1.1 Interacting with Services Model

Interaction is the use of a service to access capability in order to achieve a particular desired real world effect, where real world effect is the actual result of using a service.  An interaction can be characterized by a sequence of actions.  Consequently, interacting with a service involves performing actions against the service, usually through a series of information exchanges (e.g., messages), although other modes of interaction are possible such as modifying the shared state of a resource.  Note that a participant (or agent acting on behalf of the participant) can be the sender of a message, the receiver of a message, or both.

For purposes of this SOA Reference Architecture, the authors have committed to the use of message exchange between service participants to denote actions against the services that cause a real world effect, and to denote events that report on real world effects that arise from those actions.

[image: image1.png]Receiverfhessage| Sender

Denotes | Denotes

[Action] [Event|

Causes Reports.

[Real World Effect|





Figure Error! No text of specified style in document.‑1 A ''message'' denotes either an action or an event.

A Message denotes either an action or an event.  In other words, both actions and events are realized through messages.  The OASIS Reference Model states that the Action Model characterizes the “permissible set of actions that may be invoked against a service.”  We extend that notion here to include events as part of the action model and that messages denote either actions or events.  
1.1.1 Actions and Events 

An action may have preconditions where a precondition is something that needs to be in place before an action can occur, e.g. confirmation of a precursor action.  Whether preconditions are satisfied is evaluated when someone tries to perform the action and not before. Presence for an action means someone can initiate it and is independent of whether the preconditions are satisfied.  However, the successful completion of the action may depend on whether its preconditions were satisfied.
SAY A FEW WORDS ABOUT EVENTS - FRANK

1.1.2 Message Exchange

Message exchange is the means by which service participants (or their agents) interact with each other. There are two primary modes of interaction: joint actions that cause real world effects, and notification of events that report real world effects. 

A message exchange is used to affect an action when the messages contain the appropriately formatted content that should be interpreted as joint action and the agents involved interpret the message appropriately.
A message exchange is also used to communicate event notifications.  An event is a report of an occurrence that is of interest to some participant; in our case when some real world effect has occurred. Just as action messages will have formatting requirements, so will event notification messages.  In this way, the Information Model of a service must specify the syntax (structure), and semantics (meaning) of the action messages and event notification messages as part of a service interface.  It must also specify the syntax and semantics of any data that is carried as part of a payload of the action or event notification message.  The Information Model is described in greater detail in the Service Description Model (see Section Error! Reference source not found.). 

In addition to the Information Model that describes the syntax and semantics of the messages and data payloads, exception conditions and error handling in the event of faults (e.g., network outages, improper message formats, etc.) must be specified or referenced as part of the Service Description.

When a message is interpreted as an action, the correct interpretation typically requires the receiver to perform a set of operations.  These operations represent the sequence of actions (often private) a service must perform in order to validly participate in a given joint action. 

Similarly, the correct consequence of realizing a real world effect may be to initiate the reporting of that real world effect via an event notification.

Message Exchange

The means by which joint actions and event notifications are coordinated by service participants (or agents).

Operations

The sequence of actions a service must perform in order to validly participate in a given joint action.

1.1.2.1 Message Exchange Patterns (MEPs)

As stated earlier, this Reference Architecture commits to the use of message exchange to denote actions against the services, and to denote events that report on real world effects that arise from those actions.

Based on these assumptions, the basic temporal aspect of service interaction can be characterized by two fundamental message exchange patterns (MEPs):

· Request/response to represent how actions cause a real world effect

· Event notification
 to represent how events report a real world effect

This is by no means a complete list of all possible MEPs used for inter- or intra-enterprise messaging but it does represent those that are most commonly used in exchange of information and reporting changes in state both within organizations and across organizational boundaries, a hallmark of a SOA.

Recall from the OASIS Reference Model that the Process Model characterizes “the temporal relationships between and temporal properties of actions and events associated with interacting with the service.”  Thus, MEPs are a key element of the Process Model.  The meta-level aspects of the Process Model (just as with the Action Model) are provided as part of the Service Description Model (see Section Error! Reference source not found.).

