
Abstract— A Business Ecosystem is a term introduced by
James Moore1 where in “The Death of Competition: Leader-
ship and Strategy in the Age of Business Ecosystems”[1] wrote
on page 26 that a Business Ecosystem is based on dynamic in-
teraction of organizations which evolves over time their cap-
abilities and roles. To this extent this paper will tell that Ser-
vice Oriented Architecture (SOA) is not adequate to face such
challenges which are unique in the context of a Digital Ecosys-
tem (DES). The author will highlight such differences and de-
scribe the features of a new architectural style: called Ecosys-
tem Oriented Architecture (EOA).

The paper will explore the fact that a DES oriented archi-
tecture is not a “sort of SOA”, it's not just a “bigger SOA”. A
whole set of new problems are to be addressed namely re-
sponsive alignment with the business, decentralization, owner-
ship of the knowledge base and self healing.

EOA is a new mindset in decentralized architectures for
DES.

I. INTRODUCTION

A Digital Ecosystem (DES) implementation need to sup-
port a particular dynamic scenario where business service
aggregations and evolutions are key. Neither B2B of mar-
ket place typical solutions are able to adequately tackle
such challenges. DES has to “..exploits the dynamic inter-
action (with cooperation and competition) of several play-
ers in order to produce systemic results in terms of innova-
tion and economic development”[2].

It is indeed true that the recent achievements in Business
to Business (B2B) implementations are enabling enterprises
to foster and push the accelerator in the dynamic of the
business, but these solutions are still limited though be-
cause Service Oriented Architectures (SOA), the prime
supporting architectural style of B2B, has been conceived
for supporting a single value chain, in a single business do-
main and usually between a static set of participants; in fact
it's often the implementation of a single-organization sup-
ply chain. B2B solutions are rarely applied outside the
boundary of an enterprise and if it does it, it is a challen-
ging project: it's cumbersome, and especially complex to be
maintained.

DES are to be implemented applying a new perspective
in the Software Architecture that has to overcome SOA: an
Ecosystem Oriented Architecture (EOA). We intends to
pin point the fact that DES specific features and issues can
not properly be addressed by SOA; there is the need to
define a different architectural style that specifically tackle

1Dr. James F. Moore is a Senior Fellow at Harvard Law School's
Berkman Center for Internet and Society

DES requirements as both the functional and structural
viewpoint. Applying SOA when dealing with DES imple-
mentations is overlooking at the problem.

II. SOA AND ECOSYSTEM ORIENTED ARCHITECTURE

SOA has been conceived in the context of intra enter-
prise systems: in essence the assumption is that any aspect
either functional or structural, is managed (or manageable)
via a central governance entity. The infrastructure is under
control and managed via a single department unit: network
appliances like routers, firewalls, cables, routing and topo-
logy are planned and managed centrally. In addition, also
the functional specifications of the SOA are planned in ad-
vance either in joint meetings between parties or defined by
a single central authority. The WSDL representing the
common technical contract for service invocation are
defined up front and are to be used by all the partners in or-
der for the value chain implementation to be effective: this
is the environment where SOA was born and where it is ac-
tually used most of the time. SOA is an architectural style
that evolved from EAI, RPC, CORBA, where the focus was
on Application, Procedures, Objects; focus on services was
added later but still with an “inside enterprise” mindset
(Figure 2 below).

A SOA implementation is often conceived, funded and
implemented by an organization with sole goal of support-
ing and increasing its business, as a consequence this drives
the entire environment which is not democratic and does
not follow the competition/evolution core feature of a DES.

DES scenarios are changing the rules, because the focus
is moving from “intra enterprise” to “across enterprises”
(inter community) and soon “across communities”. Using
SOA for implementing a DES, when enlarging participants
to a broader spectrum, supporting a wider functional mod-
els, running over the Internet, spanning a WAN, is underes-
timating the problem.

