
© ISO 2012 – All rights reserved

 Basic template BASICEN3 2002-06-01

 Document Type: Other Document (Defined) 1

 2

Document Title: ISO/IEC WD 1 18384 Part 3, Distributed Application Platforms and 3

Services (DAPS) – SOA Ontology 4

 5

Source: SC38 WG2 6

 7

 8

Document Status: Working Draft 1 9

 10

 11
 12

 13

 Action ID: Attatched to Ballot for comment on Working Draft 14

 15

 16

Secretariat, ISO/IEC JTC 1/SC 38, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; 17
Telephone: 1 212 642 4904; Facsimile: 1 212 840 2298; Email: mpeacock@ansi.org 18

19

mailto:mpeacock@ansi.org

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 2

 20

 21

 22

 23

 24

 25

 26

 27

 28

Reference number of working document: ISO/IEC JTC 1/SC 38 N 782 29

Date: 2011-10-21 30

Reference number of document: ISO/WD 18384 Part 3 31

Committee identification: ISO/IEC JTC 1/SC 38/WG 2 32

Secretariat: ANSI 33

Distributed Application Platforms and Services (DAPS) –Reference 34

Architecture for Service Oriented Architecture (SOA) Part 3 – Service-35

Oriented Architecture Ontology 36

 37

Warning 38

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to 39
change without notice and may not be referred to as an International Standard. 40

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of 41
which they are aware and to provide supporting documentation. 42

Document type: Working Draft
Document subtype: if applicable
Document stage: (20) Preparation
Document language: E

ISO/IEC WD 1 18384 Part 3 SOA Ontology 3

 43

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 1

Copyright notice 44

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the 45
reproduction of working drafts or committee drafts in any form for use by participants in the ISO 46
standards development process is permitted without prior permission from ISO No comments on this 47
Annex were requested, processed, or addressed in the development of this Annex and TR, therefore 48
was no consensus developed on this annex., neither this document nor any extract from it may be 49
reproduced, stored or transmitted in any form for any other purpose without prior written permission 50
from ISO. 51

Requests for permission to reproduce this document for the purpose of selling it should be addressed 52
as shown below or to ISO’s member body in the country of the requester: 53

[Indicate : 54
the full address 55
telephone number 56
fax number 57
telex number 58
and electronic mail address 59

as appropriate, of the Copyright Manager of the ISO member body responsible for the secretariat of 60
the TC or SC within the framework of which the draft has been prepared] 61

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. 62

Violators may be prosecuted. 63

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 2

Contents Page 64

Foreword ... 5 65

Introduction ... 6 66

1 Scope ... 8 67

2 Normative references ... 8 68

3 Terms, Definitions, Notations, and Conventions... 8 69
3.1 Definitions.. 8 70
3.2 Acronyms... 9 71
3.3 Notations .. 9 72
3.4 Conventions .. 9 73

4 SOA Ontology Overview .. 9 74
4.1.1 Applications... 10 75
4.1.2 Conformance ... 11 76

5 System and Element ... 11 77
5.1 Introduction ... 11 78
5.2 The Element Class .. 12 79
5.3 The uses and usedBy Properties .. 13 80
5.4 Element – Organizational Example ... 14 81
5.5 The System Class ... 14 82
5.6 System – Examples .. 16 83
5.6.1 Organizational Example ... 16 84
5.6.2 Service Composition Example .. 16 85
5.6.3 Car Wash Example .. 16 86
5.7 The represents and representedBy Properties .. 16 87
5.8 Examples ... 18 88
5.8.1 Organizational Example ... 18 89
5.8.2 Car Wash Example .. 19 90

6 HumanActor and Task .. 19 91
6.1 Introduction ... 19 92
6.2 The HumanActor Class .. 20 93
6.3 HumanActor – Examples .. 21 94
6.3.1 The uses and usedBy Properties Applied to HumanActor ... 21 95
6.3.2 The represents and representedBy Properties Applied to HumanActor 21 96
6.3.3 Organizational Example ... 21 97
6.3.4 Car Wash Example .. 21 98
6.4 The Task Class .. 22 99
6.5 The does and doneBy Properties .. 23 100
6.6 Task – Examples ... 24 101
6.6.1 The uses and usedBy Properties Applied to Task .. 24 102
6.6.2 The represents and representedBy Properties Applied to Task .. 24 103
6.6.3 Organizational Example ... 24 104
6.6.4 Car Wash Example .. 25 105

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 3

7 Service, ServiceContract, and ServiceInterface .. 25 106
7.1 Introduction ... 25 107
7.2 The Service Class ... 26 108
7.3 The performs and performedBy Properties ... 27 109
7.3.1 Service Consumers and Service Providers ... 28 110
7.4 Service – Examples .. 28 111
7.4.1 The uses and usedBy Properties Applied to Service ... 28 112
7.4.2 The represents and representedBy Properties Applied to Service ... 29 113
7.4.3 Exemplifying the Difference between Doing a Task and Performing a Service 29 114
7.4.4 Car Wash Example .. 30 115
7.5 The ServiceContract Class .. 30 116
7.5.1 The interactionAspect and legalAspect Datatype Properties .. 31 117
7.6 The hasContract and isContractFor Properties... 32 118
7.7 The involvesParty and isPartyTo Properties ... 33 119
7.8 The Effect Class .. 34 120
7.9 The specifies and isSpecifiedBy Properties .. 34 121
7.10 ServiceContract – Examples.. 36 122
7.10.1 Service-Level Agreements ... 36 123
7.10.2 Service Sourcing ... 36 124
7.10.3 Car Wash Example .. 37 125
7.11 The ServiceInterface Class .. 37 126
7.11.1 The Constraints Datatype Property .. 38 127
7.12 The hasInterface and isInterfaceOf Properties .. 39 128
7.13 The InformationType Class .. 39 129
7.14 The hasInput and isInputAt Properties ... 40 130
7.15 The hasOutput and isOutputAt Properties ... 41 131
7.16 Examples ... 41 132
7.16.1 Interaction Sequencing .. 41 133
7.16.2 Car Wash Example .. 42 134

8 Composition and its Subclasses .. 42 135
8.1 Introduction ... 42 136
8.2 The Composition Class .. 42 137
8.2.1 The compositionPattern Datatype Property ... 44 138
8.3 The orchestrates and orchestratedBy Properties ... 46 139
8.4 The ServiceComposition Class ... 48 140
8.5 The Process Class .. 49 141
8.6 Service Composition and Process Examples .. 50 142
8.6.1 Simple Service Composition Example ... 50 143
8.6.2 Process Example .. 51 144
8.6.3 Process and Service Composition Example .. 51 145
8.6.4 Car Wash Example .. 51 146

9 Policy .. 51 147
9.1 Introduction ... 51 148
9.2 The Policy Class ... 52 149
9.2.1 The appliesTo and isSubjectTo Properties .. 54 150
9.3 The setsPolicy and isSetBy Properties .. 54 151
9.4 Examples ... 55 152
9.4.1 Car Wash Example .. 55 153