[image: image2.png]‘5d 508 MEPS)

<<compaert>> <<mediator <<comparert>>
+ Consumer  Event  Service
agent Broker
T T
|
T
|
senrenestitsa) I
recpiests T
respanse | processt
WEP] i Feauestiiss)
| erform
Joperations.
| f—
[ ks D

fevert
natiication
WEP]

resisternterest

senel(notiiationttsg)

rosess(

atiicationttsg)

forivent]

(Change in sharect
stote





Figure Error! No text of specified style in document.‑2 Fundamental SOA message exchange patterns (MEPs)

In the UML sequence diagram shown in Figure Error! No text of specified style in document.‑2 it is assumed that the service participants (consumer and provider) have delegated message handling to hardware or software agents acting on their behalf.  In the case of the service consumer, this is represented by the Consumer Agent component.  In the case of the service provider, the agent is represented by the Service component.  The message interchange model illustrated represents a logical view of the MEPs and not a physical view.  In other words, specific hosts, network protocols, and underlying messaging system are not shown as these tend to be implementation specific.  Although such implementation-specific elements are considered outside the scope of this Reference Architecture, they are important considerations in modeling the SOA execution context. Recall from the Reference Model that the execution context of a service interaction is “the set of infrastructure elements, process entities, policy assertions and agreements that are identified as part of an instantiated service interaction, and thus forms a path between those with needs and those with capabilities.”

1.1.2.2 Request/Response MEP

In a request/response MEP, the Consumer Agent component sends a request message to the Service component.  The Service component then processes the request message.  Based on the content of the message, the Service component performs the service operations.  Following the completion of these operations, a response message is returned to the Consumer Agent component. The response could be that a step in a process is complete, the initiation of a follow-on operation, or the return of requested information.


Although the sequence diagram shows a synchronous interaction (because the sender of the request message, i.e., Consumer Agent, is blocked from continued processing until a response is returned from the Service) other variations of request/response are valid, including asynchronous (non-blocking) interaction through use of queues, channels, or other messaging techniques.  
What is important to convey here is that the request/response MEP represents action, which causes a real world effect, irrespective of the underlying messaging techniques and messaging infrastructure used to implement the request/response MEP.

1.1.2.3 Event Notification MEP

An event is realized by means of an event notification message exchange that reports a real world effect; specifically, a change in shared state between service participants. The basic event notification MEP takes the form of a one-way message sent by a notifier agent (in this case, the Service component) and received by agents with an interest in the event (here, the Consumer Agent component). 
Often the sending agent may not be fully aware of all the agents that will receive the notification; particularly in so-called publish/subscribe (“pub/sub”) situations.  In event notification message exchanges, it is rare to have a tightly-coupled link between the sending and the receiving agent(s) for a number of practical reasons.  One of the most common is the potential for network outages or communication interrupts that can result in loss of notification of events.  Therefore, a third-party agent is usually used that serves as an intermediary that may have the ability to store event notification messages and serves to decouple the sending and received agents.  
Although this is typically an implementation issue, because this type of third-party decoupling is so common in event-driven systems, we felt that for this Reference Architecture, it was warranted for use in modeling this type of message exchange.  This third-party intermediary is shown in Error! Reference source not found. as an Event Broker mediator.  As with the request/response MEP, no distinction is made between synchronous versus asynchronous communication, although asynchronous message exchange is illustrated in Error! Reference source not found.
1.1.3 Composition of Services

Composition of services is the act of aggregating or “composing” a single service from one or more other services.  Before we provide an architectural model of service composition, it is important that we distinguish two fundamentally different types of services, atomic services and composite services.

Atomic Service

A service visible to a service consumer (or agent) via a single interface and described via a single service description that does not use or interact with other services.

Composite Service

A service visible to a service consumer (or agent) via a single interface and described via a single service description that is the aggregation or composition of one or more other services.  These other services can be atomic services, other composite services, or a combination of both.

