5.4. SOA Testing

"Program testing can be used to show the presence of bugs, but never to show their absence!" -- Edsger Dijkstra
Testing for SOA combines the typical challenges of software testing and certification with the additional needs of accommodating the distributed nature of the resources, the greater access of a more unbounded consumer population, and the desired flexibility to create new solutions from existing components over which the solution developer has little if any control. The purpose of testing is to demonstrate a required level of reliability, correctness, and effectiveness that enable prospective consumers to have adequate confidence in using a service. Adequacy is defined by the consumer based on the consumer's needs and context of use. As the Dijkstra quote points out, absolute correctness and completeness cannot be proven by testing; however, for SOA, it is critical for the prospective consumer to know what testing has been performed, how it has been performed, and what were the results.

5.4.1 Traditional Software Testing as Basis for SOA Testing

SOA services are largely software artifacts and can leverage the body of experience that has evolved around software testing. IEEE-829
 specifies the basic set of software test documents while allowing flexibility for tailored use. As such, the document structure can also provide guidance to SOA testing.

The structure of the IEEE-829 document tree consists of the following:

· Test plan documenting the scope (what will be tested, both which entity and what features of the entity), the approach (how it will be tested), and the needed resources (who will do the testing, for how long), with details contained in the:

· Test design specification: features to be tested, test conditions (e.g. test cases, test procedures needed) and expected results (criteria for passing test); entrance and exit criteria

· Test case specification: test data used for input and expected output

· Test procedure specification: steps required to run the test, including any set-up preconditions

· Test item transmittal to identify the test items being transmitted for testing

· Test log to record what occurred during test, i.e. which tests run, who ran, what order, what happened

· Test incident report to capture any event that happened during test which requires further investigation

· Test summary as a management report summarizing test run and results, conclusions

In summary, IEEE-829 captures (1) what was tested, (2) how it was tested, e.g. the test procedure used, and (3) the results of the test.

5.4.1.1 Types of Testing

There are numerous aspects of testing that, in total, work to establish that an entity is (1) built as required per policies and related specifications prescribed by the entity's owner, and (2) delivers the functionality required by its intended users. This is often referred to as verification and validation.

Policies, as described is section 4.4, that are related to testing may prescribe but are not limited to the business processes to be followed, the standards with which an implementation must comply, and the qualifications of and restrictions on the users. In addition to the functional requirements prescribing what an entity does, there may also be performance and/or quality metrics that state how well the entity does it. The relation of these policies to SOA testing is discussed further below.

The identification of policies is the purview of governance (section 5.1) and the assuring of compliance (include response to noncompliance) with policies is a matter for management (section 5.3).

5.4.1.2 Range of Test Conditions

Test conditions and expected responses are detailed in the test case specification. The test conditions should be designed to cover the areas for which the entity's response must be documented and may include:

· nominal conditions

· boundaries and extremes of expected conditions

· breaking point where the entity has degraded below a certain level or has otherwise ceased effective functioning

· random conditions to investigate unidentified dependencies among combinations of conditions

· errors conditions to test error handling

The specification of how each of these conditions should be tested for SOA resources, including the infrastructure elements of the SOA ecosystem, is beyond the scope of this Reference Architecture but is an area that will evolve along with operational SOA experience.

5.4.1.3 Configuration Management of Test Artifacts

The test item transmittal provides an unambiguous identification of the entity being tested, thus REQUIRING that the configuration of the entity is appropriately tracked and documented. In addition, the test documents (such as those specified by IEEE-829) MUST also be under a documented and appropriately audited configuration management process. The description of each artifact would follow the general description model as discussed in section 4.1.1.1; in particular, it would include a version number for the artifact and reference to the documentation describing the versioning scheme from which the version number is derived.
[Editor's note: to what extent should CM be explicitly included in the Management section?]
5.4.2 Testing and the SOA Ecosystem

[Editor’s note: The emphasis though much of the RA is the larger ecosystem but we need words in section 3 to acknowledge the existence of the enterprise and that an enterprise (as commonly interpreted) is likely more constrained and more precisely described for the context of the enterprise. The ecosystem perspective, though, is still applicable for the following reasons:

1. A given enterprise may comprise numerous constituent enterprises that resemble the independent entities described for the ecosystem. An enterprise may attempt to reduce variations among the constituents but the ecosystem view enables SOA to benefit the enterprise without requiring the enterprise issues to be fully resolved.