10 Event .. 55 154
10.1 Introduction ... 55 155
10.2 The Event Class .. 55 156

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 4

10.3 The generates and generatedBy Properties .. 56 157
10.4 The respondsTo and respondedToBy Properties ... 57 158

11 Complete Car Wash Example .. 57 159
11.1 The Organizational Aspect ... 57 160
11.2 The Washing Services .. 59 161
11.3 Interfaces to the Washing Services .. 60 162
11.4 The Washing Processes ... 61 163
11.5 The Washing Policies ... 62 164

12 Internet Purchase Example .. 63 165

Annex A The OWL Definition of the SOA Ontology ... 65 166

Annex B (Informative) Class Relationship Matrix... 78 167

Annex C (Informative) Issues List .. 81 168

Annex D (Informative) Bibliography... 82 169
 170

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 5

Foreword 171

ISO (the International Organization for Standardization) is a worldwide federation of national standards 172
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through 173
ISO technical committees. Each member body interested in a subject for which a technical committee has 174
been established has the right to be represented on that committee. International organizations, 175
governmental and knon-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely 176
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 177

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 178

The main task of technical committees is to prepare International Standards. Draft International Standards 179
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 180
International Standard requires approval by at least 75 % of the member bodies casting a vote. 181

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 182
rights. ISO shall not be held responsible for identifying any or all such patent rights. 183

ISO 18384-n was prepared by Technical Committee ISO/JTC 1, Subcommittee SC 38, SC DAPS Work 184
Group 2, SOA Working Group. 185

ISO 18384 consists of three parts, under the general title: Reference Architecture for Service Oriented 186
Architecture Part 1 is: SOA Terminology and Concepts, Part 2 is Reference Architecture for SOA: this 187
document is Part 3, SOA Ontology. 188

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 6

Introduction 189

The purpose of this International Standard is to contribute to developing and fostering common 190

understanding of Service-Oriented Architecture (SOA) in order to improve alignment between the business 191

and information technology communities, and facilitate SOA adoption. 192

It does this in two specific ways: 193

It defines the concepts, terminology, and semantics of SOA in both business and technical terms, in order to: 194

 Create a foundation for further work in domain-specific areas 195

 Enable communications between business and technical people 196

 Enhance the understanding of SOA concepts in the business and technical communities 197

 Provide a means to state problems and opportunities clearly and unambiguously to promote mutual 198

understanding 199

 It potentially contributes to model-driven SOA implementation. 200

The ontology is designed for use by: 201

 Business people, to give them a deeper understanding of SOA concepts and how they are used in the 202

enterprise and its environment 203

 Architects, as metadata for architectural artifacts 204

 Architecture methodologists, as a component of SOA meta-models 205

 System and software designers for guidance in terminology and structure 206

 207

This report defines the following clauses: 208

Clause 3 – terminology – defines terms used when discussing or designing service oriented solutions. Terms 209
defined here are used in some unique fashion for SOA. It does not define terms that are used in general English 210
manner. 211

Clause 4 – Overview clause provides an introduction to the whole standard. 212

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 7

Clauses 5 through 10 provide the formal definitions (OWL and natural language) of the terms and 213

concepts included in the ontology. 214

 215

Clause 4 – System and Element 216

Clause 5 – Human Actor and Task 217

Clause 6 – Service, Service Contract, and Service Interface 218

Clause 7 – Composition and its Subclasses 219

Clause 8 – Policy 220

Clause 9 – Event 221

Clause 11 contains the complete car wash example that is used as a common example throughout. 222

Clause 11 contains an additional elaborate example utilizing most of the classes in the ontology. 223

Appendix Error! Reference source not found. contains the formal OWL definitions of the ontology, 224

collected together. 225

Appendix Error! Reference source not found. describes the relation of this ontology to other work. 226

Appendix Error! Reference source not found. contains a relationship matrix that details the class 227

relationships implied by the OWL definitions of the ontology. 228

 229

230

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 8

 231

Distributed Application Platforms and Services (DAPS) 232

SOA Reference Architecture 233

Service Oriented Architecture Ontology 234

1 Scope 235

This Standard defines a formal ontology for Service-Oriented Architecture (SOA). SOA is an architectural style that 236
supports service-orientation. This is the official definition of SOA as defined by The SOA Reference Architecture Part 237
1. For full details, [see SOA Reference Architecture Part 1] 238

2 Normative references 239

The following referenced documents are indispensable for the application of this document. For dated references, only 240
the edition cited applies. For undated references, the latest edition of the referenced document (including any 241
amendments) applies. 242

Editors note: Normative references need to be identified 243

3 Terms, Definitions, Notations, and Conventions 244

For the purposes of this document, the following terms and definitions apply: 245

Those terms and definitions defined by SOA reference Architecture Part 1. 246

 247

 248

3.1 Definitions 249

3.1.1 Opaque 250

any possible internal structure of something is invisible to an external observer 251

 252

 253

 254

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 9

3.2 Acronyms 255

BPMN – Business Process Management Notation 256

IT – Information Technology 257

EA – Enterprise Architecture 258

RA – Reference Architecture 259

SLA – Service Level Agreement 260

SOA - Service Oriented Architecture 261

Editors note: Acronyms need to be identified and added 262

3.3 Notations 263

 264

3.4 Conventions 265

Bold font is used for OWL class, property, and instance names where they appear in Clause text. 266

Italic strings are used for emphasis and to identify the first instance of a word requiring definition. 267

OWL definitions and syntax are shown in fixed-width font. 268

An unlabeled arrow in the illustrative UML diagrams means subclass. 269

 270
 The examples in this document are strictly informative and are for illustrative purposes. 271

4 SOA Ontology Overview 272

This Technical Standard defines a formal ontology for Service-Oriented Architecture (SOA). SOA is an 273

architectural style that supports service-orientation. This is the official definition of SOA as defined by 274

The SOA Reference Architecture Part 1. For full details, [see SOA Reference Architecture Part 1] 275

The ontology is represented in the Web Ontology Language (OWL) defined by the World-Wide Web 276

Consortium. OWL has three increasingly expressive sub-languages: OWL-Lite, OWL-DL, and OWL-277

Full. (See www.w3.org/2004/OWL for a definition of these three dialects of OWL.) This ontology uses 278

OWL-DL, the sub-language that provides the greatest expressiveness possible while retaining 279

computational completeness and decidability. 280

The ontology contains classes and properties corresponding to the core concepts of SOA. The formal 281

OWL definitions are supplemented by natural language descriptions of the concepts, with graphic 282

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 10

illustrations of the relations between them, and with examples of their use. For purposes of exposition, 283

the ontology also includes UML diagrams that graphically illustrate its classes and properties of the 284

ontology. The natural language and OWL definitions contained in this specification constitute the 285

authoritative definition of the ontology; the diagrams are for explanatory purposes only. Some of the 286

natural language terms used to describe the concepts are not formally represented in the ontology; those 287

terms are meant in their natural language sense. 288

This Technical Standard uses examples to illustrate the ontology. One of these, the car-wash example, is 289

used consistently throughout to illustrate the main concepts. (See Clause 11 for the complete example.) 290

