
[image: image1.png]OASIS)

Reference Architecture Foundation for Service Oriented Architecture Version 1.0
Committee Specification Draft 03 /
Public Review Draft 02
06 July 2011
Specification URIs:
This version:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csprd02/soa-ra-v1.0-csprd02.pdf (Authoritative)
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csprd02/soa-ra-v1.0-csprd02.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csprd02/soa-ra-v1.0-csprd02.doc
Previous version:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf (Authoritative)
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.doc
Latest version:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf (Authoritative)
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.doc
Technical Committee:

OASIS Service Oriented Architecture Reference Model TC
Chair:

Ken Laskey (klaskey@mitre.org), MITRE Corporation

Editors:

Peter Brown (peter@peterfbrown.com), Individual Member
Jeff A. Estefan (jeffrey.a.estefan@jpl.nasa.gov), Jet Propulsion Laboratory
Ken Laskey (klaskey@mitre.org), MITRE Corporation
Francis G. McCabe (fmccabe@gmail.com), Individual Member
Danny Thornton (danny.thornton@ngc.com), Northrop Grumman
Related work:

This specification is related to:
· OASIS Reference Model for Service Oriented Architecture
Abstract:

This document specifies the OASIS Reference Architecture Foundation for Service Oriented Architecture (SOA-RAF). It follows from the concepts and relationships defined in the OASIS Reference Model for Service Oriented Architecture. While it remains abstract in nature, the current document describes the foundation upon which specific SOA concrete architectures can be built.

The focus of the SOA-RAF is on an approach to integrating business with the information technology needed to support it. These issues are always present but are all the more important when business integration involves crossing ownership boundaries.
The SOA-RAF follows the recommended practice of describing architecture in terms of models, views, and viewpoints, as prescribed in the ANSI/IEEE 1471-2000 (now ISO/IEC 42010-2007) Standard. The SOA-RAF is of value to Enterprise Architects, Business and IT Architects as well as CIOs and other senior executives involved in strategic business and IT planning.

The SOA-RAF has three main views: the Participation in a SOA Ecosystem view which focuses on the way that participants are part of a Service Oriented Architecture ecosystem; the Realization of a SOA Ecosystem view which addresses the requirements for constructing a SOA-based system in a SOA ecosystem; and the Ownership in a SOA Ecosystem view which focuses on what is meant to own a SOA-based system.
Status:

This document was last revised or approved by the OASIS Service Oriented Architecture Reference Model TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/soa-rm/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/soa-rm/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:
[SOA-RAF]
Reference Architecture Foundation for Service Oriented Architecture Version 1.0. 06 July 2011. OASIS Committee Specification Draft 03 / Public Review Draft 02. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/csprd02/soa-ra-v1.0-csprd02.html.

5 Ownership in a SOA Ecosystem View
5.5 SOA Testing Model

Testing for SOA combines the typical challenges of software testing and certification with the additional needs of accommodating the distributed nature and independence of the resources, the greater access of a more unbounded consumer population, and the desired flexibility to create new solutions from existing components over which the solution developer has little if any control. The purpose of testing is to demonstrate a required level of reliability, correctness, and effectiveness that enable prospective consumers to have adequate confidence in using a service. Adequacy is defined by the consumer based on the consumer's needs and context of use. Absolute correctness and completeness cannot be proven by testing; however, for SOA, it is critical for the prospective consumer to know what testing has been performed, how it has been performed, and what were the results.

Traditional Software Testing as Basis for SOA Testing

SOA services are largely software artifacts and can leverage the body of experience that has evolved around software testing. The IEEE-829 standard [IEEE-829] specifies the basic set of software test documents while allowing flexibility for tailored use. As such, IEEE-829 can provide guidance to SOA testing and a point of reference for additional test concerns introduced by a SOA approach.

