mapping of JAXR Attributes to UDDI 2169

The UDDI data types are not extensible. It is therefore not always possible to 2170
map an attribute from a JAXR interface to UDDI. For example, UDDI does not 2171
support majorVersion and minorVersion. A JAXR provider for UDDI must throw 2172
an UnsupportedCapabilityException when a client attempts to call a setter 2173
method for an attribute that has no mapping in UDDI (e.g. 2174
RegistryEntry.setMajorVersion). Note that such methods are designated as level 2175
1 methods for the convenience of the JAXR client programmer. 2176

Similarly, not all JAXR interfaces have a mapping to UDDI. For example, the 2177
JAXR RegistryPackage interface has no mapping to UDDI. The 2178
LifeCycleManager.createObject method and any other related factory methods 2179
must throw an UnsupportedCapabilityException when a client attempts to create 2180
an object that cannot be mapped to UDDI. 2181

D.5 Mapping of UDDI Attributes to JAXR 2182

The JAXR specification used the following approaches, listed in order of 2183
preferences, when specifying the mapping between UML attributes of the JAXR 2184
model and UDDI: 2185

1. Map UDDI attribute to a statically defined (non-Slot) JAXR attribute within 2186
a JAXR interface 2187

2. Map UDDI attribute to a dynamically defined Slot attribute within an 2188
instance of a JAXR interface 2189

 2190

D.6 Mapping of Interfaces 2191

This section provides the mapping of the highest-level UDDI data structures to 2192
the interfaces defined by the JAXR information model. The table provides an 2193
entity-level mapping and subsections discuss element/attribute-level mapping for 2194
each key concept. Since JAXR defines its information model in terms of 2195
interfaces, most of the UDDI entity attributes are mapped to operations on the 2196
JAXR information model objects. 2197

 2198

UDDI JAXR Description

businessEntity Organization

businessService Service

bindingTemplate ServiceBinding See D.6.3 for details.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 94

tModel (fingerprint) Concept See D.6.4 for details.

tModel (namespace) ClassificationScheme See D.6.4 for details.

discoveryURL ExternalLink See D.6.1.1 for details.

contact User

identifierBag Collection of
ExternalIdentifier
instances

See D.7.2 for details.

categoryBag Collection of
Classification instances

See D.7.3 for details.

address PostalAddress See D.6.1.3 for details.

overviewDoc ExternalLink See D.6.4.5 for details.

keyedReference (in
categoryBag)

Classification See D.7.1 for details.

keyedReference (in
identityBag)

ExternalIdentifier See D.7.1 for details.

 2199

D.6.1 UDDI businessEntity 2200

businessEntity is one of the four core data structures in UDDI. The 2201
businessEntity maps to Organization in the JAXR information model. The 2202
following table shows the attribute level mapping between a UDDI businesEntity 2203
and a JAXR Organization. 2204
 2205

businessEntity Organization Description

businessKey Organization.getKey

authorizedName Organization.getSlot Read-only Slot named
authorizedName of type
String.

operator Organization.getSlot Read-only Slot named
operator of type String.

discoveryURL Organization.getExternalLinks businessEntity contains a
list of discoveryURLs while
Organization contains a
collection of external links.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 95

name Organization.getName

description Organization.getDescription

contact Organization.getUsers JAXR designates one
contact as the primary
contact while UDDI does
not. The mapping will
assume the first UDDI
contact to be the primary
contact in JAXR.

businessServices Organization.getServices businessService maps to
Service interface.

identifierBag Organization.

getExternalIdentifiers

See D.7.2.

categoryBag Organization.

getClassifications

See D.7.3.

D.6.1.1 UDDI discoveryURL 2206

In UDDI, the default discoveryURL is assigned by the UDDI registry and is used 2207
to retrieve the XML document for the businessEntity and everything contained 2208
within it. Any additional discoveryURLs are assigned by the submitter, and 2209
provide links to external content that provides information about the 2210
businessEntity (referred to as discovery documents in UDDI). 2211

The default discoveryURL is identified by having a useType of either 2212
businessEntity or businessEntityExt. Any other useType value indicates an 2213
optional discoverURL. 2214

D.6.1.1.1 Getting a discoveryURL from UDDI 2215

When a businessEntity is retrieved from UDDI and mapped to a JAXR 2216
Organization, all discovery URLs are mapped to an ExternalLink. The first 2217
ExternalLink in the Collection returned by getExternalLinks method on 2218
Organization object must map to the default registry provider assigned 2219
discoveryURL. All other ExternalLinks must map to the optional discoveryURLs. 2220

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 96

D.6.1.1.2 Saving discoveryURL to UDDI 2221

When a client saves an Organization to UDDI, the default discoveryURL is 2222
assigned to the corresponding businessEntity by the registry provider and is not 2223
provided by the JAXR client. All ExternalLink instances associated with the 2224
Organization are mapped to optional discoveryURL instances such that the name 2225
of the ExternalLink is mapped to the useType attribute of the discoveryURL. 2226