Other examples are used ad hoc in individual clauses to illustrate particular points. 291

A graphically compressed visualization of the entire ontology is shown below (in Figure 1). 292

 293

Figure 1: SOA Ontology – Graphical Overview 294

The concepts illustrated in this figure (Figure 1Figure 1) are described in the body of this Technical 295

Standard. 296

4.1.1 Applications 297

The SOA ontology specification was developed in order to aid understanding, and potentially be a basis 298

for model-driven implementation. 299

To aid understanding, this specification can simply be read. To be a basis for model-driven 300

implementation, it should be applied to particular usage domains and application to example usage 301

domains will aid understanding. 302

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 11

The ontology is applied to a particular usage domain by adding SOA OWL class instances of things in 303

that domain. This is sometimes referred to as “populating the ontology”. In addition, an application can 304

add definitions of new classes and properties, can import other ontologies, and can import the ontology 305

OWL representation into other ontologies. 306

The ontology defines the relations between terms, but does not prescribe exactly how they should be 307

applied. (Explanations of what ontologies are and why they are needed can be found in, for example, 308

Beyond Concepts: Ontology as Reality Representation and What is an Ontology?) The examples 309

provided in this Technical Standard are describing one way in which the ontology could be applied in 310

practical situations. Different applications of the ontology to the same situations would nevertheless be 311

possible. The precise instantiation of the ontology in particular practical situations is a matter for users of 312

the ontology; as long as the concepts and constraints defined by the ontology are correctly applied, the 313

instantiation is valid. 314

4.1.2 Conformance 315

There are two kinds of applications that can potentially conform to this ontology. One is other OWL-316

based ontologies (typically extensions of the SOA ontology); the other is a non-OWL application such as 317

a meta-model or a piece of software. 318

A conforming OWL application (derived OWL-based ontology): 319

• Must conform to the OWL standard 320

• Must include in the sense the whole of the ontology contained in ppendix A of this 321

Technical Standard 322

• Can add other OWL constructs, including class and property definitions 323

• Can import other ontologies in addition to the SOA ontology 324

A conforming non-OWL application: 325

• ust include a defined and consistent transform to a non-trivial su set of the ontology contained in 326

 ppendix A of this Technical Standard 327

• Can add other constructs, including class and property definitions 328

• Can leverage other ontologies in addition to the SOA ontology 329

5 System and Element 330

5.1 Introduction 331

System and element are two of the core concepts of this ontology. Both are concepts that are often used 332

by practitioners, including the notion that systems have elements and that systems can be hierarchically 333

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 12

combined (systems of systems). What differs from domain to domain is the specific nature of systems 334

and elements; for instance, an electrical system has very different kinds of elements than an SOA system. 335

In the ontology only elements and systems within the SOA domain are considered. Some SOA sub-336

domains use the term component rather than the term element. This is not contradictory, as any 337

component of an SOA system is also an element of that (composite) system. 338

This Clause describes the following classes of the ontology: 339

ElementSystem 340

In addition, it defines the following properties: 341

uses and usedBy 342

represents and representedBy 343

5.2 The Element Class 344

<owl:Class rdf:about="#Element"> 345

</owl:Class> 346

An element is an opaque entity that is indivisible at a given level of abstraction. The element has a 347

clearly defined boundary. The concept of element is captured by the Element OWL class, which is 348

illustrated below (in Figure 1). 349

 350

Figure 1: The Element Class 351

In the context of the SOA ontology we consider in detail only functional elements that belong to the 352

SOA domain. There are other kinds of Elements than members of the four named subclasses (System, 353

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 13

HumanActor, Task, and Service) described later in this ontology. Examples of such other kinds of 354

Elements are things like software components or technology components (such as Enterprise Service 355

Bus (ESB) implementations, etc.). 356

5.3 The uses and usedBy Properties 357

<owl:ObjectProperty rdf:about="#uses"> 358

 <rdfs:domain rdf:resource="#Element"/> 359

 <rdfs:range rdf:resource="#Element"/> 360

</owl:ObjectProperty> 361

 362

<owl:ObjectProperty rdf:ID="usedBy"> 363

 <owl:inverseOf> 364

 <owl:ObjectProperty rdf:ID="uses"/> 365

 </owl:inverseOf> 366

</owl:ObjectProperty> 367

Elements may use other elements in various ways. In general, the notion of some element using another 368

element is applied by practitioners for all of models, executables, and physical objects. What differs from 369

domain to domain is the way in which such use is perceived. 370

An element uses another element if it interacts with it in some fashion. Interacts here is interpreted very 371

broadly ranging through, for example, an element simply being a member of (used by) some system (see 372

later for a formal definition of the System class), an element interacting with (using) another element 373

(such as a service; see later for a formal definition of the Service class) in an ad hoc fashion, or even a 374

strongly coupled dependency in a composition (see later for a formal definition of the Composition 375

class). The uses property, and its inverse usedBy, capture the abstract notion of an element using 376

another. These properties capture not just transient relations. Instantiations of the property can include 377

“uses at this instant”, “has used”, and “may in future use”. 378

For the purposes of this ontology we have chosen not to attempt to enumerate and formally define the 379

multitude of different possible semantics of a uses relationship. We leave the semantic interpretations to 380

a particular sub-domain, application or even design approach. 381

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 14

5.4 Element – Organizational Example 382

Using an organizational example, typical instances of Element are organizational units and people. 383

Whether to perceive a given part of an organization as an organizational unit or as the set of people 384

within that organizational unit is an important choice of abstraction level: 385

Inside the boundary of the organizational unit we want to express the fact that an organizational unit uses 386

the people that are members of it. Note that the same person can in fact be a member of (be used by) 387

multiple organizational units. 388

Outside the boundary the internal structure of an organizational unit must remain opaque to an external 389

observer, as the enterprise wants to be able to change the people within the organizational unit without 390

having to change the definition of the organizational unit itself. 391

This simple example expresses that some elements have an internal structure. In fact, from an internal 392

perspective they are an organized collection of other simpler things (captured by the System class 393

defined below). 394

5.5 The System Class 395

<owl:Class rdf:ID="System"> 396

 <owl:disjointWith> 397

 <owl:Class rdf:ID="Task"/> 398

 </owl:disjointWith> 399

 <owl:disjointWith> 400

 <owl:Class rdf:ID="Service"/> 401

 </owl:disjointWith> 402

 <rdfs:subClassOf> 403

 <owl:Class rdf:about="#Element"/> 404

 </rdfs:subClassOf> 405

</owl:Class> 406

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 15

A system is an organized collection of other things. Specifically things in a system collection are 407

instances of Element, each such instance being used by the system. The concept of system is captured by 408

the System OWL class, which is illustrated below (in Figure 2). 409

 410

Figure 2: The System Class 411

This definition of System is heavily influenced by IEEE Std 1471-2000, adopted by ISO/IEC JTC1/SC7 412

as ISO/IEC 42010:2007: Systems and Software Engineering – Recommended Practice for Architectural 413