As a matter of fact, reading the literature[3], and from
the author experience, it is evident that dynamism and flex-
ibility are key in a Business Ecosystem:

• the value chains are overlapping, it is not a parti-
tion but they intersect each other;

• the social and business network topologies are not
hierarchical[4];

• a single functional reference model can not be im-
plemented;

• there is not a single point of management at both
the business or structural point of view;

 Pierfranco FERRONATO1, Dr., Chief Architect of Digital Business Ecosystem (DBE) project

1Pierfranco Ferronato, Dr., Chief Architect, Soluta.net, Italy, EU, e-mail : pferronato@soluta.net

Architecture for Digital Ecosystems, beyond Service Oriented Architecture
(IEEE-DEST 2007)

E W

E1 W1 Wn

Enterprise
Architecture

Application
Architecture

Design

Adapted with permission from Mike Rosen

Ecosystem Oriented
Architecture

“Hic sunt leones” “Here there
be tygers”

Figure 1: Ecosystem Oriented Architecture positioning

III. FUNCTIONAL REFERENCE MODEL

Digital Ecosystems crosses business domains and differ-
ent value chain, for this reason they are characterized by
not having a single functional reference model. Since it's
not feasible to define up front all the required functional
models, which are intricate, complex and continuously
changing, the ecosystems participants need to be free to
define, publish and use any models that they consider ad-
equate for their business.

As an example, a book distributor or reseller might cre-
ate model that represents their application interface to allow
consumers to search, browser, order and buy books. This
model could be published and implemented by their service
component. Other competitors in the ecosystem will prob-
ably do the same in autonomy and this will end up with a
set of different APIs that would burden the effort of a book
store when required to automate the order process; for each
supplier/distributor a different technical adapter is required.
This trouble would slow down the rate of adoption and lock
stores on a single supplier because of the effort required to
align the software again. This would represent the dead end
of ecosystem; without fast business alignment, there will be
no evolution.

The rather ingenuous approach to fix this issue is to
have all the book distributors sit around a table in an asso-
ciation defining “The” reference model for the book store
sector. From direct experience of the author2, this is a meth-
od that does not scale for long time and, assuming that the
participants are able to converge to a suitable model, there
will soon be other “competing-standards” (notice the oxy-
moron) that would create again interoperability problems.
Nevertheless, maintaining the specification would be very
time consuming and at the end it'd not be possible to keep it
aligned with the business requirements: new features driven
by the end users or marketing will incur the risk of being
left behind, waiting for the new specification to emerge or
-even worst- to be implemented in contrast to the standard.
As a consequence, the expected well ordered mechanism
will soon break.

This scenario is a gross over-simplification of the mod-
els what might be found in an DES, especially considering

2FETISH Project IST-2001-35113, FP5 Programme, 2002-03-01 to
2003-08-31

cross value and supply chains. The overall map of models
would be so complex and articulated that managing them
would be impossible. As a comparison, we can recall the
Internet map3[5] and its topology; no one can have full con-
trol of it. It emerges rather autonomously from complex us-
age mechanisms that are being investigated only in recent
times. Even maintaining the functional models of a com-
plex ERP project, with well defined boundaries and de-
pendencies, can be be very hardly and unable to be man-
aged by a single person; changes and update are often a
tough asks to accomplish.

In an business ecosystem this effort can not be addressed
at all, and a new mindset and approach in this sense is re-
quired, and SOA approach is hence inadequate. In addition,
assuming that an ecosystem can be managed is a contradic-
tion in terms. The keyword is “self regulation”, “self adapt-
ation”[6] and the EOA has to implement the required in-
struments for this to happen, it is useless to fight and con-
trast the dynamic nature of a DES, it is better to support it.

The way to go then assumes the inability of controlling
the reference models; we might assert there is not reference
model at all, and take all the required architectural decision
to support it and letting the ecosystem to converge, in de-
pendence with the time, in a model. What is fundamental to
assume when defining the architecture of a DES is to recall
that it's a highly dynamic environment where the IT related
frictions and inertias needs to be reduced to the minimum.
This is the prime condition that will allow an ecosystem to
self converge and adapt.

The architecture need a mechanism to allow participants
to:

• publish whatever model;
• to investigate which is the most adequate to their

needs;
• to adopt is (and to change it) in a total free uncon-

trolled space (regulatory and restrictive features,
shall be added as a mean just to avoid hacking the
environment).

A structured and highly connected repository has to
manage models, their dependencies and the association
with implementing services.