IEEE-829 covers test specification and test reporting through use of several document types, including test plans; test design, test case, and test procedure specifications; and documents to identify, log, and report on test occurrences and artifacts. In summary, IEEE-829 captures (1) what was tested, (2) how it was tested, e.g. the test procedure used, and (3) the results of the test. While the SOA-RAF does not require IEEE-829 artifacts, those with responsibilities for testing should consider how aspects of IEEE-829 apply.
Types of Testing

There are numerous aspects of testing that, in total, work to establish that an entity is (1) built as required per policies and related specifications prescribed by the entity's owner, and (2) delivers the functionality required by its intended users. This is often referred to as verification and validation.

Policies, as described in Section 4.4, that are related to testing may prescribe but are not limited to the business processes to be followed, the standards with which an implementation must comply, and the qualifications of and restrictions on the users. In addition to the functional requirements prescribing what an entity does, there may also be non-functional performance and/or quality metrics that state how well the entity does it. The relation of these policies to SOA testing is discussed further below.

The identification of policies is the purview of governance (section 5.1) and the assuring of compliance (including response to noncompliance) with policies is a matter for management (section 5.3).

Range of Test Conditions

Test conditions and expected responses are detailed in the test case specification. The test conditions should be designed to cover the areas for which the entity's response must be documented and may include:

· nominal conditions

· boundaries and extremes of expected conditions

· breaking point where the entity has degraded below a certain level or has otherwise ceased effective functioning

· random conditions to investigate unidentified dependencies among combinations of conditions

· errors conditions to test error handling

The specification of how each of these conditions should be tested for SOA resources, including the infrastructure elements of the SOA ecosystem, is beyond the scope of this document but is an area that evolves along with operational SOA experience.

Testing and the SOA Ecosystem

Testing of SOA artifacts for use in the SOA ecosystem differs from traditional software testing for several reasons. First, a highly touted benefit of SOA is to enable unanticipated consumers to make use of services for unanticipated purposes. Examples of this could include the consumer using a service for a result that was not considered the primary one by the provider, or the service may be used in combination with other services in a scenario that is different from the one considered when designing for the initial target consumer community. It is unlikely that a new consumer will push the services back to anything resembling the initial test phase to test the new use, and thus additional paradigms for testing are necessary. The potential responsibilities related to such "consumer testing" are discussed further below.

In addition to consumers who interact with a service to realize the described real world effects, the developer community is also intended to be a consumer. In the SOA vision of reuse, the developer composes new solutions using existing services, where the existing services provide desired real world effects that are needed by the new solution. The composed solution must be tested for its intended functionality, and the component service may need particular attention if its use is different from its typical use as a separate offering. Note, the composition developer is not expected to own a private copy of a component service, and testing may be dependent on test interfaces provided by the component service.
Another difference from traditional testing is that the distributed, unbounded nature of the SOA ecosystem makes it unlikely to have an isolated test environment that duplicates the operational environment. A traditional testing approach often makes use of a test system that is identical to the eventual operational system but isolated for testing. After testing is successfully completed, the tested entity would be migrated to the operational environment, or the test environment may be delivered as part of the system to become operational. This is not feasible for the SOA ecosystem as a whole.

SOA services must be testable in the environment and under the conditions that can be encountered in the operational SOA ecosystem. As the ecosystem is in a state of constant change, so some level of testing is continuous through the lifetime of the service, leveraging utility services used by the ecosystem infrastructure to monitor its own health and respond to situations that could lead to degraded performance. This implies the test resources must incorporate aspects of the SOA paradigm, and a category of services may be created to specifically support and enable effective monitoring and continuous testing for resources participating in the SOA ecosystem.

While SOA within an enterprise may represent a more constrained and predictable operational environment, the composability and unanticipated use aspects are highly touted within the enterprise. The expanded perspective on testing may not be as demanding within an enterprise but fuller consideration of the ecosystem enables the enterprise to be more responsive should conditions change.