2. Resources specifically motivated by the context of the enterprise can be more readily used in a different context if ecosystem considerations are included at an early stage. The change in a context may be a fundamental change in the enterprise or the newly discovered applicability of enterprise resources to use outside the enterprise.
In this Reference Architecture, reference to the SOA ecosystem applies but with possibly less generality to an enterprise use of SOA.]
Testing of SOA artifacts for use in the SOA ecosystem differs from traditional software testing for several reasons. First, a highly touted benefit of SOA is to enable unanticipated consumers to make use of services for unanticipated purposes. Examples of this could include the consumer using a service for a result that was not considered the primary one by the provider, or the service may be used in a scenario that is different from the one considered when designing for the initial target consumer community. It is unlikely that a new consumer will push the services back to anything resembling the initial test phase to test the new use, and thus additional paradigms for testing are necessary. Some testing may depend on the availability of test resources made available as a service outside the initial test community, while some testing is likely to be done as part of limited use in the operational setting. The potential responsibilities related to such "consumer testing" is discussed further below.

Secondly, in addition to consumers who interact with a service to realize the described real world effects, the developer community is also intended to be a consumer. In the SOA vision of reuse, the developer will compose new solutions using existing services, where the existing services provides access to some desired real world effects that are needed by the new solution. The developer is a consumer of the existing services, enabling repeated interactions with the existing services playing the role of reusable components. Note, those components are used at the locations where they individually reside and are not typically duplicated for the new solution. The new solution may itself be offered as a SOA service, and a consumer of the service composition representing the new solution may be totally unaware of the component services being used. (See section 4.3.4 for further discussion on service compositions.)

Another difference from traditional testing is that the distributed, unbounded nature of the SOA ecosystem makes it unlikely to have an isolated test environment that duplicates the operational environment. A traditional testing approach often makes use of a test system that is identical to the eventual operational system but isolated for testing. After testing is successfully completed, the tested entity would be migrated to the operational environment, or the test environment may be delivered as part of the system to become operational. This is not feasible for the SOA ecosystem as a whole.

SOA services must be testable in the environment and under the conditions that can be encountered in the operational SOA ecosystem. As the ecosystem is in a state of constant change, so some level of testing is continuous through the lifetime of the service, leveraging utility services used by the ecosystem infrastructure to monitor its own health and respond to situations that could lead to degraded performance. This implies the test resources must incorporate aspects of the SOA paradigm, and a category of services may be created to specifically support and enable effective monitoring and continuous testing for resources participating in the SOA ecosystem.
While SOA within an enterprise may represent a more constrained and predictable operational environment, the composability and unanticipated use aspects are highly touted within the enterprise. The expanded perspective on testing may not be as demanding within an enterprise but fuller consideration of the ecosystem enables the enterprise to be more responsive should conditions change.
5.4.3 Elements of SOA Testing

IEEE-829 identifies fundamental aspects of testing, and many of these should carry over to SOA testing: in particular, the identification of what is to be tested, how it is to be tested, and by whom the testing is to be done. While IEEE-829 identifies a suggested document tree, the availability of these documents in the SOA ecosystem is an additional matter of concern that will be discussed below.

5.4.3.1 What is to be Tested

The focus of this discussion is the SOA service. It is recognized that the infrastructure components of any SOA environment are likely to also be SOA services and, as such, will fall under the same testing guidance. Other resources that contribute to an SOA environment may not be SOA services, but will be expected to satisfy the intent if not the letter of guidance presented here. Specific differences for such resources are as yet largely undefined and further elaboration is beyond the scope of this Reference Architecture.