As an example: if the book distributor could inspect the
ecosystem (specifically using a model repository), it could
detect that there is a functional model for book sector that is
adopted by the 75% of the book stores and another one less
adopted (hence less connected) but more close to their tech-
nical need, that would be more straightforward to be imple-
mented due to the better alignment with their back-end sys-
tems. The distributor has the chance to decide if to adopt
the most connected model, hence easing the migration and
adoption by the book stores, or to stick to the easy way
with an obvious drawback regarding the level of adoption.
In this scenario it is evident that book stores (the service
consumers) on the other hand will try to reduce the number
of different models in order to ease their integration efforts
and be biased by the quality of the service offered. The bal-

3http://research.lumeta.com/ches/map/, http://www.opte.org/,
http://www.opte.org/

ance between those symmetric aspects is the base of com-
petition and evolution.

IV. MODEL REPOSITORY

In SOA, UDDI is the catalogue of services and service
models. They are mixed with binding information, there is
no separation between the technical specification and the
functional one, in addition, the service end-point is also
written in the service specification. Such structure is a con-
sequence of the fact that UDDI has been conceived as a
static catalogue of intranet services4; it is clearly a con-
sequence of the fact that it descents from classical RPC ap-
proaches. UDDI is essentially a catalogue of programmatic
resources.

As an example: two different books distributors might
use the same technical specification of the service (eg.
WSDL) but have different kind of discount policies, differ-
ent return policies, different quantity discount or serve dif-
ferent regions. The WSDL is a technical specification that
exposes the service protocol that in turns implements the
business service. What has to be modelled and delivered is
the business service rather then the mediator to the service.

In a SOA the need for modelling the business specifica-
tion is not a prime need because there is no economical
transaction involved. SOA is often implemented, in the au-
thor experience, in a context where the associated business
transaction costs is 0 (zero). Nevertheless, the writer is
aware o some SOA implementations (rather tough though)
were an invocation implies an effective business transac-
tion, i.e. “money exchange”. But also in these cases the par-
ticipants, and the services involved have been defined up-
front -statically- and the business models are known in ad-
vance: there is not dynamic discovery or negotiation in
there, for this reasons -under these assumptions- SOA
works fine: in DES on the other hand it'd not scale. From
reference documentation about UDDI it can be read “Com-
panies can establish a structured and standardized way to
describe and discover services”5, but DES are not a struc-
tured or standardized environment.

In a DES the model repository needs to manage business
models instead of programmatic specifications. OMG's
XMI is the prime choice for encoding models because it is
a platform independent specification, it supports meta mod-
elling, model dependency, merging, inclusion, inheritance
and versioning. XMI is able to represent semantically rich
model specifications, where WSDL is unable. Services in
DES need to make use of more complex specifications, the
definition of software interfaces is not sufficient: there is
the need to express the underlying business model. The
plain interface specification is not relevant in the context of
an ecosystem where services need to be explored automat-
ically via recommendation agents: having computable busi-

4"By enabling policy-based distribution and management of enterprise
Web services, a UDDI registry can deliver significant business value”,
Frank Kenney, analyst at Gartner

 http://www.oasis-open.org/news/oasis_news_02_03_05.php
5“What's New in Enterprise UDDI Services” Microsoft Windows Serv-

er 2003: http://www.microsoft.com/windowsserver2003/evaluation/over-
view/dotnet/uddi.mspx

ness models is essential.
In addition, the functionalities provided by the reposit-

ory need to assume an enormous amount of unstructured
and related information. The users, either a software com-
ponent or a human being, must be able to navigate the in-
tricacy of models and their dependencies in order to identi-
fy the most correct and adequate. In this sense the reposit-
ory needs to provide intelligent and semantically aware re-
search and recommendation tools[7].

It is also essential is to decouple the service model cata-
logue from actual service instance catalogue: “The service
registry”.

V. SERVICE REGISTRY

The service registry contains the references to actual ser-
vices published in a DES associated with the technical and
business models. Each entry contains self contained in-
formation about the service (called Service Manifest[8]),
made of:

• service business models;
• technical specification (i.e. Service APIs);
• business data;
• service end-point.