 2227

DiscoveryURL ExternalLink Description

useType ExternalLink.getName

url value ExternalLink.getExternalURI

D.6.1.2 UDDI contact 2228

The UDDI contact element maps to the interface User in JAXR as follows: 2229

 2230

Contact User Description

useType User.getType

description User.getDescription

personName User.getPersonName.getFullName

phone User.getTelephoneNumbers.getNumber

email User.getEmailAddresses

address User.getPostalAddress

 2231

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 97

D.6.1.3 UDDI address 2232

 2233

Figure 30: UDDI Information Model for Address 2234

A UDDI address has an ordered Collection of addressLine instances. Each 2235
addressLine is a String. However in UDDI V2, each addressLine may be 2236
attached a meaning by linking it via a key-value pair of attributes to a taxonomy 2237
element defined under a taxonomy represented by a tModel. The tModel is 2238
referenced by a tModelKey within the address. Thus in UDDI an address is 2239
unstructured by default and can optionally be given meaning. 2240

In JAXR, PostalAddress is a structured interface with well-defined attributes for 2241
street, city, postal code, country etc. This brings about an issue of mapping 2242
between structured information in JAXR and unstructured information in UDDI. 2243
The solution is to use semantic equivalence mapping capabilities in JAXR API as 2244
described in Appendix B, as follows. 2245

1. The user or system administrator defines one or more user-defined 2246
ClassificationSchemes (a.k.a postal address schemes) representing UDDI 2247
tModels commonly used by address as a postal address scheme. 2248

2. The user or system administrator defines semantic equivalence between 2249
each Concept in the pre-defined PostalAddressAttributes 2250
ClassificationScheme and one or more Concepts in the user-defined 2251
postal scheme used by address. 2252

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 98

3. The client sets a default postalAddressScheme (using the 2253
javax.xml.registry.postalAddressScheme connection property) on the 2254
Connection instance and/or sets a postal address scheme on a specific 2255
PostalAddress. The postal address scheme for a PostalAddress over-2256
rides the default postal scheme set on the Connection. 2257

 2258

Figure 31: Semantic Equivalence and Mapping of User Defined Postal Scheme to 2259
PostalAddress Attribute 2260

A JAXR provider for UDDI must use the semantic equivalences defined with 2261
user-defined ClassificationScheme to validate and properly map PostalAddress 2262
attributes to addressLines with keyed references to the tModel corresponding to 2263
the postal scheme for the PostalAddress. This allows a JAXR client programmer 2264
to use the set/get methods defined in the PostalAddress class to conveniently set 2265
and get the values of the PostalAddress attributes such as city, stateOrProvince, 2266
country etc. 2267

D.6.1.3.1 Mapping of PostalAddress During Save Operations 2268

The JAXR UDDI provider must map the PostalAddress to UDDI during a Save 2269
Operation as follows: 2270

o The PostalAddress must map to an address element. 2271

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 99

o If there is a postal scheme defined on the PostalAddress, or if a default 2272
postal scheme is defined on the RegistryService, then a tModelKey 2273
attribute must be set to the Id of the postal scheme. Otherwise, the 2274
tModelKey must not be specified. 2275

o Each attribute of PostalAddress must map to an addressLine element. 2276

o The order of addressLine elements must match the order of 2277
PostalAddressAttributes as shown left to right in Figure 31 above for the 2278
Concepts under postalAddressAttributes scheme (second row from top). 2279

o If a tModelKey has been set on the address element and there is a 2280
semantic equivalence found between a PostalAddress attribute and the 2281
postal scheme, then a name and value attribute pair is specified for the 2282
corresponding addressLine element. The name and value are the name 2283
and value of the Concept in the postal scheme that was equivalent to the 2284
PostalAddress attribute. If no semantic equivalence was found then the 2285
name attribute and the value attribute must be as the name and value of 2286
the corresponding Concept in PostalAddressScheme. 2287

o If no tModelKey has been set on the address element then each 2288
addressLine element should specify the name and value attribute as 2289
defined by the name and value of the corresponding Concept in 2290
PostalAddressScheme. 2291

D.6.1.3.2 Mapping of UDDI address During Find Operations 2292

The JAXR UDDI provider must map the UDDI address element to JAXR during a 2293
find operation as follows: 2294

o The address element must map to a PostalAddress instance. 2295

o If there is a tModelKey defined for the address element and it matches a 2296
postal scheme, the postalScheme must be set to the matching postal 2297
scheme. 2298

o An address line is mapped to a PostalAddress attribute if a match to a 2299
PostalAddress attribute is found. The match is found if the following 2300
conditions are true: 2301

o A postal scheme has been set and 2302

o The value attribute of the addressLine matches a value attribute of 2303
a Concept in the postal scheme and 2304

o That postal scheme concept with matching value has a semantic 2305
equivalence with a PostalAddress attribute 2306

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 100

o An address line is mapped to a value in the Collection of values in a slot 2307
named addressLines defined for the PostalAddress if no match is found to 2308
a PostalAddress attribute. 2309

 2310

The following table summarizes the attribute mappings between the UDDI 2311
address element and JAXR PostalAddress interface. 2312

 2313

Address PostalAddress Description

addressLines PostalAddress.getSlot Mapped to attributes of
PostalAddress if semantic
equivalence established.
Otherwise mapped to a
Slot named addressLines
which has a Collection of
values

useType PostalAddress.getType

sortCode PostalAddress.getSlot Slot named sortCode

 2314

D.6.2 UDDI businessService 2315

businessService in UDDI represents a logical group of services, which have 2316
common classifications. It is functionally minimal and really serves as a grouping 2317
of bindingTemplates. 2318

businessService maps directly to the Service interface in the JAXR information 2319
model. 2320

 2321

businessService Service Description

businessKey Service.getProvidingOrganization.getKey

serviceKey Service.getKey

name Service.getName

description Service.getDescription

bindingTemplates Service.getServiceBindings

categoryBag Service.getClassifications See D.7.3.