The SOA service to be tested MUST be unambiguously identified as specified by its applicable configuration management scheme. Specifying such a scheme is beyond the scope of this Reference Architecture other than to say the scheme should be documented and itself under configuration management.

5.4.3.1.1 Origin of Test Requirements

In the Service Description model (Figure 21), the aspects of a service that need to be described are:

· the service functionality and technical assumptions that underlie the functionality;

· the policies that describe conditions of use;

· the service interface that defines information exchange with the service;

· service reachability that identifies how and where message exchange is to occur; and
· metrics access for any participant to have information on how a service is performing.

Service testing must provide adequate assurance that each of these aspects is operational as defined.

The information in the service description comes from different sources. The functionality is defined through whatever process identifies needs and the community for which these needs will be addressed. The process may be ad hoc as serves the prospective service owner or strictly governed, but defining the functionality is an essential first step in development. it is also an early and ongoing focus of testing to ensure the service accurately reflects the described functionality and the described functionality accurately addresses the consumer needs.

Policies define the conditions of development and conditions of use for a service and are typically specified as part of the governance process. Policies constraining service development, such as coding standards and best practices, require appropriate testing and auditing during development to ensure compliance. While the governance process will identify development policies, these are likely to originate from the technical community responsible for development activities. Policies that define conditions of use often define business practices that service owners and providers or those responsible for the SOA infrastructure want followed. These policies are initially tested during service development and are continuously monitored during the operational lifetime of the service.

The testing of the service interface and service reachability are often related but essentially reflect different motivations and needs. The service interface is specified as a joint product of the service owners and providers who define service functionality, the prospective consumer community, the service developer, and the governance process. The semantics of the information model must align with the semantics of those who consume the service in order for there to be meaningful exchange of information. The structure of the information is influenced by the consumer semantics and the requirements and constraints of the representation as interpreted by the service developer. The service process model that defines actions which can be performed against a service and any temporal dependencies derive from the defined functionality and may be influenced by the development process. Any of these constraints may be identified and expressed as policy through the governance process.

Service reachability conditions are the purview of the service provider who identifies the service endpoint and the protocols recognized at the endpoint. These may be constrained by governance decisions on how endpoint addresses may be allocated and what protocols should be used.

While the considerations for defining the service interface derive from several sources, testing of the service interface is more straightforward and isolated in the testing process. At any point where the interface is modified or exposes a new resource, the message exchange should be monitored both to ensure the message reaches its intended destination and it is parsed correctly once received. Once an interface has been shown to function properly, it is unlikely it will fail later unless something fundamental to the service changes.

The service interface is also tested when the service endpoint changes. Testing of the endpoint ensures message exchange can occur at the time of testing and the initial testing shows the interface is working properly. Functioning of a service endpoint at one time does not guarantee it is functioning at another time, e.g. the server with the endpoint address may be down, making testing of service reachability a continual monitoring function through the life of the service’s use of the endpoint.

Finally, governance is impossible without the collection of metrics against which service behavior can assessed. Metrics are also a key indicator for consumers to decide if a service is adequate for their needs. For instance, the average response time or the recent availability can be determining factors even if there are no rules or regulations promulgated through the governance process against which these metrics are assessed. The available metrics are a combination of those expected by the consumer community and those mandated through the governance process. The total set of metrics will evolve over time with SOA experience. Testing of the services that gather and provide access to the metrics will follow testing as described in this section, but for an individual service, testing will ensure that the metrics access indicated in the service description is accurate.

5.4.3.1.2 Testing Content and the Interests of Consumers

As noted in section 5.4.1.1, testing may involve verification of conformance with respect to policies and technical specifications and validation with respect to sufficiency of functionality to meet some prescribed use. It may also include demonstration of performance and quality aspects. For some of these items, such as demonstrating the business processes followed in developing the service or the use of standards in implementing the service, the testing or relevant auditing is done internal to the service development process, and follows traditional software testing and quality assurance. If it is believed of value to potential consumers, information about such testing could be included in the service description. However, it is not required that all test or compliance artifacts be available to consumers, as many of the details tested may be part of the opacity of the service implementation.
Some aspects of the service being tested will reflect directly on the real world effects realized through interaction with the service. In these cases, it is more likely that testing results will be directly relevant to potential consumers. For example, if the service was designed to correspond to certain elements of a business process or that a certain workflow is followed, testing should verify that the real world effects reflect that the business process or workflow were satisfactorily captured.

