
Software Contracts
G. Ntinolazos

A software contract can represent different things at different levels/scope.
Interaction Contract
A contract can be thought of as a collaboration between different software elements, with each element playing a particular role(s). This view of contract is analogous to business contracts between multiple parties where each party has certain responsibilities. (It corresponds to CORBA IDL files and patterns/collaborations in UML).

This type of contract also deals with interaction protocol constraints; for example the order in which operations can be called.
Service Contract
One of the characteristics common to objects, components, and services is encapsulation – this means that external software dependencies may only be on the specification, not the implementation. The specification is by means of Interfaces, and here the interface is the contract. It consists of a set of operation specifications with invariants, and pre- and post-conditions.

Component Specification Contract
Another form of contract is the component specification (UML2, UMLComponents). The component specification defines all its interfaces, and inter-interface constraints, and any component dependencies which act as implementation constraints.

This rest of this document focuses on Service Contracts.
Service Contracts

The different aspects of a contract [CBDi]
[image: image1.emf]Semantics

Syntax

Interface Operation Parameter Data Type

1

*

*

in

out

*

Information

Model

Query

Information

Type

Pre-/Post-

Condition

1

1

Semantics

Syntax

Interface Operation Parameter Data Type

1

*

*

in

out

*

Information

Model

Query

Information

Type

Pre-/Post-

Condition

1

1

Syntax

The syntax level contract is defined at the operation signature level and is based on the operation’s name, parameters and data types.

[image: image2.emf]Interface Operation Parameter Data Type

1

*

*

in

out

*

Interface Operation Parameter Data Type

1

*

*

in

out

*

Semantics

Bertrand Mayer’s Design by Contract and the Catalysis Approach [Catalysis] extend this notion of a contract to include the semantics of the service. At the semantics level we have a set of pre- and post-conditions which define the behaviour of the operation. Pre- and post-conditions are defined against operation signature elements and the information model
.

[image: image3.emf]Contract

Logical

Contract

Syntax/

Signature

Semantics/

Logic

Semantics/

Vocabulary

QoS

Contract

Commercial

Contract

Contract

Logical

Contract

Syntax/

Signature

Semantics/

Logic

Semantics/

Vocabulary

QoS

Contract

Commercial

Contract

Example

An Interface Information Model diagram for the IAddress interface is shown in the figure below.
[image: image4.emf]dAddress

HouseNo: String

Streetname: String

Postcode : String

<<DataType>>

IAddress

getAddresses(context: Context, streetname: String) : dAddress[]

createAddress(context: Context, address : dAddress) : void

<<Interface>>

Address

HouseNo: String

<<InfoType>>

1

0..*

1

+Addresses

0..*

StreetName: String

Postcode : String

dAddress

HouseNo: String

Streetname: String

Postcode : String

<<DataType>>

IAddress

getAddresses(context: Context, streetname: String) : dAddress[]

createAddress(context: Context, address : dAddress) : void

<<Interface>>

Address

HouseNo: String

<<InfoType>>

1

0..*

1

+Addresses

0..*

StreetName: String

Postcode : String

IAddress interface information model

The IAddress interface is responsible for managing a set of address types. The IIM diagram shows the interface, its operations and their parameters and types and result type, but does not show pre-/post-conditions. These would normally be expressed in a text form using a language like OCL.
References
[Catalysis] Desmond D’Souza, Alan Cameron Wills “Objects, Components and Frameworks with UML: The Catalysis Approach”. ISBN 0201310120
[CBDi] Richard Veryard, “Modeling for SOA”, CBDi Journal, February 2003

[UMLComponents] John Cheesman, John Daniels. “UML Components”, ISBN 0201708515

� Information Model

The abstract definition of any information or state that is retained between client requests by an object supporting the interface, and any constraints on that information [UMLComponents, p.19]