From the consumer’s point of view, the distinction is, of course, mostly irrelevant.  The consumer still interacts with a composite service via a single interface and utilizes the meta-level information about the composite service provided by a single Service Description.  Nevertheless, there are important dependencies that need to be considered in services that utilize other services such as propagation of policy constraints, security profiles, etc.

A simple model of service composition is illustrated in Figure Error! No text of specified style in document.‑3.

[image: image3.png]IServiceA 1ServiceC
«composie: salomic
conmma| T e s d
o
oric
Service B a





Figure Error! No text of specified style in document.‑3 Simple model of service composition ("public” composition).

Here, Service A is a composite service that has an exposed interface IServiceA that is available to the Consumer Agent component and relies on two other service components in its implementation.  The Consumer Agent does not know that atomic Services B and C are used by Service A, or whether they are used in serial or parallel, or if their operations succeed or fail.  The Consumer Agent only cares about the success or failure of Service A.  The exposed interfaces of Services B and C (IService B and IServiceC) are not necessarily hidden from the Consumer Agent; only the fact that these services are used as part of the composition of Service A.  In this example, there is no practical reason the Consumer Agent could not interact with Service B or Service C in some other interaction scenario.

It is possible for a service composition to be opaque from one perspective and transparent from another. For example, a service may appear to be a single service from the Consumer Agent’s perspective, but is transparently composed of one or more services from a service management perspective. A Service Management Service needs to be able to have visibility into the composition in order to properly manage the dependencies between the services used in constructing the composite service—including managing the service’s lifecycle.  
The subject of services as management entities is described and modeled in the Owning Service Oriented Architectures View of this Reference Architecture and will not be further elaborated here.  The point to be made here is that there can be different levels of opaqueness or transparency when it comes to visibility of service composition.
Services can be composed in variety of ways including direct service-to-service interaction by using programming techniques, or they can be aggregated by means of a scripting approach that leverages a service composition scripting language.  Such scripting approaches are further elaborated in the following sub-sections on service-oriented business processes and collaborations.
1.1.3.1 Service-Oriented Business Processes

The concepts of business processes and collaborations in the context of transactions and exchanges across organizational boundaries are described and modeled as part of the Business via Services View of this Reference Architecture (see Section Error! Reference source not found.).  Here, we focus on the belief that the principle of composition of services can be applied to business processes and collaborations.  Of course, business processes and collaborations traditionally represent complex, multi-step business functions that may involve multiple participants, including internal users, external customers, and trading partners.  Therefore, such complexities cannot simply be ignored when transforming traditional business processes and collaborations to their service-oriented variants.

Business processes are comprised of a set of coherent activities that, when performed in a logical sequence over a period of time and with appropriate rules applied, result in a certain business outcome. Service orientation as applied to business processes (i.e., “service-oriented business processes”) means that the aggregation or composition of all of the abstracted activities, flows, and rules that govern a business process can themselves be abstracted as a service [BLOOMBERG/SCHMELZER].

When business processes are abstracted in this manner and accessed through SOA services, all of the concepts used to describe and model composition of services that were articulated in Section 1.1.3 apply. There are some important differences from a composite service that represents an abstraction of a business process from a composite service that represents a single-step business interaction.  As stated earlier, business processes have temporal properties and can range from short-lived processes that execute on the order of minutes or hours to long-lived processes that can execute for weeks, months, or even years.  Further, these processes may involve many participants.  These are important considerations for the consumer of a service-oriented business process and these temporal properties must be articulated as part of the meta-level aspects of the service-oriented business process in its Service Description, along with the meta-level aspects of any sub-processes that may be of use or need to be visible to the Service Consumer.

In addition, a workflow activity represents a unit of work that some entity acting in a described role (i.e., role player) is asked to perform.  Activities can be broken down into steps with each step representing a task for the role player to perform.  Based on our earlier assertion that messages denote joint action between service participants, we could model these tasks as actions, i.e., message exchanges, which would imply that activities can be modeled as a collection of action-oriented message exchanges.  Of course, within a business process, the role player performing a task or sub-task of a particular activity in an overall process flow may actually be a human entity and not a software or hardware agent.