Description of Software-intensive Systems. 414

In the context of the SOA ontology we consider in detail only functional systems that belong to the SOA 415

domain. Note that a fully described instance of System should have by its nature (as a collection) a uses 416

relationship to at least one instance of Element. 417

Since System is a subclass of Element, all systems have a boundary and are opaque to an external 418

observer (black box view). This excludes from the System class structures that have no defined 419

boundary. From an SOA perspective this is not really a loss since all interesting SOA systems do have 420

the characteristic of being possible to perceive from an outside (consumer) perspective. Furthermore, 421

having System as a subclass of Element allows us to naturally express the notion of systems of systems 422

– the lower-level systems are simply elements used by the higher level system. 423

At the same time as supporting an external view point (black box view, see above) all systems must also 424

support an internal view point (white box view) expressing how they are an organized collection. As an 425

example, for the notion of a service this would typically correspond to a service specification view 426

versus a service realization view (similar to the way that SoaML defines services as having both a black 427

box/specification part and a white box/realization part). 428

It is important to realize that even though systems using elements express an important aspect of the uses 429

property, it is not necessary to “invent” a system just to express that some element uses another. In fact, 430

even for systems we may need to be able to express that they can use elements outside their own 431

boundary – though this in many cases will preferably be expressed not at the system level, but rather by 432

an element of the system using that external Element instance. 433

System is defined as disjoint with the Service and Task classes. Instances of these classes are considered 434

not to be collections of other things. System is specifically not defined as disjoint with the HumanActor 435

class since an organization is many cases is in fact just a particular kind of system. We choose not to 436

define a special intersection class to represent this fact. 437

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 16

5.6 System – Examples 438

5.6.1 Organizational Example 439

Continuing the organizational example from above, we can now express that an organizational unit as an 440

instance of System has the people in it as members (and instances of element). 441

5.6.2 Service Composition Example 442

Using a service composition example, services A and B are instances of Element and the composition of 443

A and B is an instance of System (that uses A and B). It is important to realize that the act of composing 444

is different than composition as a thing – it is in the latter sense that we are using the term composition 445

here. 446

See also below for a formal definition of the concepts of service and service composition (and a repeat of 447

the example in that more precise context). 448

5.6.3 Car Wash Example 449

Consider a car wash business. The company as a whole is an organizational unit and can be instantiated 450

in the ontology in the following way: 451

CarWashBusiness is an instance of System. 452

Joe (the owner) is an instance of Element and used by (owner of) CarWashBusiness. 453

Mary (the secretary) is an instance of Element and used by (employee of) CarWashBusiness. 454

John (the pre-wash guy) is an instance of Element and used by (employee of) CarWashBusiness. 455

Jack (the washing manager and operator) is an instance of Element and used by (employee of) 456

CarWashBusiness. 457

5.7 The represents and representedBy Properties 458

<owl:ObjectProperty rdf:about="#represents"> 459

 <rdfs:domain rdf:resource="#Element"/> 460

 <rdfs:range rdf:resource="#Element"/> 461

</owl:ObjectProperty> 462

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 17

 463

<owl:ObjectProperty rdf:ID="representedBy"> 464

 <owl:inverseOf> 465

 <owl:ObjectProperty rdf:ID="represents"/> 466

 </owl:inverseOf> 467

</owl:ObjectProperty> 468

The environment described by an SOA is intrinsically hierarchically composite (see also Clause 6.2 for a 469

definition of the Composition class); in other words, the elements of SOA systems can be repeatedly 470

composed to ever higher levels of abstraction. One aspect of this has already been addressed by the uses 471

and usedBy properties in that we can use these to express the notion of systems of systems. This is still a 472

very concrete relationship though, and does not express the concept of architectural abstraction. We find 473

the need for architectural abstraction in various places such as a role representing the people playing that 474

role, an organizational unit representing the people within it (subtly different from that same 475

organizational unit using the people within it, as the represents relationship indicates the organizational 476

unit as a substitute interaction point), an architectural building block representing an underlying 477

construct (for instance, important to enterprise architects wanting to explicitly distinguish between 478

constructs and building blocks), and an Enterprise Service Bus (ESB) representing the services that are 479

accessible through it (for instance, relevant when explicitly modeling operational interaction and 480

dependencies). The concept of such an explicitly changing view point, or level of abstraction, is captured 481

by the represents and representedBy properties illustrated below (in Figure 3). 482

 483

Figure 3: The represents and representedBy Properties 484

It is important to understand the exact nature of the distinction between using an element (E1) and using 485

another element (E2) that represents E1. If E1 changes, then anyone using E1 directly would experience 486

a change, but someone using E2 would not experience any change. 487

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 18

When applying the architectural abstraction via the represents property there are three different 488

architectural choices that can be made: 489

An element represents another element in a very literal way, simply by hiding the existence of that 490

element and any changes to it. There will be a one-to-one relationship between the instance of Element 491

and the (different) instance of Element that it represents. A simple real-world example is the notion of a 492

broker acting as an intermediary between a seller (that does not wish to be known) and a buyer. 493

An element represents a particular aspect of another element. There will be a many-to-one relationship 494

between many instances of Element (each of which represents a different aspect), and one (different) 495

instance of Element. A simple real-world example is the notion that the same person can play (be 496

represented by) many different roles. 497

An element is an abstraction that can represent many other elements. There will be a one-to-many 498

relationship between one instance of Element (as an abstraction) and many other instances of Element. 499

A simple real-world example is the notion of an architectural blueprint representing an abstraction of 500

many different buildings being built according to that blueprint. 501

Note that in most cases an instance of Element will represent only one kind of thing. Specifically an 502

instance of Element will typically represent instances of at most one of the classes System, Service, 503

Actor, and Task (with the exception of the case where the same thing is both an instance of System and 504

an instance of Actor). See later clauses for the definitions of Service, Actor, and Task. 505

5.8 Examples 506

5.8.1 Organizational Example 507

Expanding further on the organizational example, assume that a company desires to form a new 508

organizational unit O1. There are two ways of doing this: 509

Define the new organization directly as a collection of people P1, P2, P3, and P4. This means that the 510

new organization is perceived to be a leaf in the organizational hierarchy, and that any exchange of 511

personnel means that its definition needs to change. 512

Define the new organization as a higher-level organizational construct, joining together two existing 513

organizations O3 and O4. Coincidentally, O3 and O4 between them may have the same four people P1, 514

P2, P3, and P4, ut the new organization really doesn‟t know, and any mem er of 3 or 4 can e 515

changed without needing to change the definition of the new organization. Furthermore, any member of 516