The first is essentially the business specification (it
might be a reference to an entry in the model repository,
this an implementation aspect which is not relevant in this
context).

The second is the technical specification of the service.
The third are information specific to the service in-

stance, for example the name of the published or the loca-
tion of the service; in general these information are associ-
ated with the business model.

The fourth are programmatic information needed to ac-
tually invoke the service, for example – it is an over simpli-
fication- the IP address and the protocol used.

In whatever way this registry is implemented, the essen-
tial aspect is that is has to be extremely dynamic and bind
to the actual published service. In SOA it is of a great frus-
tration to try to invoke services from information found in
the UDDI just to discover that it is not available. The real
issue in these cases is that the requesting service is not able
to tell the reason of the failure, is it due to the fact that it
has been discontinued or because there are some temporary
technical issue? In an intranet SOA implementation, the ar-
chitect has the ability put all the efforts in order to have an
high availability of the service: in the Internet this can not
be assured. As a solution, the service entry in the registry
needs to be bind with the actual remote published service
so that it provides up-to-date status information; since it's
too administrative intense to manually keep it aligned, a
lease base mechanism is a good technical approach, like
SUN's Jini6 framework dynamic lease management or the
FADA framework7.

As for the model repository, the service registry need to
be MOF8 compliant in order to ease the issues related to

6http://www.jini.org]
7http://fada.sourceforge.net/
8http://www.omg.org/mof/

model interoperability.
The model repository and the service registry represents

a single point of failure (SPoF) for the DES architecture
and this can jeopardize the entire ecosystem. This issue is
addressed via a decentralized architecture, described in
“Single Point of Failure” Chapter.

VI. BASIC SERVICES

An architecture for DES need to consider a set of basic
business services to support the ecosystems and easing the
quick and fast interaction between business services. A
DES without a proper set of basic service, will hardly self
sustain: the goal is to improve the level of adoption by eas-
ing the participants effort in publishing and integrating ser-
vices.

It is fundamental for example to execute a negotiation
process before actually consuming the service, which is not
required in a SOA implementation as it was mentioned
above essentially because a service invocation in a DES a
business service consumption. For same reasons services
such are reputation and trust are as fundamental to be
provided.

The following service are needed to facilitate the boot-
strap phase in a DES:

• Payment
• Business Contract & Negotiations9

• Information Carriers
• Billing
• Trust
• Reputation
• Legal compatibility

It's important to put in evidence that is not specifically
required for these services to be implemented up front. It's
import to support for them for example by defining their
models in the repository and to provide adequate infrastruc-
ture for it's implementation: it might be up to participants
and organizations to implement them. Some, like the ac-
counting service, requires to be supported by the core infra-
structure of a DES because it has to properly intercept the
inter services messages.

One of the most significant service required in a DES is
the support for negotiations. In SOA, in those rare case in
which it's implemented in across enterprise B2B environ-
ments, negotiation happens outside of the IT systems, often
in real meetings; in SOA implementations only the service
execution is supported together with a poor search mechan-
ism. In DES, following the definition given at the begin-
ning, the ecosystem is such only if the integration mechan-
isms are fast and automatic. As a matter of fact DES had to
replicate in an e-environment what happens in the real con-
crete world environment.

In addition there is the need to reconsider other services
although in a different perspective:

• Service Discovery
• Reliability-guaranteed delivery
• Security

9Addresses by the Open Negotiation Project (ONE) FP6-2004-IST-5,
FP6, 6th Call, 2006

• Long running Transactions
• XML Firewall

In Figure 2 below is an example of the service stack in
the Digital Business Ecosystem project (DBE)[9].

DBE Virtual Machine

Intelligent Recommendation System

Evolutionary Environment

P2P Architecture

SMEs Services

Business Models

Process

Event

Motivation Rules

Organization
Computational Models

Ontologies

Operation DataTypes

Knowledge BaseUsage History Adoptions Profiles RequestsStatistics

Id
en

tif
ic

at
io

n/
Au

th
en

tic
at

io
n

Au
th

or
iz

at
io

n

Ce
rt

ifi
ca

tio
n

Au
th

or
ity

Service Composer

Figure 2: Service Stack in the Digital Business Ecosystem

VII. SINGLE POINT OF FAILURE

The Service registry is a key elements for SOA; it is
used at run time for service discovery and invocation, for
this reason it represents a single point of failure for the en-
tire architecture. If the registry is not available, all the ser-
vices won't be reachable as a consequence.