A technique that is used to compose service-oriented business processes that are hierarchical (top-down) and self-contained in nature is known as orchestration.
Orchestration

A technique used to compose hierarchical and self-contained service-oriented business processes that are executed and coordinated by a single agent acting in a “conductor” role.
An orchestration is typically implemented using a scripting approach to compose service-oriented business processes.  This typically involves use of a standards-based orchestration scripting language.  An example of such a language is the Web Services Business Process Execution Language (WS-BPEL) [WS-BPEL].  In terms of automation, an orchestration can be mechanized using a business process orchestration engine, which is a hardware or software component (agent) responsible for acting in the role of central conductor/coordinator responsible for executing the flows that comprise the orchestration.

A simple generic example of such an orchestration is illustrated in Figure Error! No text of specified style in document.‑4.

[image: image4.png]Consumer€]
‘Agent

IServicen

e

Simple Service-Oriented

Business Process (Service A)

wregquests
Task 1

nput daia

output data

business ule:
satified]

{business e
ot satsfd]

IServiceB

—o—|

atomior
Servico B





Figure Error! No text of specified style in document.‑4 Abstract example of orchestration of service-oriented business process.

Here, we use a UML activity diagram to model the simple service-oriented business process as it allows us to capture the major elements of business processes such as the set of related tasks to be performed, linking between tasks in a logical flow, data that is passed between tasks, and any relevant business rules that govern the transitions between tasks.  A task is a unit of work that an individual, system, or organization performs and can be accomplished in one or more steps or subtasks.  While subtasks can be readily modeled, they are not illustrated in the orchestration model depicted in Figure Error! No text of specified style in document.‑4.

This particular example is based on a request/response MEP and captures how one particular task (Task 2) actually utilizes an externally-provided service, Service B.  The entire service-oriented business process is exposed as Service A that is accessible via its externally visible interface, IServiceA.

Although not explicitly shown in the orchestration model above, it is assumed that there exists a software or hardware component, i.e., orchestration engine that executes the process flow.  Recall that a central concept to orchestration is that process flow is coordinated and executed by a single conductor agent; hence the name “orchestration.”

1.1.3.2 Service-Oriented Business Collaborations

Turning our attention to business collaborations we note that business collaborations typically represent the interaction involved in executing business transactions, where a business transaction is defined in the Business via Services View as “a joint action engaged in by two or more participants in which resources are exchanged” (see Section Error! Reference source not found.).

It is important to note that business collaborations represent “peer”-style interactions; in other words, peers in a business collaboration act as equals.  This means that unlike the orchestration of business processes, there is no single or central entity that coordinates or “conducts” a business collaboration.  These peer styles of interactions typically occur between trading partners that span organizational boundaries.
Similar to service-enablement of business processes, business collaborations can also be service-enabled.  For purposes of this Reference Architecture, we refer to these types of business collaborations as “service-oriented business collaborations.”  Of course, unlike service-oriented business processes, the concept of service-oriented business collaborations does not necessarily imply exposing the entire peer-style business collaboration as a service itself but rather the collaboration uses service-based interchanges.

The technique that is used to compose service-oriented business collaborations in which multiple parties collaborate in a peer-style as part of some larger business transaction by exchanging messages with trading partners and external organizations (e.g., suppliers) is known as choreography [NEWCOMER/LOMOW].

Choreography

A technique used to characterize and to compose service-oriented business collaborations based on ordered message exchanges between peer entities in order to achieve a common business goal.

Choreography differs from orchestration primarily in that each party in a business collaboration describes its part in the service interaction in terms of public message exchanges that occur between the multiple parties as standard atomic or composite services, rather than as specific service-oriented business processes that a single conductor/coordinator (e.g., orchestration engine) executes.  Note that choreography as we have defined it here should not be confused with the term process choreography, which is defined in the Business via Services View as “the description of the possible interactions that may take place between two or more participants to fulfill an objective.”  This is an example of domain-specific nomenclature that often leads to confusion and why we are making note of it here.