The testing may also need to demonstrate that specified conditions of use are satisfied. For example, policies may be asserted that require certain qualifications of or impose restrictions on the consumers who may interact with the service. The service testing must demonstrate that the service independently enforces the policies or it provides the required information exchanges with the SOA ecosystem so other resources can ensure the specified conditions.

The completeness of the testing, both in terms of the features tested and the range of parameters for which response is tested, depends on the context of expected use: the more critical the use, the more complete the testing. There are always limits on the resources available for testing, if nothing else than the service must be available for use in a finite amount of time.

This again emphasizes the need for adequate documentation to be available. If the original testing is very thorough, it may be adequate for less demanding uses in the future. If the original testing was more constrained, then well-documented test results establish the foundation on which further testing can be defined and executed.

5.4.3.2 How Testing is to be Done

Testing should follow well-defined methodologies and, if possible, should reuse test artifacts that have proven generally useful for past testing. For example, IEEE-829 notes that test cases are separated from test designs to allow for use in more than one design and to allow for reuse in other situations. In the SOA ecosystem, description of such artifacts, as with description of a service, enables awareness of the item and describes how the artifact may be accessed or used.

As with traditional testing, the specific test procedures and test case inputs are important so the tests are unambiguously defined and entities can be retested in the future. Automated testing and regression testing may be more important in the SOA ecosystem in order to re-verify a service is still acceptable when incorporated in a new use. For example, if a new use requires the services to deal with input parameters outside the range of initial testing, the tests could be rerun with the new parameters. If the testing resources are available to consumers within the SOA ecosystem, the testing as designed by test professionals could be consumed through a service accessed by consumers, and their results could augment those already in place. This is discussed further in the next section.

5.4.3.3 Who Performs the Testing

As with any software, the first line of testing is unit testing done by software developers. It is likely that initial testing will be done by those developing the software but may also be done independently by other developers. For SOA development, unit testing is likely confined to a development sandbox isolated from the SOA ecosystem.

SOA testing will differ from traditional software testing in that testing beyond the development sandbox must incorporate aspects of the SOA ecosystem, and those doing the testing must be familiar with both the characteristics and responses of the ecosystem and the tools, especially those available as services, to facilitate and standardize testing. Test professionals will know what level of assurance must be established as the exposure of the service to the ecosystem and ecosystem to the service increases towards operational status. These test professionals may be internal resources to an organization or may evolve as a separate discipline provided through external contracting.

As noted above, it is unlikely that a complete duplicate of the SOA ecosystem will be available for isolated testing, and thus use of ecosystem resources will manifest as a transition process rather than a step change from a test environment to an operational one. This is especially true for new composite services that incorporate existing operational services to achieve the new functionality. The test professionals will need to understand the available resources and the ramifications of this transition.

As with current software development, a stage beyond work by test professionals will make use of a select group of typical users, commonly referred to as beta testers, to report on service response during typical intended use. This establishes fitness by the consumers, providing final validation of previously verified processes, requirements, and final implementation.

In traditional software development, beta testing is the end of testing for a given version of the software. However, although the initial test phase can establish an appropriate level of confidence consistent with the designed use for the initial target consumer community, the operational service will exist in an evolving ecosystem, and later conditions of use may differ from those thought to be sufficient during the initial testing. Thus, operational monitoring becomes an extension of testing through the service lifetime. This continuous testing will attempt to ensure that a service does not consume an inordinate amount of ecosystem resources or display other behavior that degrades the ecosystem, but it will not undercover functional errors that may surface over time.