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 101

 2322

D.6.3 UDDI bindingTemplate 2323

The bindingTemplate is another one of the core concepts in UDDI and serves not 2324
only to provide means of accessing (an entry point to) the desired service but 2325
also to carry with it the technical specification for the service. These technical 2326
specifications may be either in the form of a text-based document or in an 2327
interface definition language such as WSDL. 2328

The UDDI bindingTemplate element maps to the JAXR ServiceBinding interface 2329
as follows: 2330

 2331

bindingTemplate ServiceBinding Description

bindingKey ServiceBinding.getKey

serviceKey ServiceBinding.getService.getKey

description ServiceBinding.getDescription

accessPoint ServiceBinding.getAccessURI URLType attribute
in accessPoint is
mapped by
classifying the
ServiceBinding with
a sub-concept of
URLType Concept
(A.5). Default
urlType is http.

hostingRedirector ServiceBinding. getTargetBinding There is only one
element,
bindingKey, in this
structure and it
maps to
targetBinding
attribute

tModelInstanceDetails Not mapped explicitly as it is just
a Collection

tModelInstanceInfo Mapped to a SpecificationLink See D.10 for
mapping example.

instanceDetail Mapped to a SpecificationLink See D.10 for

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 102

mapping example.

 2332

D.6.3.1 tModelInstanceInfo and instanceDetails 2333

Both tModelInstanceInfo and instanceDetails are combined together and mapped 2334
to a single SpecificationLink instance. 2335

The registryObject attribute in the SpecificationLink instance is the Concept 2336
representing the tModel providing the specification fingerprint for the 2337
bindingTemplate. 2338

The description of the instanceDetails maps to the usageDescription attribute of 2339
the SpecificationLink instance. The ins tanceParms maps to the 2340
usageParameters attributes of the SpecificationLink instance. Note that JAXR 2341
allows multiple usageParameters while UDDI allows a single instanceParms. 2342
Thus a UDDI provider must throw an InvalidRequestException if a client attempts 2343
to set more than one usageParameter on a SpecificationLink instance. 2344

D.6.4 tModel 2345

In UDDI, tModel is an overloaded concept that can be used for a few different 2346
purposes. The following are two broad categories of purposes that tModels serve 2347
in UDDI: 2348

o To serve as a namespace for a taxonomy (e.g. NAICS) or identification 2349
scheme (DUNS) 2350

o To serve as a fingerprint or proxy for a technical specification that lives 2351
outside the registry in a bindingTemplate 2352

In the JAXR the above two uses of tModel are modeled separately. The 2353
namespace use is modeled with the ClassificationScheme interface, while the 2354
technical fingerprint use is modeled with any RegistryObject which in case of a 2355
UDDI provider must be a Concept. The 2356
SpecificationLink.getSpecificationObject method must return a 2357

Concept instance for a UDDI provider. 2358

D.6.4.1 tModel Mapping to ClassificationScheme 2359

tModel Concept Description

tModelKey ClassificationScheme.getKey

authorizedName ClassificationScheme.getSlot Read-only Slot
named

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 103

authorizedName

operator ClassificationScheme.getSlot Read-only Slot
named operator

name ClassificationScheme.getName

description ClassificationScheme.getDescription

overviewDoc ClassificationScheme.getExternalLinks See D.6.4.4.

identifierBag ClassificationScheme.getExternalIdentifiers See D.7.2.

categoryBag ClassificationScheme.getClassifications See D.7.3.

 2360

D.6.4.2 tModel Mapping to Concept 2361

 2362

tModel Concept Description

tModelKey Concept.getKey

authorizedName Concept.getSlot Read-only Slot named
authorizedName

operator Concept.getSlot Read-only Slot named
operator

name Concept.getName

description Concept.getDescription

overviewDoc Concept.getExternalLinks See D.6.4.4.

identifierBag Concept.getExternalIdentifiers See D.7.2.

categoryBag Concept.getClassifications See D.7.3.