O3 is intrinsically not working in the same organization as the members of O4 (in fact need not even be 517

aware of them) – contrary to the first option where P1, P2, P3, and P4 are all colleagues in the same new 518

organization. 519

In this way the abstraction aspect of the represents property induces an important difference in the 520

semantics of the collection defining the new organization. Any instantiation of the ontology can and 521

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 19

should use the represents and representedBy properties to crisply define the implied semantics and 522

lines of visibility/change. 523

5.8.2 Car Wash Example 524

Joe chooses to organize his business into two organizational units, one for the administration and one for 525

the actual washing of cars. This can be instantiated in the ontology in the following way: 526

CarWashBusiness is an instance of System. 527

AdministrativeSystem is an instance of System. 528

Administration is an instance of Element that represents AdministrativeSystem (the opaque 529

organizational unit aspect, aka ignoring anything else about AdministrativeSystem). 530

CarwashBusiness uses (has organizational unit) Administration. 531

CarWashSystem is an instance of System. 532

CarWash is an instance of Element that represents CarWashSystem (the opaque organizational unit 533

aspect, aka ignoring anything else about CarWashSystem). 534

CarWash is a member of CarWashBusiness. 535

Joe (the owner) is an instance of Element and now used by AdministrationSystem. 536

Mary (the secretary) is an instance of Element and now used by AdministrationSystem. 537

John (the pre-wash guy) is an instance of Element and now used by CarWashSystem. 538

Jack (the wash manager and operator) is an instance of Element and now used by CarWashSystem. 539

 540

6 HumanActor and Task 541

6.1 Introduction 542

People, organizations, and the things they do are important aspects of SOA systems. HumanActor and 543

Task capture this as another set of core concepts of the ontology. Both are concepts that are generic and 544

have relevance outside the domain of SOA. For the purposes of this SOA ontology we have chosen to 545

give them specific scope in that tasks are intrinsically atomic (corresponding to, for instance, the 546

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 20

Business Process Modeling Notation (BPMN) 2.0 definition of Task) and human actors are restricted to 547

people and organizations. 548

This Clause describes the following classes of the ontology: 549

HumanActor 550

Task 551

In addition, it defines the following properties: 552

does and doneBy 553

6.2 The HumanActor Class 554

<owl:Class rdf:about="#HumanActor"> 555
 <rdfs:subClassOf> 556
 <owl:Class rdf:ID="Element"/> 557
 </rdfs:subClassOf> 558
 <owl:disjointWith> 559
 <owl:Class rdf:ID="Task"/> 560
 </owl:disjointWith> 561
 <owl:disjointWith> 562
 <owl:Class rdf:ID="Service"/> 563
 </owl:disjointWith> 564
</owl:Class> 565

A human actor is a person or an organization. The concept of human actor is captured by the 566

HumanActor OWL class, which is illustrated below (in Figure 4). 567

 568

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 21

Figure 4: The HumanActor Class 569

HumanActor is defined as disjoint with the Service and Task classes. Instances of these classes are 570

considered not to be people or organizations. HumanActor is specifically not defined as disjoint with 571

System since an organization in many cases is in fact just a particular kind of system. We choose not to 572

define a special intersection class to represent this fact. 573

6.3 HumanActor – Examples 574

6.3.1 The uses and usedBy Properties Applied to HumanActor 575

In one direction, a human actor can itself use things such as services, systems, and other human actors. In 576

the other direction, a human actor can, for instance, be used by another actor or by a system (as an 577

element within that system such as a human actor in a process). 578

6.3.2 The represents and representedBy Properties Applied to HumanActor 579

As mentioned in the introduction to this clause, human actors are intrinsically part of systems that 580

instantiate service-oriented architectures. Yet in many cases as an element of an SOA system we talk 581

about not the specific person or organization, rather an abstract representation of them that participates in 582

processes, provides services, etc. In other words, we talk about elements representing human actors. 583

As examples, a broker (instance of HumanActor) may represent a seller (instance of HumanActor) that 584

wishes to remain anonymous, a role (instance of Element) may represent (the role aspect of) multiple 585

instances of HumanActor, and an organizational unit (instance of HumanActor) may represent the 586

many people (all instances of HumanActor) that are part of it. 587

Note that we have chosen not to define a “role class”, as we elieve that using Element with the 588

represents property is a more general approach which does not limit the ability to also define role-based 589

systems. For all practical purposes there is simply a “role su class” of Element, a subclass that we have 590

chosen not to define explicitly. 591

6.3.3 Organizational Example 592

Continuing the organizational example from above, we can now express that P1 (John), P2 (Jack), P3 593

(Joe), and P4 (Mary) as instances of Element are in fact (people) instances of HumanActor. We can 594

also express (if we so choose) that all of O1 (CarWashBusiness), O3 (CarWash), and O4 595

(Administration) are (organization) human actors from an action perspective at the same time that they 596

are systems from a collection/composition perspective. 597

6.3.4 Car Wash Example 598

See Clause 11.1 for the complete organizational aspect of the car wash example. 599

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 22

6.4 The Task Class 600

<owl:Class rdf:about="#Task"> 601
 <owl:disjointWith> 602
 <owl:Class rdf:ID="System"/> 603
 </owl:disjointWith> 604
 <owl:disjointWith> 605
 <owl:Class rdf:ID="HumanActor"/> 606
 </owl:disjointWith> 607
 <owl:disjointWith> 608
 <owl:Class rdf:ID="Service"/> 609
 </owl:disjointWith> 610
 <rdfs:subClassOf> 611
 <owl:Class rdf:ID="Element"/> 612
 </rdfs:subClassOf> 613
</owl:Class> 614

A task is an atomic action which accomplishes a defined result. Tasks are done by people or 615

organizations, specifically by instances of HumanActor. 616

The Business Process Modeling Notation (BPMN 2.0 defines task as follows: “ Task is an atomic 617

Activity within a Process flow. A Task is used when the work in the Process cannot be broken down to a 618

finer level of detail. Generally, an end-user and/or applications are used to perform the Task when it is 619

executed.” For the purposes of the ontology we have added precision by formally separating the notion 620

of doing from the notion of performing. Tasks are (optionally) done by human actors, furthermore (as 621

instances of Element) tasks can use services that are performed by technology components (see details in 622

Clause 7.3; see also the example in Clause 12). 623

The concept of task is captured by the Task OWL class, which is illustrated below (in Figure 5). 624

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 23

 625

Figure 5: The Task Class 626

Task is defined as disjoint with the System, Service, and HumanActor classes. Instances of these classes 627

are considered not to be atomic actions. 628

6.5 The does and doneBy Properties 629

<owl:ObjectProperty rdf:about="#doneBy"> 630
 <rdfs:domain rdf:resource="#Task"/> 631
 <rdfs:range rdf:resource="#HumanActor"/> 632
</owl:ObjectProperty> 633
 634
<owl:ObjectProperty rdf:ID="does"> 635
 <owl:inverseOf> 636
 <owl:ObjectProperty rdf:about="#doneBy"/> 637
 </owl:inverseOf> 638
</owl:ObjectProperty> 639
 640
<owl:Class rdf:ID="Task"> 641
 <rdfs:subClassOf> 642
 <owl:Restriction> 643
 <owl:onProperty> 644
 <owl:ObjectProperty rdf:ID="doneBy"/> 645
 </owl:onProperty> 646
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 647