Elements of SOA Testing

IEEE-829 emphasizes identifying what is to be tested, how it is to be tested, and by whom the testing is to be done. This is equally applicable to SOA testing.
What is to be Tested

The focus of this discussion is the SOA service. It is recognized that the infrastructure components of any SOA environment are likely to also be SOA services and, as such, falls under the same testing guidance. Other resources that contribute to a SOA environment may not be SOA services, but are expected to satisfy the intent if not the letter of guidance presented here.

The following discussion often focuses on a singular SOA service but it is implicit that any service may be a composite of other services. As such, testing the functionality of a composite service may effectively be testing an end-to-end business process that is being provided by the composite service. If new versions are available for the component services, appropriate end-to-end testing of the composite may be required in order to verify that the composite functionality is still adequately provided. The level of required testing of an updated composite depends on policies of those providing the service, policies of those using the service, and mission criticality of those depending on the service results.

The Service Description model (Figure 13) elaborates on described aspects of a service:

· the service functionality and technical assumptions that underlie the functionality;

· the policies that describe conditions of use;

· the service interface that defines information exchange with the service;

· service reachability that identifies how and where message exchange is to occur; and

· metrics access for any participant to have information on how a service is performing.

The aspects represent joint concerns of all the stakeholders, and service testing must provide adequate assurance that each of these aspects is operational as defined. In particular:
· Service functionality is an early and ongoing focus of testing to ensure the service accurately reflects the described functionality and the described functionality accurately addresses the consumer needs.
· Policies constraining service development, such as coding standards and best practices, require appropriate testing and auditing during development to ensure compliance. Policies that define conditions of use are initially tested during service development and are continuously monitored during the operational lifetime of the service.

· At any point where the interface is modified or exposes a new resource, the message exchange should be monitored both to ensure the message reaches its intended destination and it is parsed correctly once received.

· The service interface is also tested when the service endpoint changes. Functioning of a service endpoint at one time does not guarantee it is functioning at another time, e.g. the server with the endpoint address may be down, making testing of service reachability a continual monitoring function through the life of the service’s use of the endpoint.

· Metrics are a key indicator for consumers to decide if a service is adequate for their needs. For instance, the average response time or the recent availability can be determining factors even if there are no rules or regulations promulgated through the governance process against which these metrics are assessed. Testing will ensure that the metrics access indicated in the service description is accurate.

The individual test requirements highlight aspects of the service that testing must consider but testing must establish more than isolated behavior. The emphasis is the holistic results of interacting with the service in the SOA environment. Recall that the execution context is the set of agreements between a consumer and a provider that define the conditions under which service interaction occurs. Variations in the execution context require monitoring to ensure that different combinations of conditions perform together as desired. For example, if a new privacy policy takes additional resources to apply, this may affect quality of service and propagate other effects. These could not be tested during the original testing if the alternate policy did not exist at that time.

How Testing is to be Done

Testing should follow well-defined methodologies and, if possible, should reuse test artifacts that have proven generally useful for past testing. For example, IEEE-829 notes that test cases are separated from test designs to allow for use in more than one design and to allow for reuse in other situations. As with description of a service in the SOA ecosystem, description of testing artifacts enables awareness of the artifact and describes how the artifact may be accessed or used.

As with traditional testing, the specific test procedures and test case inputs are important so the tests are unambiguously defined and entities can be retested in the future. Automated testing and regression testing may be more important in the SOA ecosystem in order to re-verify a service is still acceptable when incorporated in a new use. For example, if a new use requires the services to deal with input parameters outside the range of initial testing, the tests could be rerun with the new parameters. If the testing resources (e.g. services that support re-executing test cases) are available to consumers within the SOA ecosystem, the testing as designed by test professionals could be consumed through a service accessed by consumers, and their results could augment those already in place. This is discussed further in the next section.