 2363

D.6.4.3 Mapping of tModels During JAXR Find Operations 2364

During JAXR find operations, the JAXR provider must be able to determine 2365
whether a tModel in UDDI is a namespace tModel or whether it is a fingerprint 2366
tModel. This is necessary in order to decide whether to map the tModel to a 2367
ClassificationScheme or Concept. 2368

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 104

The JAXR UDDI provider must use the catgegoryBag information association 2369
with a UDDI tModel in order to make the correct mapping to a JAXR 2370
ClassificationScheme or Concept. 2371

A JAXR provider must map a UDDI tModel to a ClassificationScheme if the 2372
tModel’s categoryBag has a keyedReference that uses the well-known uddi-2373

org:types taxonomy in UDDI (with tModelKey uuid:C1ACF26D-9672-4404-2374

9D70-39B756E62AB4) for its tModel and uses any of the following taxonomy 2375
values: 2376

o Identifier 2377

o Namespace 2378

o Categorization 2379

o PostalAddress 2380

In all other cases, a JAXR provider must map a UDDI tModel to a Concept. 2381

Note that it is possible that a UDDI tModel was intended to be a 2382
ClassificationScheme but was not properly categorized in UDDI. In such cases 2383
the tModel would be mapped to a Concept instead of a ClassificationScheme. 2384
The user must explicitly determine which such Concepts are actually 2385
ClassificationSchemes and then use the createClassificationScheme(Concept) 2386
method of LifeCycleManager to safely cast the Concept to a 2387
ClassificationScheme. Note that such cases indicate problems within UDDI 2388
content and should be reported to the content’s owner. 2389

D.6.4.4 Mapping to tModels During JAXR Save Operations 2390

During JAXR Save operations, ClassificationSchemes and Concepts that have 2391
no parent or ClassificationScheme are mapped to tModels. 2392

It is suggested but not required that a JAXR provider for UDDI attempt to 2393
categorize tModels based upon information available on their intended usage. 2394
ClassificationSchemes related tModels may be automatically categorized by the 2395
well-known uddi-org:types taxonomy in UDDI (with tModelKey 2396

uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4) as follows: 2397

o PostalAddress schemes are assigned the taxonomy value of 2398
PostalAddress 2399

o ClassificationSchemes used for classification purposes are assigned the 2400
taxonomy value of categorization 2401

o ClassificationSchemes used for identification purposes are assigned the 2402
taxonomy value of identification 2403

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 105

o If there is not enough information then the default taxonomy value is 2404
categorization. 2405

Specification related tModels mapped from Concept may be automatically 2406
categorized by the well-known uddi-org:types taxonomy in UDDI (with 2407
tModelKey uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4) as follows: 2408

o The keyed reference is assigned a taxonomy value of specification. 2409

D.6.4.5 overviewDoc 2410

An overviewDoc maps to an ExternalLink in JAXR. The ExternalLink is 2411
associated with the Concept or ClassificationScheme that the tModel is mapped 2412
to. Since UDDI allows only one overviewDoc on a tModel or a instanceDetails, a 2413
JAXR UDDI provider must throw UnsupportedCapabilityException if more than 2414
one ExternalLink is added to a Concept (tModel), ClassificationScheme (tModel) 2415
or SpecificationLink (instanceDetails). A JAXR UDDI provider should also throw 2416
UnsupportedCapabilityException if an ExternalLink is added to any other object 2417
besides Organization, Concept, ClassificationScheme or SpecificationLink. 2418

 2419

OverviewDoc ExternalLink Description

description ExternalLink.getDescription

overviewURL ExternalLink.getExternalURI

 2420

D.7 Mapping of Common Data Types 2421

So far, we have described the highest-level mapping between the main data 2422
structures in UDDI and interfaces in the JAXR information model. The 2423
subsequent section describes the mapping between data structures that are 2424
commonly reused in UDDI and the JAXR API. 2425

D.7.1 keyedReference 2426

A keyedReference element is used either to contain a group of 2427
classifications or to contain a group of identifiers for an object. To that 2428
end, keyedReference can map to either ExternalIdentifiers or Classifications. 2429
For this reason, there are actually 2 tables specifying each individual 2430
mapping. 2431
 2432
When keyedReference is being used in an identifierBag, it is mapped to a JAXR 2433
ExternalIdentifier. A JAXR information model object being marshaled to XML for 2434

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 106

UDDI will have all its external identifiers marshaled into identifierBag. Similarly, 2435
keyedReferences in an identifierBag in a UDDI response are un-marshaled into 2436
ExternalIdentifiers by the JAXR provider. 2437
 2438
keyedReference ExternalIdentifier Description
tModelKey ExternalIdentifier.getIdentificationScheme().getKey From the

RegistryObject
keyName ExternalIdentifier.getName From the

RegistryObject.
This is
symbolic (such
as Tax Id).

keyValue ExternalIdentifier.getValue This is the
unique id (e.g.
tax id), which
identifies the
ebusiness
entity.