This is a key issue also in SOA, for this reason UDDI
version 3 has introduced replication schema for cluster of
registries that provides high availability feature[10]. It sup-
ports both clustering and mirroring, but however replica-
tions are based on the complete mirroring of nodes; in addi-
tion the replication policy is to be accurately planned by an
administrator and implemented before hand. But for a DES,
given the complexity and intricacy of infrastructure, the
very fast changes and the absence of any “root” node, it is
not the solution to go.

In DES the registry is even more critical because ser-
vice's IP addresses changes very often while in a classical
SOA all the services are published in static IPs and change
pretty seldom: caching IPs would not work for long[11].

Setting up a single central fail safe and highly redundant
registry server would be very expensive and would even
not guarantee service continuity in case of natural calamity.
The alternate solution is to exploit decentralized ap-
proaches, i.e. a topology and replication schema that does
not make the DES to depend on a single node but rather on
a collaborative set of peer nodes (more on the following
Chapter “Scale free networks”). Instead of a controlled
cluster of nodes, there is the need to advocate the use of a
peer-to-peer networks as the routing infrastructure that im-
proves routing resilience to node failure and attacks for ser-
vice registries[16]. Such a network of nodes need to be self
healing and self adaptable to the ever changing nature of
the requests and traffic: there has not to be an administrat-
or. Such kind of solutions would be resilient to node fail-
ures and would not loose information under critical circum-
stances. Nodes within this network interact in rich and
complex ways, greatly stressing traditional approaches to
name service, routing, information replication and links.

In such kind of networks, data replication within nodes
happens on a smart basis: entries migrate automatically in
relation to requests, moving data toward nodes that started
the request. In this way, like in typical caching mechanism,
information is copied closer to its source so as to increase
the probability that sequential requests get fulfilled in less
time. It is relevant to notice that “close” in this context is
relative to speed not to geographical distance, e.g. often in
Internet 100km far away hub nodes are faster to ping then
local server. Moreover, such a copying mechanism replic-
ates redundant information among nodes so as to increase
tolerance in case of nodes failure. As a matter of fact the
new Italian Health Care System is adopting such a decent-
ralized architecture for the Patient Health Record
registry[12].

Avoiding to have single point of failures for an EOA is
key. Beside the technical non marginal aspect of having a
more reliable system, the DES will not suffer from the “big
brother syndrome”. With a decentralized P2P based archi-
tecture the knowledge, which is represented by the model
repository and the service registry, are not managed by a
single institution which could tamper the community by im-
posing unwanted control. A DES is self regulated and self
adaptable by definition[13] and a central institution with
the potential power to control the environment from a tech-
nical and functional point of view, could hinder the entire
adoption and sustainability. Considering for example what
would happen in case the organization hosting the service
registry decides to shut it down. Such possibility would im-
pede the adoption of the DES.

DES founds its entire sustainability and existence on
knowledge about models and services. Participant in the
DES are providing and using models while actively parti-
cipating and being part of a business community, they are
scared about loosing models. Owners of DES knowledge
need to be the community itself, to this extend a peer to
peer network (Chapter “Scale Free Network below) is a
good approach because it is democratic; it gives parti-
cipants the possibility to offer resources to host part of this
knowledge.

The significant drawback is the implementation: such a
peer to peer infrastructure need to be self healing and self
adaptable. But there are already some framework and tools
that support leverage the properties of the Scale Free net-
works.

VIII. SCALE FREE NETWORKS

Most of the solution in SOA, like the cluster of UDDI
registries, are based on an hierarchical structures because
this is the way humans do in order to deal with complexity,
i.e. in order to create comprehensible models . But as a
matter of fact, the social and business networks in the real
world are not hierarchical at all: this is essentially the reas-
on why information models becomes more and more un-
manageable with the increase in complexity. The more the
IT systems push in the direction of being aligned with the
business the more the IT becomes unmanageable. Below a
certain degree of complexity, any model can be simplified

to a hierarchy that represents a good approximation., but
with the increase in complexity it also becomes impossible
to stick to an hierarchy because reality is not as simply
structured: it's based on different models and topologies:
Scale Free network[15].