Who Performs the Testing

As with any software, the first line of testing is unit testing done by software developers. It is likely that initial testing will be done by those developing the software but may also be done independently by other developers. For SOA development, unit testing is likely confined to a development sandbox isolated from the SOA ecosystem.

SOA testing will differ from traditional software testing in that testing beyond the development sandbox must incorporate aspects of the SOA ecosystem, and those doing the testing must be familiar with both the characteristics and responses of the ecosystem and the tools, especially those available as services, to facilitate and standardize testing. Test professionals will know what level of assurance must be established as the exposure of the service to the ecosystem and ecosystem to the service increases towards operational status. These test professionals may be internal resources to an organization or may evolve as a separate discipline provided through external contracting.

As noted above, it is unlikely that a complete duplicate of the SOA ecosystem will be available for isolated testing, and thus use of ecosystem resources will manifest as a transition process rather than a step change from a test environment to an operational one. This is especially true for new composite services that incorporate existing operational services to achieve the new functionality. The test professionals will need to understand the available resources and the ramifications of this transition.

As with current software development, a stage beyond work by test professionals will make use of a select group of typical users (commonly referred to as beta testers) to report on service response during typical intended use. This establishes fitness by the consumers, providing final validation of previously verified processes, requirements, and final implementation.

In traditional software development, beta testing is the end of testing for a given version of the software. However, although the initial test phase can establish an appropriate level of confidence consistent with the designed use for the initial target consumer community, the operational service will exist in an evolving ecosystem, and later conditions of use may differ from those thought to be sufficient during the initial testing. Thus, operational monitoring becomes an extension of testing through the service lifetime. This continuous testing will attempt to ensure that a service does not consume an inordinate amount of ecosystem resources or display other behavior that degrades the ecosystem, but it will not undercover functional errors that may surface over time.

As with any software, it is the responsibility of the consumers to consider the reasonableness of solutions in order to spot errors in either the software or the way the software is being used. This is especially important for consumers with unanticipated uses that may go beyond the original test conditions. It is unlikely the consumers will initiate a new round of formal testing unless the new use requires a significantly higher level of confidence in the service. Rather the consumer becomes a new extension to the testing regiment. Obvious testing would include a sanity check of results during the new use. However, if the details of legacy testing are associated with the service through the service description and if testing resources are available through automated testing services, then the new consumers can rerun and extend previous testing to include the extended test conditions. If the test results are acceptable, these can be added to the documentation of previous results and become the extended basis for future decisions by prospective consumers on the appropriateness of the service. If the results are not acceptable or in some way questionable, the responsible party for the service or testing professionals can be brought in to decide if remedial action is necessary.

How Testing Results are Reported

For any SOA service, an accurate reporting of the testing a service has undergone and the results of the testing is vital to consumers deciding whether a service is appropriate for intended use. Appropriateness may be defined by a consumer organization and require specific test regiments culminating in a certification; appropriateness could be established by accepting testing and certifications that have been conferred by others.

The testing and certification information should be identified in the service description. Referring to the general description model of Figure 11, tests conducted by or under a request from the service owner (see ownership in section 3.1.3) would be captured under Annotations from Owners. Testing done by others (such as consumers with unanticipated uses) could be associated through Annotations from 3rd Parties.

Consumer testing and the reporting of results raises additional issues. While stating who did the testing is mandatory, there may be formal requirements for authentication of the tester to ensure traceability of the testing claims. In some circumstances, persons or organizations would not be allowed to state testing claims unless the tester was an approved entity. In other cases, ensuring the tester had a valid email may be sufficient. In either case, it would be at the discretion of the potential consumer to decide what level of authentication was acceptable and which testers are considered authoritative in the context of their anticipated use.

Finally, in a world of openly shared information, we would see an ever-expanding set of testing information as new uses and new consumers interact with a service. In reality, these new uses may represent proprietary processes or classified use that should only be available to authorized parties. Testing information, as with other elements of description, may require special access controls to ensure appropriate access and use.