As with any software, it is the responsibility of the consumers to consider the reasonableness of solutions in order to spot errors in either the software or the way the software is being used. This is especially important for consumers with unanticipated uses that may go beyond the original test conditions. It is unlikely the consumers will initiate a new round of formal testing unless the new use requires a significantly higher level of confidence in the service. Rather the consumer becomes a new extension to the testing regiment. Obvious testing would include a sanity check of results during the new use. However, if the details of legacy testing are associated with the service through the service description and if testing resources are available through automated testing services, then the new consumers can rerun and extend previous testing to include the extended test conditions. If the test results are acceptable, these can be added to the documentation of previous results and become the extended basis for future decisions by prospective consumers on the appropriateness of the service. If the results are not acceptable or in some way questionable, the responsible party for the service or testing professionals can be brought in to decide if remedial action is necessary.

5.4.3.4 How Testing Results are Reported

For any SOA service, an accurate reporting of the testing a service has undergone and the results of the testing is vital to consumers deciding whether a service is appropriate for intended use. Appropriateness may be defined by a consumer organization and require specific test regiments culminating in a certification; appropriateness could be established by accepting testing and certifications that have been conferred by others.

The testing and certification information should be identified in the service description. Referring to the general description model of Figure 20, tests conducted by or under a request from the service owner (see Ownership in section 3.?) would be captured under Annotations from Owners. Testing done by others, such as consumers with unanticipated uses, could be associated through Annotations from 3rd Parties. The annotations should clearly indicate what was tested, how the testing was done, who did the testing, and the testing results. The clear description of each of these artifacts and of standardized testing protocols for various levels of sophistication and completeness of testing would enable a common understanding and comparison of test coverage. It will also make it more straightforward to conduct and report on future testing, facilitating the maintenance of the service description.

5.4.4 Testing SOA Services

Testing of SOA services should be consistent with the SOA paradigm. In particular, testing resources and artifacts should be visible in support of service interaction between providers and consumers, where here the interaction is between the testing resource and the tester. In addition, the idea of opacity of the implementation should limit the details that need to be available for effective use of the test resources. Testing that requires knowledge of the internal structure of the service or its underlying capability should be performed as part of unit testing in the development sandbox, and should represent a minimum level of confidence before the service begins its transition to further testing and eventual operation in the SOA ecosystem.

5.4.4.1 Progression of SOA Testing

Software testing is a gradual exercise going from micro inspection to testing macro effects. The first step in testing is likely the traditional code reviews. SOA considerations would account for the distributed nature of SOA, including issues of distributed security and best practices to ensure secure resources. It would also set the groundwork for opacity of implementation, hiding programming details and simplifying the use of the service.

Code review is likely followed by unit testing in a development sandbox isolated from the operational environment. The unit testing is done with full knowledge of the service internal structure and knowledge of resources representing underlying capabilities. It tests the interface to ensure exchanged messages are as specified in the service description and the messages can be parsed and interpreted as intended. Unit testing also verifies intended functionality and that the software has dealt correctly with internal dependencies, such as structure of a file system or access to other dedicated resources.

Some aspects of unit testing require external dependencies be satisfied, and this is often done using mock objects to substitute for the external resources. In particular, it will likely be necessary to include mocks of existing operational services, both those provided as part of the SOA infrastructure and services from other providers.

Service Mock
A service mock is an entity that mimics some aspect of the performance of an operational service without committing to the real world effects that the operational service would produce.

Mocks are discussed in detail in sections 5.4.4.3 and 5.4.4.4.

After unit testing has demonstrated an adequate level of confidence in the service, the testing must transition from the tightly controlled environment of the development sandbox to an environment that more clearly resembles the operational SOA ecosystem or, at a minimum, the intended enterprise. While sandbox testing will use simple mocks of some aspects of the SOA environment, such as an interface to a security service without the security service functionality, the dynamic nature of SOA makes a full simulation infeasible to create or maintain. This is especially true for operational services provided by others. Thus, at some point before testing is complete, the service will need to demonstrate its functionality by using resources and dealing with conditions that only exist in the full ecosystem or the intended enterprise. Some of these resources may still provide test interfaces -- more on this below -- but the interfaces will be accessible via the SOA environment and not just implemented for the sandbox.