 2439
When keyedReference is used in a categoryBag, it is mapped to a JAXR 2440
Classification. 2441
 2442
When a JAXR object is being marshaled to XML for UDDI, all its Classifications 2443
are marshaled into categoryBag according to the mapping described below. 2444
When the Classification uses an internal taxonomy, the JAXR provider for UDDI 2445
must validate all keyValues in the resulting UDDI keyedReference. 2446
 2447
In UDDI a keyedReference can have only one keyName. In contrast in the JAXR 2448
API, a Classification or an ExternalIdentifier may have multiple key names as 2449
defined by the name attribute. When a keyedReference in mapped to a JAXR 2450
Classification or an ExternalIdentifier, the keyValue must be mapped to the 2451
LocalizedString in the default Locale for the client. When a JAXR Classification or 2452
an ExternalIdentifier is mapped to a UDDI keyedReference, the keyValue is 2453
chosen using the following precedence rules: 2454
 2455

1. Use the value specified in LocalizedString for the default locale if available 2456
2. Use the value specified in LocalizedString for the en_US locale if available 2457
3. Use the first available name in any locale if available 2458
4. If all of above fail then do not specify the keyName 2459

 2460

keyedReference Concept Description

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 107

tModelKey Classification.getClassificationScheme.getKey

keyName Classification.getName This is the
name of a
taxonomy
element

keyValue Concept.getValue This is the
value of
identifying a
taxonomy
element

 2461

D.7.2 identifierBag 2462

identifierBag is a collection of keyedReferences. An identifierBag is modeled in 2463
the JAXR information model as a Collection of ExternalIdentifiers. 2464

D.7.3 categoryBag 2465

categoryBag is a collection of keyedReferences. A categoryBag is modeled in 2466
the JAXR information model as a Collection of Classifications. 2467

D.7.4 tModelBag 2468

tModelBag is a collection of tModel uuid_key values that represents the technical 2469
fingerprint of a bindingTemplate structure contained within the businessService 2470
specified by the serviceKey value. 2471

A tModelBag is modeled in the JAXR information model as a Collection of 2472
Concepts that represent technical fingerprint Concepts that serve as proxies for 2473
technical specification is a ServiceBinding (bindingTemplate). 2474

D.8 Mapping of UDDI phone Element 2475

UDDI allows a single String for the entire phoneNumber and an optional 2476
useType. The JAXR TelephoneNumber class provides a more structured 2477
representation of the phone number. Therefore, for JAXR UDDI providers the 2478
only relevant attributes are phoneType and number. 2479

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 108

D.8.1 Mapping of phone During Save Operations 2480

A JAXR UDDI provider must throw an UnsupportedCapabilityException if a client 2481
programmer tries to call any of the following operations: 2482

o setAreaCode 2483

o setCountryCode 2484

o setExtension 2485

o setURL 2486

The client programmer is expected to mainly use the setNumber method to set 2487
the complete telephone number as unstructured free-form text. 2488

The client programmer may also set a type on the TelephoneNumber using 2489
setType method. In this case, the type specified should be used in the useType 2490
attribute for the UDDI phone element. 2491

D.8.2 Mapping of phone During Find Operations 2492

A JAXR UDDI provider must throw an UnsupportedCapabilityException if a client 2493
programmer tries to call any of the following operations: 2494

o getAreaCode 2495

o getCountryCode 2496

o getExtension 2497

o getURL 2498

A JAXR UDDI provider must map the CDATA of the phone element to the 2499
number attribute of telephoneNumber. 2500

If a useType is present for the phone element, then a JAXR UDDI provider must 2501
map the useType to the type attribute of TelephoneNumber. 2502

The client programmer is expected to mainly use the getNumber method to get 2503
the complete telephone number as unstructured free-form text. 2504

If the client programmer calls the getType method they should either get a type 2505
String or they should get null. 2506

D.9 Mapping of name to PersonName 2507

UDDI personName element allows a single String for the entire name of a 2508
person. The JAXR PersonName class provides a more structured representation 2509
of the a person’s name. Therefore, for JAXR UDDI providers the only relevant 2510
attributes is fullName. 2511

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 109

A JAXR UDDI provider must throw an UnsupportedCapabilityException if a client 2512
programmer tries to call any method of the PersonName class other than the 2513
following operations: 2514

o getFullName 2515

o setFullName 2516

 2517

D.10 Example of JAXR-UDDI Mapping 2518

Figure 32 below shows a simplified example described in terms of UDDI data 2519
structures. Figure 33 then shows the same example in terms of JAXR information 2520
model using the mapping described above. 2521

In this example a UDDI businessEntity is classified by an external classification 2522
using the taxonomy element with name "Automobile and Light Duty Motor 2523
Vehicle Manufacturing" and value 33611 in the NAICS taxonomy. It is also 2524
identified using a DUNS number of 45232 using the DUNS identification scheme. 2525
The businessEntity has a single businessService for a purchasing service that 2526
has a single bindingTemplate that has a single specification document that is a 2527
WSDL file. 2528

2529

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 110

BusinessService

ServiceKey=23T701e54683nf…
name="Purchasing service"
BindingTemplates

BusinessEntity

businessKey = TB993…
name = "Fjord Auto Inc."
businessServices
identifierBag
categoryBag

BindingTemplate

Key=5E2D412E5-44EE-…
accessPoint="http://www.fjordauto.com"
tModelInstanceDetails

TmodelInstanceInfo

TmodelKey=4453D6FC-223C-3ED0…
tModelInstanceDetails

OverviewDoc

description="Fjord Autos purchasing service "
overviewURL="http://www.fjordauto/purchasing"

keyedReference
TmodelKey=C0B9F…
keyName="Transportat.."
keyValue=33611

keyedReference

TmodelKey=DFE-2B…
keyName="JustJava"
keyValue=45232

Tmodel

TmodelKey=8609C81E-…
name="dnb-com:D-U-N-S"
description="DUNS...."