The scale free network are well described in the literat-
ure[14], we do not intend to describe it in this paper; what
we state is that since scale free networks are the topology at
the base of business and social networks[15], a proper EOA
has to support it and define the proper mechanisms in order
to let it emerges in a self organized way without human in-
tervention.

In order to have s Scale Free Network emerge it is re-
quired to support connectivity, proximity and
preference[16]; it is dangerous and it represents a risk in the
architecture to over-impose an unnatural topology. The ad-
vantage of a Scale Free Network is well described in the lit-
erature, essentially it is tolerant to a random failure of
nodes and the property of a “small world” allows efficient
searches[17][18].

The author envisage a service registry and a model re-
pository implementation that take advantage of such kind
of network essentially because this is the way they are in
the real world and supporting this vision will help aligning
the ecosystem with the business -as required.

Technologies are already available and they make use of
concept like the Tuple Space or the Distributed Hash Table,
for example Sun's Jini(tm) Network Technology10, FADA11,
Bamboo12, Cord13, and others; there are also commercial
implementations like GigaSpaces(c)14. P2P architecture can
help, even if they are used to infringe copyright: there is no
need to have a prejudice, a technology is not bad per-se, it
depends of the way it is used.

The Digital Business Ecosystem (DBE)15 has make sig-
nificant step forward in this direction.

IX. CONCLUSION

Service Oriented Architectures (SOA) does not scale nor
it addresses the new challenges in the architectures for Di-
gital Ecosystems. The author envisions a new architectural
style, called the Ecosystem Oriented Architecture (EOA).

Three levels of service specifications are to be identified
and addresses[20]:

• service models: a catalogue of business and com-
putational models to be reused;

• service implementation: a catalogue of services
descriptions (Service Manifest) implementing
some models filled with data;

• service instances: service name and endpoint to
actually invoke and consume a service.

In DES it is essential to have a repository of model sep-
arated from the registry of services[20]. The model reposit-
ory needs a whole set of discovery features and supports

10http://www.jini.org
11http://fada.sourceforge.net/
12http://bamboo-dht.org/
13http://pdos.csail.mit.edu/chord/
14http://www.gigaspaces.com/
15http://www.digital-ecosystem.org

XMI in order to implement model driven capabilities like
dependency, versioning, merge and inheritance. Services
need to be described also from the business point of view,
the computational specification is not sufficient in DES be-
cause services are not known in advantage and the discov-
ery process need to be more smart and based on business
specifications.

The service registry need to overcome the static limita-
tion of UDD like services and be dynamically bind to actu-
al published service. In the next future a lot of mobile ser-
vices are expected and these devices are going to make use
of dynamic IPs, a SOA based approach is not enough. The
service instances are to be resolved at run-time via a sort of
DNS service.

For the nature of a DES, the architecture needs to avoid
single point of failure, the best approach envisioned is the
make use of P2P technology to implement a decentralized
data storage system (as opposed to the SOA centralized or
distributed approach).

Basic services need to be implemented and defined up
front in order to sustain the ecosystem like negotiation, in-
formation carriers, payments, accounting, billing and oth-
ers. While SOA essentially supports only the service execu-
tion phase, a DES has to support the entire business service
life-cycle like service selection (as opposed to service
search), negotiation, agreement, contract specification, con-
sumption and delivery.

In any aspect, either functional, structural or topological
we have to reflect the real ecosystem in the DES: after over
40 years we realize that we are still applying the Conway16

law that states “Organizations which design systems are
constrained to produce designs which are copies of the
communication structures of these organizations”[21], i.e.
any piece of software reflects the organizational structure
that produced it, and a DES is no different.