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 24

 >0</owl:minCardinality> 648
 </owl:Restriction> 649
 </rdfs:subClassOf> 650
 <rdfs:subClassOf> 651
 <owl:Restriction> 652
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 653
 >1</owl:maxCardinality> 654
 <owl:onProperty> 655
 <owl:ObjectProperty rdf:about="#doneBy"/> 656
 </owl:onProperty> 657
 </owl:Restriction> 658
 </rdfs:subClassOf> 659
</owl:Class> 660

Tasks are naturally thought of as being done by people or organizations. If we think of tasks as being the 661

actual things done, then the natural cardinality is that each instance of Task is done by at most one 662

instance of HumanActor. Due to the atomic nature of instances of Task we rule out the case where such 663

an instance is done jointly by multiple instances of HumanActor. The cardinality can be zero if someone 664

chooses not to instantiate all possible human actors. On the other hand, the same instance of 665

HumanActor can (over time) easily do more than one instance of Task. The does property, and its 666

inverse doneBy, capture the relation between a human actor and the tasks it does. 667

6.6 Task – Examples 668

6.6.1 The uses and usedBy Properties Applied to Task 669

In one direction, the most common case of a task using another element is where an automated task (in 670

an orchestrated process; see Clause Error! Reference source not found. for the definition of process 671

and orchestration) uses a service as its realization. In the other direction, a task can, for instance, be used 672

by a system (as an element within that system, such as a task in a process). 673

6.6.2 The represents and representedBy Properties Applied to Task 674

As mentioned in the introduction to this clause, tasks are intrinsically part of SOA systems. Yet in many 675

cases as an element of an SOA system we talk about not the actual thing being done, rather an abstract 676

representation of it that is used as an element in systems, processes, etc. In other words, we talk about 677

elements representing tasks. 678

As a simple example, an abstract activity in a process model (associated with a role) may represent a 679

concrete task (done by a person fulfilling that role). Note that due to the atomic nature of a task it does 680

not make sense to talk about many elements representing different aspects of it. 681

6.6.3 Organizational Example 682

Continuing the organizational example from above, we can now express which tasks that are done by 683

human actors (people) P1, P2, P3, and P4, and how those tasks can be elements in bigger systems that 684

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 25

describe things such as organizational processes. Clause Error! Reference source not found. will deal 685

formally with the concept of composition, including properly defining the concept of a process as one 686

particular kind of composition. 687

6.6.4 Car Wash Example 688

As an important part of the car wash system, John and Jack perform certain manual tasks required for 689

washing a car properly: 690

Jack and John are instances of HumanActor. 691

WashWindows is an instance of Task and is done by John. 692

PushWashButton is an instance of Task and is done by Jack. 693

7 Service, ServiceContract, and ServiceInterface 694

7.1 Introduction 695

Service is another core concept of this ontology. It is a concept that is fundamental to SOA and always 696

used in practice when describing or engineering SOA systems, yet it is not easy to define formally. The 697

ontology is based on the following definition of service: 698

“A service is a logical representation of a repeatable activity that has a specified outcome. It is self-699

contained and is a „black box‟ to its consumers.” 700

This corresponds to the existing official Open Group definition of the term; refer to the Open Group 701

Definition of SOA. 702

The word activity in the definition above is here used in the general English language sense of the word, 703

not in the process-specific sense of that same word (i.e., activities are not necessarily process activities). 704

The ontology purposefully omits “ usiness” as an intrinsic part of the definition of service. The reason 705

for this is that the notion of usiness is relative to a person‟s viewpoint – as an example, one person‟s 706

notion of IT is another person‟s notion of usiness the usiness of IT). Service as defined by the 707

ontology is agnostic to whether the concept is applied to the classical notion of a business domain or the 708

classical notion of an IT domain. 709

Other current SOA-specific definitions of the term service include: 710

 “A mechanism to enable access to one or more capabilities, where the access is provided using a 711

prescribed interface and is exercised consistent with constraints and policies as specified by the 712

service description.” (Source: OASIS SOA Reference Model) 713

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#defofsoa#defofsoa
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#defofsoa#defofsoa

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 26

 “A capability offered by one entity or entities to others using well-defined „terms and conditions‟ 714

and interfaces.” (Source: OMG SoaML Specification) 715

Within the normal degree of precision of the English language, these definitions are not contradictory; 716

they are stressing different aspects of the same concept. All three definitions are SOA-specific though, 717

and represent a particular interpretation of the generic English language term service. 718

This clause describes the following classes of the ontology: 719

 Service 720

 ServiceContract 721

 ServiceInterface 722

 InformationType 723

In addition, it defines the following properties: 724

 performs and performedBy 725

 hasContract and isContractFor 726

 involvesParty and isPartyTo 727

 specifies and isSpecifiedBy 728

 hasInterface and isInterfaceOf 729

 hasInput and isInputAt 730

 hasOutput and isOutputAt 731

7.2 The Service Class 732

<owl:Class rdf:about="#Service"> 733
 <owl:disjointWith> 734
 <owl:Class rdf:ID="System"/> 735
 </owl:disjointWith> 736
 <owl:disjointWith> 737
 <owl:Class rdf:ID="Task"/> 738
 </owl:disjointWith> 739
 <owl:disjointWith> 740
 <owl:Class rdf:ID="HumanActor"/> 741
 </owl:disjointWith> 742
 <rdfs:subClassOf> 743
 <owl:Class rdf:about="#Element"/> 744

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 27

 </rdfs:subClassOf> 745
</owl:Class> 746

A service is a logical representation of a repeatable activity that has a specified outcome. It is self-747

contained and is a „ lack ox‟ to its consumers. The concept of service is captured by the Service OWL 748

class, which is illustrated below (in Figure 6). 749

 750

Figure 6: The Service Class 751

In the context of the SOA ontology we consider only SOA-based services. Other domains, such as 752

Integrated Service Management, can have services that are not SOA-based hence are outside the 753

intended scope of the SOA ontology. 754

Service is defined as disjoint with the System, Task, and HumanActor classes. Instances of these classes 755

are considered not to be services themselves, even though they may provide capabilities that can be 756

offered as services. 757

7.3 The performs and performedBy Properties 758

<owl:ObjectProperty rdf:ID="performs"> 759
 <rdfs:domain rdf:resource="#Element"/> 760
 <rdfs:range rdf:resource="#Service"/> 761
</owl:ObjectProperty> 762
 763
<owl:ObjectProperty rdf:ID="performedBy"> 764
 <owl:inverseOf> 765
 <owl:ObjectProperty rdf:ID="performs"/> 766
 </owl:inverseOf> 767
</owl:ObjectProperty> 768