Tmodel

TmodelKey= C0B9F...
name="ntis-gov:naics:1997"
description="NAICS...."

Tmodel

TmodelKey=4453D6…
name="myWSDLFile"
description="...."

 2529

Figure 32: Example in terms of UDDI Data Structures 2530

 2531

Service

key.id=23T701e54683nf…
name="Purchasing service"
serviceBindings

Organization

key.id = TB993…
name = "Fjord Auto Inc."
services
externalIdentifiers
classifications

ServiceBinding

key.id=5E2D412E5-44EE-…
accessURI="http://www.fjordauto.com.."
specificationLink

ExternalLink

description="JustJava's purchasing service"
externalURI="http://www.fjordauto.com/purchasing"

SpecificationLink

registryObject
usageDescription
usageParameters

Classification

cla..scheme=C0B9F…
name="Transportat.."
value=33611

ExternalIdentifier

id..Scheme=DFE-2B…
name="JustJava"
value=45232

ClassificationScheme

key.id=8609C81E-…
name="dnb-com:D-U-N-S"
description="DUNS...."

ClassificationScheme

key.id=C0B9F...
name="ntis-gov:naics:1997"
description="NAICS...."

Concept

key.id=4453D6…
name="myWSDLFile"
description="...."

 2532

Figure 33: UDDI Example Mapped to JAXR 2533

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 111

D.11 Provider Generated id Attributes 2534

Due to differences between the information models of JAXR and UDDI, there are 2535
several cases where a JAXR interface must have an id while its counterpart in 2536
UDDI does not have an id defined. 2537

In such cases, the JAXR provider must deal with this impedance mismatch 2538
transparent to the user, and generate id values in a deterministic manner. 2539

This following table itemizes each case where id needs to be generated and 2540
suggests a nor-normative algorithm that may be used to generate ids for each 2541
such case. Note that text is wrapped due to shortage of horizontal space in 2542
columns. 2543

 2544

JAXR Interface Algorithm Example

ExternalIdentifier <RegistryObjectId>:

<identificationSchemeId>:

<value>

a2345678-1234-1234-
123456789012:a2345678-
1234-1234-
123456789013:Social Security
Number

Association <sourceObjectId>:

<targetObjectId>:

<associationType>

a2345678-1234-1234-
123456789012:a2345678-
1234-1234-
975123456789013:Supersedes

Classification
(internal)

<classifiedObjectId>:

<classificationNodeId>

a2345678-1234-1234-
123456789012:a2345678-
1234-1234-123456789013

Classification
(external)

<classifiedObjectId>:

<classificationSchemeId>:

<nodeRepresentation>

a2345678-1234-1234-
123456789012:a2345678-
1234-1234-123456789013:61

ExternalLink <externalURI>:<sequenceId> http://www.sun.com:1

SpecificationLink <serviceid>:<accessURI>:

<targetBindingId>:

<sequenceId>:

<specificationObjectId>

a2345678-1234-1234-
123456789012:

http://www.sun.com::1:

a2345678-1234-1234-
123456789013

 2545

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 112

D.12 Supporting Taxonomy Service In JAXR UDDI Providers 2546

D.12.1 Normative Description 2547

This section provides a normative description of all required features when 2548
implementing a taxonomy service within a JAXR UDDI provider: 2549

o A JAXR UDDI provider must support the NAICS, UNSPSC and ISO 3166 2550
Geography taxonomies as internal taxonomies available within the 2551
implementation specific taxonomy service. 2552

o A JAXR UDDI provider must provide a provider-specific way for users to 2553
configure and manage arbitrary taxonomies within the taxonomy server. 2554

D.12.2 Non-normative Description 2555

This section provides a non-normative description of how a JAXR UDDI provider 2556
may support a taxonomy service, thus allowing entire taxonomies complete with 2557
their taxonomy structure to be available as internal ClassificationSchemes. 2558

A taxonomy service may be implemented in several forms. Below are some 2559
examples: 2560

o The JAXR provider may read one or more client side configuration files 2561
upon startup that contain taxonomy information. 2562

o The JAXR provider may have a server-side component that provides the 2563
taxonomy service function. 2564

o The JAXR provider may allow a level 1 registry to be configured as the 2565
taxonomy server. 2566

Regardless of the implementation choice for a taxonomy service internal to the 2567
JAXR UDDI provider, the following guidelines apply: 2568

o Taxonomy information in the taxonomy server is updated or deleted via 2569
out-of-band means not described the JAXR specification. 2570

o The JAXR UDDI provider never updates or deletes taxonomy information 2571
in the taxonomy server based upon a client call to a JAXR API method. 2572
Note that updates to the taxonomy server are done through out-of-band 2573
provider specific means. 2574

o The saveClassificationSchemes and 2575

deleteClassificationSchemes calls in the JAXR API only affect the 2576

UDDI registry and not the taxonomy server. 2577

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 113

o The JAXR UDDI provider must query both the taxonomy server and the 2578
UDDI registry during findClassificationSchemes operations. It 2579

should combine the results of querying the taxonomy server and the 2580
UDDI registry and present a unified result to the JAXR client. 2581

o When combining results of the findClassificationSchemes 2582

operation, the provider must cull duplicates. In case of duplicates, the 2583
taxonomy server version should be kept since it has taxonomy structure. 2584

 2585

D.13 UDDI Functionality Not Supported By JAXR 2586

The following table declares all UDDI functionality that is not accessible via JAXR 2587
API. Any potential omissions from this list are specification errors and should be 2588
reported. 2589

 2590

UDDI Feature Disposition Description

BusinessEntityExt
functionality

This functionality
is not suitable for
abstraction in
JAXR. No plans
to provide this in
JAXR.