As is the case of an orchestration, a choreography is typically implemented by using a scripting approach to composing service-oriented business collaborations.  This typically involves use of a standards-based choreography scripting language.  An example of such a language is the Web Services Choreography Description Language [WS-CDL].

A simple generic example of a choreography is illustrated in Figure Error! No text of specified style in document.‑5.

[image: image5.png]Organization X

‘Agreed upon business.
protocals (choreographies)

Organization Y

‘Simple Service-Oriented Eal
Business Procss (Service A)

Simple Internal
Business Process

Consumer]
Agent

Loput data [business rule
o saisfid]
[business rule
st
N
| |
! i
i
| |
output data | !
i
| |
aresponsen ! I

Taskz

Task 3





Figure Error! No text of specified style in document.‑5 Abstract example of choreography of service-oriented business collaboration.

This example, which is a variant of the orchestration example illustrated earlier in Figure Error! No text of specified style in document.‑4, adds trust boundaries between two organizations; namely, Organization X and Organization Y.  It is assumed that these two organizations are peer entities that have an interest in a business collaboration, for example, Organization X and Organization Y could be trading partners.  Organization X retains the service-oriented business process Service A, which is exposed to internal consumers via its provided service interface, IServiceA.   Organization Y also has a business process that is involved in the business collaboration; however, for this example, it is an internal business process that is not exposed to potential consumers either within or outside its organizational boundary.

The scripting language that is used for the choreography needs to define how and when to pass control from one trading partner to another, i.e., Organization X and Organization Y.  Defining the business protocols used in the business collaboration involves precisely specifying the visible message exchange behavior of each of the parties involved in the protocol, without revealing internal implementation details [NEWCOMER/LOMOW].  

If,a peer-style business collaboration in which visibility into and use of each participating organization’s internal service-oriented business processes was necessary as part of an end-to-end business transaction, then it would be desirable to select a choreography scripting language that would support interaction between different orchestration engines that spans organizational boundaries.  WS-CDL is an example of such a language.





































� The notion of “joint” in joint action implies that you have to have a speaker and a listener in order to interact.


� There are cases when a response is not always desired and this would be an example of a “one-way” MEP.  Similarly, while not shown here, there are cases when some type of “callback” MEP is required in which the consumer agent is actually exposed as a service itself and is able to process incoming messages from another service.  





� The term composition as used herein does not embrace the semantics of a UML composition binary relationship. Here we are referring to the relationship between services.


� From a historical perspective, a type of business collaboration that became very popular during the mid- to late-1990s was referred to as “business-to-business (B2B)”—a marketing term,  B2B pundits sought to leverage the Internet as a ubiquitous standard for net-centric communication much the same as the business-to-consumer (B2C) model was taking off for electronic commerce.  B2B collaborations between enterprises and their trading partners existed long before the adoption of the Internet as a standard for network communication.  The most prevalent of these early business  collaboration models was known as electronic data interchange (EDI), which utilized private, value-added networks (VANs) for network communication.  Early EDI standards were managed under the auspices of the United Nations/Electronic Data Interchange For Administration, Commerce, and Transport (UN/EDIFACT).  Later, other B2B standards began to emerge which sought to leverage Internet-based protocols for network communication as well as ubiquitous data standards for interchange such as XML,  This included organizations like RosettaNet, an industry consortium from the electronics and telecommunications industry and OASIS in collaboration with the United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT), which manages the development and maintenance of the electronic business XML (ebXML) suite of standards.








�Action to Ken to update SD model.  (Issue #209)


�Frank, you inserted some good words about actions so I’d like to see if you could do the same for events.   Note that I request to change the sub-heading from the former Action Model to Actions and Events the latter of which I feel is more accurate for this write-up.


�Frank, I strongly recommend that we change event notification to pub/sub because while being only on type of event notification MEP it is one of the leading ones in a similar manner as request/response is to action messages; specifically, one of the “modes” of interaction we characterized earlier in the model known as “joint actions”.  We also stated earlier that the other “mode” of interaction was “event notifications”.  Right now, we have an ‘apples and oranges’ situation in our MEPs.  If accepted, then I will have to update sub-section 4.3.2.3 accordingly.