As a service itself is only a logical representation, any service is performed by something. The 769

something that performs a service must be opaque to anyone interacting with it, an opaqueness which is 770

the exact nature of the Element class. This concept is captured by the performs and performedBy 771

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_service#fig_service
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_service#fig_service

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 28

properties as illustrated in The Service Class (Figure 6). This also captures the fact that services can be 772

performed by elements of other types than systems. This includes elements such as software 773

components, human actors, and tasks. 774

Note that the same instance of Service can be performed by many different instances of Element. As 775

long as the service performed is the same, an external observer cannot tell the difference (for contractual 776

obligations, SLAs, etc. see the definition of the ServiceContract class in Clause 7.5.). Conversely, any 777

instance of Element may perform more than one service or none at all. 778

While a service can be performed by other elements, the service itself (as a purely logical representation) 779

does not perform other services. See the Simple Service Composition Example (Clause 8.6.1) for an 780

example of how to represent service compositions formally in the ontology. 781

7.3.1 Service Consumers and Service Providers 782

Terminology used in an SOA environment often includes the notions of service providers and service 783

consumers. There are two challenges with this terminology: 784

 It does not distinguish between the contractual obligation aspect of consume/provide and the 785

interaction aspect of consume/provide. A contractual obligation does not necessarily translate to an 786

interaction dependency, if for no other reason than because the realization of the contractual 787

obligation may have been sourced to a third party. 788

 Consuming or providing a service is a statement that only makes sense in context – either a 789

contractual context or an interaction context. These terms are consequently not well suited for making 790

statements about elements and services in isolation. 791

The above are the reasons why the ontology has chosen not to adopt consume and provide as core concepts, 792

rather instead allows consume or provide terms used with contractual obligations and/or interaction rules 793

described by service contracts; see the definition of the ServiceContract class in Clause 7.5. In its simplest 794

form, outside the context of a formal service contract, the interaction aspect of consuming and providing 795

services may even be expressed simply by saying that some element uses (consumes) a service or that some 796

element performs (provides) a service; see also the examples below. 797

7.4 Service – Examples 798

7.4.1 The uses and usedBy Properties Applied to Service 799

In one direction, it does not really make sense to talk about a service that uses another element. While 800

the thing that performs the service might very well include the use of other elements (and certainly will 801

in the case of Service Composition), the service itself (as a purely logical representation) does not use 802

other elements. 803

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_service#fig_service
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_service#fig_service
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#simplecompositioneg#simplecompositioneg

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 29

In the other direction, we find the most common of all interactions in an SOA environment: the notion 804

that some element uses a service by interacting with it. Note that from an operational perspective this 805

interaction actually reaches somewhat beyond the service itself by involving the following typical steps: 806

 Picking the service to interact with (this statement is agnostic as to whether this is done 807

dynamically at runtime or statically at design and/or construct time) 808

 Picking an element that performs that service (in a typical SOA environment, this is most often 809

done “inside” an Enterprise Service Bus ESB)) 810

 Interacting with the chosen element (that performs the chosen) service (often also facilitated by an 811

ESB) 812

7.4.2 The represents and representedBy Properties Applied to Service 813

Concepts such as service mediations, service proxies, ESBs, etc. are natural to those practitioners that 814

describe and implement the operational aspects of SOA systems. From an ontology perspective all of 815

these can be captured by some other element representing the service – a level of indirection that is 816

critical when we do not want to bind operationally to a particular service endpoint, rather we want to 817

preserve loose coupling and the ability to switch embodiments as needed. Note that by leveraging the 818

represents and representedBy properties in this fashion we additionally encapsulate the relatively 819

complex operational interaction pattern that was described in the clause above (picking the service, 820

picking an element that performs the service, and interacting with that chosen element). 821

While a service being represented by something else is quite natural, it is harder to imagine what the 822

service itself might represent. To some degree we have already captured the fact that a service represents 823

any embodiment of it, only we have chosen to use the performs and performedBy properties to described 824

this rather than the generic represents and representedBy properties. As a consequence, we do not expect 825

practical applications of the ontology to have services represent anything. 826

7.4.3 Exemplifying the Difference between Doing a Task and Performing a Service 827

The distinction between a human actor performing a task and an element (technology, human actor, or 828

other) performing a service is important. The human actor doing the task has the responsibility that it gets 829

done, yet may in fact in many cases leverage some service to achieve that outcome: 830

 John is an instance of HumanActor. 831

 WashWindows is an instance of Task and is done by John. 832

 SoapWater is an instance of Service. 833

 WaterTap is an instance of Element. 834

 WaterTap performs SoapWater. 835

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 30

 John uses SoapWater (to do WashWindows). 836

Note how clearly SoapWater does not do WashWindows, nor does WaterTap do WashWindows. 837

7.4.4 Car Wash Example 838

Joe offers two different services to his customers: a basic wash and a gold wash. This can be instantiated in 839

the ontology in the following way (subset to the part relevant for these two services): 840

 GoldWash is an instance of Service. 841

 BasicWash is an instance of Service. 842

 CarWash performs both BasicWash and GoldWash. 843

 WashManager represents both BasicWash and GoldWash (i.e., is the interaction point where 844

customers can order services as well as pay for them). 845

Note the purposeful use of WashManager representing both services. This is due to Joe deciding that in his 846

car wash customers are not to interact with the washing machinery directly, rather must instead interact with 847

whomever (human actor) is fulfilling the role of wash manager. 848

7.5 The ServiceContract Class 849

<owl:Class rdf:about="#ServiceContract"> 850
 <owl:disjointWith> 851
 <owl:Class rdf:ID="HumanActor"/> 852
 </owl:disjointWith> 853
 <owl:disjointWith> 854
 <owl:Class rdf:ID="Task"/> 855
 </owl:disjointWith> 856
</owl:Class> 857

In many cases, specific agreements are needed in order to define how to use a service. This can either be 858

because of a desire to regulate such use or can simply be because the service will not function properly 859

unless interaction with it is done in a certain sequence. A service contract defines the terms, conditions, 860

and interaction rules that interacting participants must agree to (directly or indirectly). A service contract 861

is binding on all participants in the interaction, including the service itself and the element that provides 862

it for the particular interaction in question. The concept of service contract is captured by the 863

ServiceContract OWL class, which is illustrated below (in Figure 7). 864

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_servicecontract#fig_servicecontract
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_servicecontract#fig_servicecontract