At this stage, the opacity of the service becomes important as the details of interacting with the service now rely on correct use of the service interface and not knowledge of the service internals. The workings of the service will only be observable through the real world effects realized through service interactions and external indications that conditions of use, such as user authentication, are satisfied. Monitoring the behavior of the service will depend on service interfaces that expose internal monitoring or provide required information to the SOA infrastructure monitoring function. The monitoring required to test a new service is likely to have significant overlap with the monitoring the SOA infrastructure includes to monitor its own health and to identify and isolate behavior outside of acceptable bounds. This is exactly what is needed as part of service testing, and it is reasonable to assume that the ecosystem transition includes use of operational monitoring rather than solely dedicated monitoring for each service being tested.

Use of SOA monitoring resources during the explicit testing phase sets the stage for monitoring and a level of continual testing throughout the service lifetime.

5.4.4.2 Testing Traditional Dependencies vs. Service Interactions

A SOA service is not required to make use of other operational services beyond what may be required for monitoring by the ecosystem infrastructure. The service can implement hardcoded dependencies which have been tested in the development sandbox through the use of dedicated mocks. While coordination may be required with real data sources during integration testing, the dependencies can be constrained to things that can be tested in a more traditional manner. Policies can also be set to restrict access to pre-approved users, and thus the question of unanticipated users and unanticipated uses can be eliminated. Operational readiness can be defined in terms of what can be proven in isolated testing. While all this may provide more confidence in the service for its designed purpose, such a service will not fully participate in the benefits or challenges of the ecosystem. This is akin to filling a swimming pool with sea water and having someone in the pool say they are swimming in the ocean.

In considering the testing needed for a fully participating service, consider the example of a new composite service that combines the real world effects and complies with the conditions of use of five existing operational services. The developer of the composite service does not own any of the component services and has limited, if any, ability to get the distributed owners to do any customization. The developer also is limited by the principle of opacity to information comprising the service description, and does not know internal details of the component services. The developer of the composite service must use the component services as they exist as part of the SOA environment, including what is provided to support testing by new users. This introduces requirements for what is needed in the way of service mocks.

5.4.4.3 Use of Service Mocks

Service mocks enables the tested service to respond to specific features of an operational service that is being used as a component. It allows service testing to proceed without needing access to or with only limited engagement with the component service. Mocks can also mimic difficult to create situations for which it is desired to test the new service response. Note, when using service mocks, it is important to remember that it is not the component service that is being tested (although anomalous behavior may be uncovered during testing) but the use of the component in the new composite.

Individual service mocks can emphasize different features of the component service they represent but any given mock does not have to mimic all features. For example, a mock of the service interface can echo a sent message and demonstrate the message is reaching its intended destination. A mock could go further and parse the sent message to demonstrate the message not only reached its destination but was understood. As a final step, the mock could report back what actions would have been taken by the component service and what real world effects would result. If the response mimicked the operational response, functional testing could proceed as if the real world effect actually occurred.

There are numerous ways to provide mock functionality. The service mock could be a simulation of the operational service and return simulated results in a realistic response message or event notification. It is also possible for the operational service to act as its own mock and simply not execute the commit stage of its functionality. The service mock could use a combination of simulation and service action without commit to generate a report of what would have occurred during the defined interaction with the operational service.

5.4.4.4 Providers of Service Mocks

In traditional testing, it is often the test professionals who design and develop the mocks, but in the distributed world of SOA, this may not be efficient or desirable.

In the development sandbox, it is likely the new service developer or test professionals working with the developer will create mocks adequate for unit testing. Given that most of this testing is to verify the new service is performing as designed, it is not necessary to have high fidelity models of other resources being accessed. In addition, given opacity of SOA implementation, the developer of the new service may not have sufficient detailed knowledge of a component service to build a detailed mock of the component service functionality. Sharing existing mocks at this stage may be possible but the mocks would need to be implemented in the sandbox, and for simple models it is likely easier to build the mock from scratch.