X. REFERENCES

[1] Dr. James F. Moore, “The Death of Competition”, Collins, May 21
1997, ISBN 0887308503

[2] EU Discussion paper, Bruxelles, September 2002
[3] P.Dini et others, “Towards Business Cases and User-Oriented Ser-

vices in Digital Business Ecosystems”, Conclusions FP7 Workshop
on Needs and Requirements of Regions, Bruxelles, 18 April 2005

16Melvin Conway a Cobol programmers in the late 60s

[4] [1]A. L. Barabási, H. Jeonga, Z. Néda, E. Ravasz, A. Schubert and T.
Vicsek, “Evolution of the social network of scientific
collaborations”, 16 January 2002.

[5] Milena Mihail, Christos Papadimitriou and Amin Saberi, “On certain
connectivity properties of the internet topology”, Journal of Com-
puter and System Sciences, Volume 72, Issue 2, March 2006, Pages
239-251

[6] F.Nachira, M.Le Louarn, “ICT supporting businesses and industry”,
“Innovation ecosystems”, FP7 – General Orientations, February
2006.

[7] Paolo Dini, ,Tuija Helokunnas, Pierfranco Ferronato, Angelo Cor-
allo, Neil Rathbone, “Towards a semantically rich business model-
ling language for the automatic composition of web services”, e-
Business Research Center (eBRC) 2004

[8] P.Ferronato, “Technical Architecture of the Digital Business Ecosys-
tem Project”, MDA Technical Forum, Tokyo, 20th, 21st October
2004

[9] T. Heistracher, T. Kurz, C. Masuch, P. Ferronato, M. Vidal, A. Cor-
allo, P. Dini, and G. Briscoe, “Pervasive service architecture for a di-
gital business ecosystem”, In ECOOP First International Workshop
on Coordination and Adaptation Techniques for Software Entities
(WCAT04), Oslo, June 2004.

[10] “UDDI Version 3 Features List”, OASIS, 2004,
http://uddi.org/pubs/uddi_v3_features.htm

[11] M.Vidal, P. Hernandez, “Building a Digital Ecosystem”, SUN, Java
Conference 2005

[12] Pierfranco Ferronato, Stefano Lotti, Daniela Berardi, “Titolo:
Strategia architetturale per la Sanità Elettronica”, Innovazione Italia,
Dipartimento per l’Innovazione e le Tecnologie, 31/03/2006 14.17

[13] P. Dini et Others, “The Digital Ecosystems Research Vision: 2010
and Beyond”,

[14] Albert-Laszlo Barabasi, Duncan J. Watts et others, “The Structure
and Dynamics of Networks”, ISBN: 0691113572, Princeton Uni-
versity Press (April 17, 2006)

[15] Albert-Laszlo Barabasi, Reka Albert, Hawoong Jeong, “Mean-field
theory for scale-free random networks”, Department of Physics, Uni-
versity of Notre-Dame, Notre-Dame, IN 46556, USA

[16] Albert-Laszlo Barabasi, “Linked: How Everything Is Connected to
Everything Else and What It Means”, ISBN: 0452284392, Plume;
Reissue edition (April 29, 2003)

[17] Nancy A. Lynch, , “Distributed Algorithms”, Elsevier Science &
Technology Books, 1996.

[18] Fletcher, George, Hardik Sheth, "Peer-to-Peer Networks: Topologic-
al Properties and Search Performance", Indiana University, 2003,
http://www.cs.indiana.edu/~gefletch/papers/l597report.pdf

[19] P. Ferronato, “WP21 - DBE Architecture Requirements Del 21.1 -
Preliminary design, usage scenarios, and architecture requirements”,
D.B.E. Digital Business Ecosystem Contract n° 507953, October
2004, http://www.digital-ecosystem.org/Members/aenglishx/linksto-
files/deliverables/Del_21.1_DBE_Architecture_Requirements.pdf/do
wnload

[20] P.Ferronato, “WP 21: DBE Architecture Requirements, Del 21.2: Ar-
chitecture Scope Document”, D.B.E. Digital Business Ecosystem
Contract n° 507953, October 2004,[1]http://www.digital-ecosys-
tem.org/Members/aenglishx/linkstofiles/deliverables/Del_21.2_DBE
_Core%20Architecture%20Scoping%20Document_Release%20C.p-
df/download

[21] Melvin Conway, an issue of Datamation, April 1968