Testing SOA Services

Testing of SOA services should be consistent with the SOA paradigm. In particular, testing resources and artifacts should be visible in support of service interaction between providers and consumers, where here the interaction is between the testing resource and the tester. In addition, the idea of opacity of the implementation should limit the details that need to be available for effective use of the test resources.
Software testing is a gradual exercise going from micro inspection to testing macro effects. A typical testing process is likely to begin with the traditional code reviews. SOA considerations would account for the distributed nature of SOA, including issues of distributed security and best practices to ensure secure resources.
Code review is likely followed by unit testing in a development sandbox isolated from the operational environment. The unit testing is done with full knowledge of the service internal structure and knowledge of resources representing underlying capabilities. Some aspects of testing may require external dependencies be satisfied, and this is often done using substitutes that mimic some aspects of the performance of an operational service without committing to the real world effects that the operational service would produce. Unit testing includes tests of the service interface to ensure exchanged messages are as specified in the service description and the messages can be parsed and interpreted as intended. Unit testing also verifies intended functionality and that the software has dealt correctly with internal dependencies, such as access to other dedicated resources.

After unit testing has demonstrated an adequate level of confidence in the service, the testing must transition from the tightly controlled environment of the development sandbox to an environment that more closely resembles the operational SOA ecosystem or, at a minimum, the intended enterprise. While sandbox testing will substitute for some interactions with the SOA environment, such as an interface to a security service without the security service functionality, the dynamic nature of SOA makes a full simulation infeasible to create or maintain. This is especially true when a new composite service makes use of operational services provided by others. Thus, at some point before testing is complete, the service will need to demonstrate its functionality by using resources and dealing with conditions that only exist in the full ecosystem or the intended enterprise. Some of these resources may still provide test interfaces but the interfaces will be accessible using the SOA environment and not just implemented for the sandbox.

At this stage, the opacity of the service becomes important as the details of interacting with the service now rely on correct use of the service interface and not knowledge of the service internals. The workings of the service will only be observable through the real world effects realized through service interactions and external indications that conditions of use, such as user authentication, are satisfied. Monitoring the behavior of the service will depend on service interfaces that expose internal monitoring or provide required information to the SOA infrastructure monitoring function. The monitoring required to test a new service is likely to have significant overlap with the monitoring the SOA infrastructure includes to monitor its own health and to identify and isolate behavior outside of acceptable bounds. This is exactly what is needed as part of service testing, and it is reasonable to assume that the ecosystem transition includes use of operational monitoring rather than solely dedicated monitoring for each service being tested. Use of SOA monitoring resources during the explicit testing phase sets the stage for monitoring and a level of continual testing throughout the service lifetime.
In summary, consider the example of a new composite service that combines the real world effects and complies with the conditions of use of five existing operational services. The developer of the composite service does not own any of the component services and has limited, if any, ability to get the distributed owners to do any customization. The developer also is limited by the principle of opacity to information comprising the service description, and does not know internal details of the component services. The developer of the composite service must use the component services as they exist as part of the SOA environment, including what is provided to support testing by new users.

Architectural Implications for SOA Testing

The discussion of SOA Testing indicates numerous architectural implications on the SOA ecosystem:

· The distributed, boundary-less nature of the SOA ecosystem makes it infeasible to create and maintain a single mock of the entire ecosystem to support testing activities.

· A standard suite of monitoring services needs to be defined, developed, and maintained. This should be done in a manner consistent with the evolving nature of the ecosystem.

· Services should provide interfaces that support access in a test mode.

· Testing resources must be described and their descriptions must be catalogued in a manner that enables their discovery and access.

· Guidelines for testing and ecosystem access need to be established and the ecosystem must be able to enforce those guidelines asserted as policies.

· Services should be available to support automated testing and regression testing.

· Services should be available to facilitate updating service description by anyone who has performed testing of a service.