Deliberately not supported.
Use
makeRegistrySpecificRequest
backdoor method in
RegistryService interface.

2591

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 114

Appendix E Value-Added Features of the JAXR API 2591

This section described some features that are available to JAXR clients that 2592
provide unique value beyond the capabilities provided by underlying registries. 2593

E.1 Taxonomy Browsing 2594

The JAXR API allows a JAXR client of a UDDI registry to be able to browse the 2595
full structure of taxonomies or classification schemes. This is a unique capability, 2596
which is not available to typical (non-JAXR) UDDI clients. Even though the UDDI 2597
registry does not provide clients the ability to browse taxonomy structure, a JAXR 2598
provider for UDDI enables this useful feature. A JAXR provider comes pre-2599
configured with standard taxonomies such as NAICS, UNSPSC and ISO 3166 2600
Geography. It can also be extended to include any other user-defined taxonomy. 2601

E.2 Taxonomy Validation 2602

The JAXR API automatically validates all taxonomy values when a JAXR client 2603
creates an internal Classification using an internal taxonomy. This prevents the 2604
JAXR client from creating invalid classifications. 2605

E.3 Smart Queries 2606

The JAXR API enables smart queries that take advantage of the knowledge of 2607
taxonomy structures within internal classifications. This enables a JAXR client to 2608
search for an Organization classified by Asia and all sub-Concepts of Asia. This 2609
enables clients to find Organizations that are directly or indirectly classified by the 2610
Asia Concept. Client may use the getDescendantConcepts method of the 2611

Concept interface to get all the descendents of a Concept and use them in the 2612
findOrganization query. 2613

E.4 Enhanced Data Integrity and Validation 2614

The JAXR API validates all URL links submitted as part of ExternalLink objects at 2615
the time of submission. The JAXR provider must ping the URL and throw an 2616
Exception if the URL is not valid and accessible. Joint research by SalCentral 2617
and WebServicesArchitect (see 2618
http://www.webservicesarchitect.com/content/articles/clark04.asp) showed that 2619
nearly 48% of all URL links in UDDI are invalid. 2620

By validating all URLs at the time of submission, the JAXR API enhances data 2621
integrity for data submitted to UDDI and other registries. 2622

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 115

E.5 Automatic Categorization of UDDI tModels 2623

In UDDI, a tModel is an overloaded concept with several different usages. For 2624
this reason the UDDI specifications suggest that all tModels be categorized 2625
according their type of usage. The JAXR information model has a separate 2626
interface for each of the unique uses of a UDDI tModel. A JAXR provder for 2627
UDDI may automatically categorize these tModels in many cases. 2628

E.6 Simplified Programming Model 2629

There are several areas where JAXR provides a simpler programming model 2630
than compared to raw interface defined by the underlying registry. Some 2631
examples follow: 2632

E.6.1.1 Unification of find and get Methods 2633

[UDDI-API2] defines two sets of methods. One is a set of find methods and the 2634
other is a set of get methods. The find methods perform a query for Objects in 2635
UDDI and return their identifier. The client must then use get methods to 2636
separately retrieve the details of specific objects. The JAXR API is simpler and 2637
only provides the find methods. UDDI get methods are called transparently within 2638
the provider if the JAXR client attempts to access detailed information about an 2639
object. This lazy fetching of objects from UDDI enables the JAXR API to present 2640
a simplified programming model to the JAXR client programmer. 2641

E.6.1.2 Generic Handling of Object 2642

Using the Object-Oriented principle of polymorphism, the JAXR API provides 2643
several methods that allow object operations without knowing the type of the 2644
object. For example one can call QueryManager.saveObjects instead of 2645

more specific save methods in the BusinessQueryManager and in a single 2646

operation save many different types of objects. 2647

E.7 Simplified User Authentication 2648

The JAXR API allows the user to set their Credentials on the JAXR Connection 2649
and from that point on user authentication with the target registry is completely 2650
hidden from the user. In fact the JAXR API frees the client programmer from 2651
knowing which API calls requires authentication with the target registry. The 2652
JAXR provider is smart enough to know on its own that it must authenticate with 2653
a UDDI registry fo r save and delete operations but not for find and get 2654
operations. 2655

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 116

E.8 Enforce No New References to Deprecated Objects 2656

The JAXR API makes sure that no new references are allowed to be created to 2657
deprecated objects by JAXR client. This is a value-added feature for level 1 2658
registries such as the ebXML Registry. 2659