As testing begins its transition to the wider SOA environment, mocks may be available as services. For existing resources, it is possible that an Open Source model could evolve where service mocks of available functions can be catalogued and used during initial interaction of the tested service and the operational environment. Widely used functions may have numerous service mocks, some mimicking detailed conditions within the SOA infrastructure. However, the Open Source model is less likely to be sufficient for specialty services that are not widely used by a large consumer community.

The service developer is probably best qualified for also developing more detailed service mocks or for mock modes of operational services. This implies that in addition to their operational interfaces, services will routinely provide test interfaces to enable service mocks to be used as services. As noted above, a new service developer wanting to build a mock of component services is limited to the description provided by the component service developer or owner. The description typically will detail real world effects and conditions of use but will not provide implementation details, some of which may be proprietary. Just as important in the SOA ecosystem, if it becomes standard protocol for developers to create service mocks of their own services, a new service developer is only responsible for building his own mocks and can expect other mocks to be available from other developers. This reduces duplication of effort where multiple developers would be trying to build the same mocks from the same insufficient information. Finally, a service developer is probably best qualified to know when and how a service mock should be updated to reflect modified functionality or message exchange.

It is also possible that testing organizations will evolve to provide high-fidelity test harnesses for new services. The harnesses would allow new services to plug into a test environment and would facilitate accessing mocks of component services. However, it will remain a constant challenge for such organizations to capture evolving uses and characteristics of service interactions in the real SOA environment and maintain the fidelity and accuracy of the test systems.

5.4.4.5 Fundamental Questions for SOA Testing

In order for the transition to the SOA operational environment to proceed, it is necessary to answer two fundamental questions:

· Who provides what testing resources for the SOA operational environment, e.g. mocks of interfaces, mocks of functionality, monitoring tools?

· What testing needs to be accomplished before operational environment resources can be accessed for further testing?

The discussion in section 5.4.4.4 notes various levels of sophistication of service mocks and different communities are likely to be responsible for different levels. Section 5.4.4.4 advocates a significant role for service developers, but there needs to be community consensus that such mocks are needed and that service developers will agree to fulfilling this role. There is also a need for consensus as to what tools should be available as services from the SOA infrastructure.

As for use of the service mocks and SOA environment monitoring services, practical experience is needed upon which guidelines can be established for when a new service has been adequately tested to proceed with a greater level of exposure with the SOA environment. Malfunctioning services could cause serious problems if they cannot be identified and isolated. On the other hand, without adequate testing under SOA operational conditions, it is unlikely that problems can be uncovered and corrected before they reach an operational stage.

As noted in section 5.4.4.2, some of these questions can be avoided by restricting services to more traditional use scenarios. However, such restriction will limit the effectiveness of SOA use and the result will resemble the constraints of traditional integration activities we are trying to move beyond.

5.4.5 Architectural Implications for SOA Testing

The discussion of SOA Testing indicates numerous architectural implications on the SOA ecosystem:
· The distributed, boundary-less nature of the SOA ecosystem makes it infeasible to create and maintain a single mock of the entire ecosystem to support testing activities.

· A standard suite of monitoring services needs to be defined, developed, and maintained. This should be done in a manner consistent with the evolving nature of the ecosystem.

· Services should provide test interfaces.

· Testing resources must be described and their descriptions must be catalogued in a manner that enables their discovery and access.

· Guidelines for testing and ecosystem access need to be established and the ecosystem must be able to enforce those guidelines asserted as policies.

· Services should be available to support automated testing and regression testing.

· Services should be available to facilitate updating service description by anyone who has performed testing of a service.
� IEEE Standard for Software Test Documentation, IEEE Std 829-1998, approved 16 September 1998.

PAGE
1
SOA testing

11 January 2009, 1:00 PM; printed 1/5/09 6:07 PM