Appendix F Frequently Asked Questions 2660

Question: Why do we need a new JAXR API when we have the JNDI API? 2661

Answer: The JNDI API was designed with a very different set of requirements 2662
than JAXR. Both are abstraction APIs over existing specifications. However, the 2663
abstraction in directory services differ quite a bit from those of XML Registries 2664
used for publishing and discovery of web services. JAXR needs richer metadata 2665
capabilities for classification and association, as well as richer query capabilities. 2666

 2667

Question: Would not be better to have enhanced the JNDI API with the added 2668
functionality of JAXR? 2669

Answer: That option was considered. Meeting the additional requirements of 2670
XML Registries requires an elaborate information model. The JNDI API already 2671
has an existing information model that is constrained by design to address the 2672
requirements for directory services. Extending the JNDI API would overly 2673
constrain JAXR and would create backward compatibility issues for the JNDI 2674
API. 2675

2676
Question: Why is JAXR an abstraction API and not targeted to a specific registry 2677
such as UDDI or ebXML? 2678

Answer: An abstraction based JAXR API provides developers the ability to write 2679
registry client programs that portable across different target registries. This is 2680
consistent with the Java philosophy of “Write Once Run Anywhere (WORA)”. It 2681
also enables value-added capabilities as described in Appendix E. These 2682
capabilities are above-and-beyond the capabilities of underlying registries. For 2683
example, a non-JAXR UDDI client does not have the ability to do taxonomy 2684
browsing, and taxonomy aware smart queries, which are available to a JAXR 2685
client for UDDI. 2686

2687
Question: Why does the JAXR API not use UDDI terms and concepts? 2688

Answer: The JAXR API is not specific to UDDI or any other registry specification. 2689
It is an abstraction API that covers multiple specifications. It is designed to 2690
enable developer choice in use of a web service registry and/or repository. 2691

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 117

The JAXR API uses UDDI terms and concepts when they fit the JAXR 2692
information model (e.g. Service, ServiceBinding, and method names in 2693
BusinessQueryManager and BusinessLifeCycleManager)2694

2695
Question: Why did the JAXR information model use the ebXML Registry 2696
Information Model as its basis rather than the UDDI data structures? 2697

Answer: The JAXR API is designed to support multiple registries. The ebXML 2698
Registry Information Model is more generic and extensible than the UDDI data 2699
structures. Because of this characteristic, it was possible to extend the ebXML 2700
Registry Information Model to satisfy the needs of UDDI and other registries.2701

2702
Question: Why was the JAXR information model not designed from the ground 2703
up? 2704

Answer: Information models take time to develop. It was easier to study an 2705
existing information model and improve upon it. 2706

2707

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 118

11 References 2707

[JAXRF] JAXR developer forum: http://groups.yahoo.com/group/jaxr -discussion 2708

[ISO] ISO 11179 Information Model 2709

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621002710
5419d7/b83fc7816a6064c68525690e0065f913?OpenDocument 2711

[ebXML-RSS] ebXML Registry Services Specification 2712

http://www.ebxml.org/project_teams/registry/private/registryServicesSpecificationv1.0.pdf 2713

[ebXML-RIM] ebXML Registry Information Model 2714

 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv1.0.pdf 2715

[UDDI-DS] UDDI Version 1.0 Data Structure Specification 2716

http://www.uddi.org/pubs/DataStructure-V1.pdf 2717

 [UDDI-DS2] UDDI Version 2.0 Data Structure Reference 2718

http://www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf 2719

[UDDI-API] UDDI Version 1.0 Programmers API 2720

http://www.uddi.org/pubs/ProgrammersAPI-V1-1.pdf 2721

[UDDI-API2] UDDI Version 2.0 API Specification 2722

http://www.uddi.org/pubs/ProgrammersAPI-V2.00-Open-20010608.pdf 2723

 [SQL] Structured Query Language (FIPS PUB 127-2) 2724

http://www.itl.nist.gov/fipspubs/fip127-2.htm 2725
[SQL/PSM] Database Language SQL — Part 4: Persistent Sto red Modules 2726
 (SQL/PSM) [ISO/IEC 9075-4:1996] 2727
 2728
IANA] IANA (Internet Assigned Numbers Authority). 2729

Official Names for Character Sets, ed. Keld Simonsen et al. 2730
 ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets 2731

 2732
[REC-XML] W3C Recommendation. Extensible Markup language 2733
(XML)1.0(Second Edition) 2734

http://www.w3.org/TR/REC-xml 2735
[UUID] DCE 128 bit Universal Unique Identifier 2736

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20 2737

http://www.opengroup.org/publications/catalog/c706.htm 2738

[Futures1] Mohr, E.; Kranz, D; Halstead, R.: Lazy Task Creation: A Technique 2739

JavaTM API for XML Registries April 10, 2002

Sun Microsystems Page 119

for Increasing the Granularity of Parallel Programs. IEEE 2740

Transactions on Parallel and Distributed Systems, 1990. 2741

 http://www4.informatik.uni-erlangen.de/~tsthiel/Papers/alewife-lazy-task-creation.ps.gz 2742

[Futures2] http://www.cs.wisc.edu/~fischer/cs538.s01/multilisp.pdf 2743

 2744