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 31

 865

Figure 7: The ServiceContract Class 866

7.5.1 The interactionAspect and legalAspect Datatype Properties 867

<owl:DatatypeProperty rdf:about="#interactionAspect"> 868
 <rdfs:domain rdf:resource="#ServiceContract"/> 869
</owl:DatatypeProperty> 870
 871
<owl:DatatypeProperty rdf:about="#legalAspect"> 872
 <rdfs:domain rdf:resource="#ServiceContract"/> 873
</owl:DatatypeProperty> 874
 875
<owl:Class rdf:about="#ServiceContract"> 876
 <rdfs:subClassOf> 877
 <owl:Restriction> 878
 <owl:onProperty> 879
 <owl:DatatypeProperty rdf:ID="legalAspect"/> 880
 </owl:onProperty> 881
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 882
 >1</owl:minCardinality> 883
 </owl:Restriction> 884
 </rdfs:subClassOf> 885
 <rdfs:subClassOf> 886
 <owl:Restriction> 887
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 888
 >1</owl:maxCardinality> 889
 <owl:onProperty> 890
 <owl:DatatypeProperty rdf:ID="legalAspect"/> 891
 </owl:onProperty> 892
 </owl:Restriction> 893

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 32

 </rdfs:subClassOf> 894
 <rdfs:subClassOf> 895
 <owl:Restriction> 896
 <owl:onProperty> 897
 <owl:DatatypeProperty rdf:ID="interactionAspect"/> 898
 </owl:onProperty> 899
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 900
 >1</owl:maxCardinality> 901
 </owl:Restriction> 902
 </rdfs:subClassOf> 903
 <rdfs:subClassOf> 904
 <owl:Restriction> 905
 <owl:onProperty> 906
 <owl:DatatypeProperty rdf:about="#interactionAspect"/> 907
 </owl:onProperty> 908
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 909
 >1</owl:minCardinality> 910
 </owl:Restriction> 911
 </rdfs:subClassOf> 912
</owl:Class> 913

Service contracts explicitly regulate both the interaction aspects (see the hasContract and isContractFor 914

properties) and the legal agreement aspects (see the involvedParty and isPartyTo properties) of using a 915

service. The two types of aspects are formally captured by defining the interactionAspect and 916

legalAspect datatype properties on the ServiceContract class. Note that the second of these attributes, 917

the legal agreement aspects, includes concepts such as Service-Level Agreements (SLAs). 918

If desired, it is possible as an architectural convention to split the interaction and legal aspects into two 919

different service contracts. Such choices will be up to any application using this ontology. 920

7.6 The hasContract and isContractFor Properties 921

<owl:ObjectProperty rdf:about="#isContractFor"> 922
 <rdfs:domain rdf:resource="#ServiceContract"/> 923
 <rdfs:range rdf:resource="#Service"/> 924
</owl:ObjectProperty> 925
 926
<owl:ObjectProperty rdf:ID="hasContract"> 927
 <owl:inverseOf> 928
 <owl:ObjectProperty rdf:about="#isContractFor"/> 929
 </owl:inverseOf> 930
</owl:ObjectProperty> 931
 932
<owl:Class rdf:about="#ServiceContract"> 933
 <rdfs:subClassOf> 934
 <owl:Restriction> 935
 <owl:onProperty> 936
 <owl:ObjectProperty rdf:ID="isContractFor"/> 937
 </owl:onProperty> 938
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 939
 >1</owl:minCardinality> 940

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 33

 </owl:Restriction> 941
 </rdfs:subClassOf> 942
</owl:Class> 943

The hasContract property, and its inverse isContractFor, capture the abstract notion of a service 944

having a service contract. Anyone wanting to use a service must obey the interaction aspects (as defined 945

in the interactionAspect datatype property) of any service contract applying to that interaction. In that 946

fashion, the interaction aspects of a service contract are context-independent; they capture the defined or 947

intrinsic ways in which a service may be used. 948

By definition, any service contract must be a contract for at least one service. It is possible that the same 949

service contract can be a contract for more than one service; for instance, in cases where a group of 950

services share the same interaction pattern or where a service contract (legally – see the involvesParty 951

and isPartyTo properties below) regulates the providing and consuming of multiple services. 952

7.7 The involvesParty and isPartyTo Properties 953

<owl:ObjectProperty rdf:about="#isPartyTo"> 954
 <rdfs:domain rdf:resource="#HumanActor"/> 955
 <rdfs:range rdf:resource="#ServiceContract"/> 956
</owl:ObjectProperty> 957
 958
<owl:ObjectProperty rdf:ID="involvesParty"> 959
 <owl:inverseOf> 960
 <owl:ObjectProperty rdf:ID="isPartyTo"/> 961
 </owl:inverseOf> 962
</owl:ObjectProperty> 963

In addition to the rules and regulations that intrinsically apply to any interaction with a service (the 964

interaction aspect of service contracts captured in the interactionAspect datatype property) there may be 965

additional legal agreements that apply to certain human actors and their use of services. The 966

involvesParty property, and its inverse isPartyTo, capture the abstract notion of a service contract 967

specifying legal obligations between human actors in the context of using the one or more services for 968

which the service contract is a contract. 969

While the involvesParty and isPartyTo properties define the relationships to human actors involved in 970

the service contract, the actual legal obligations on each of these human actors is defined in the 971

legalAspect datatype property on the service contract. This includes the ability to define who is the 972

provider and who is the consumer from a legal obligation perspective. 973

There is a many-to-many relationship between service contracts and human actors. A given human actor 974

may be party to none, one, or many service contracts. Similarly, a given service contract may involve 975

none, one, or multiple human actors (none in the case where that particular service contract only 976

specifies the interactionAspect datatype property). Note that it is important we allow for sourcing 977

contracts where there is a legal agreement between human actor A and human actor B (both of which are 978

party to a service contract), yet human actor B has sourced the performing of the service to human actor 979

C (aka human actor C performs the service in question, not human actor B). 980

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 34

The involvesParty property together with the legalAspect datatype property on ServiceContract 981

capture not just transient obligations. They include the a ility to express “is o liged to at this instant”, 982

“was o liged to”, and “may in future e o liged to”. 983

7.8 The Effect Class 984

<owl:Class rdf:about="#Effect"> 985
 <owl:disjointWith> 986
 <owl:Class rdf:ID="ServiceInterface"/> 987
 </owl:disjointWith> 988
</owl:Class> 989

Interacting with something performing a service has effects. These comprise the outcome of that 990

interaction, and are how a service (through the element that performs it) delivers value to its consumers. 991

The concept of effect is captured by the Effect OWL class, which is illustrated below (in Figure 8). 992

 993

Figure 8: The Effect Class 994

Note that the Effect class purely represents how results or value is delivered to someone interacting with 995

a service. Any possible internal side-effects are explicitly not covered by the Effect class. 996

Effect is defined as disjoint with the ServiceInterface class. (The ServiceInterface class is defined later in 997

this document.) Interacting with a service through its service interface can have an outcome or provide a 998

value (an instance of Effect) but the service interface itself does not constitute that outcome or value. 999

7.9 The specifies and isSpecifiedBy Properties 1000

<owl:ObjectProperty rdf:about="#specifies"> 1001
 <rdfs:domain rdf:resource="#ServiceContract"/> 1002
 <rdfs:range rdf:resource="#Effect"/> 1003

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_effect#fig_effect
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_effect#fig_effect

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 35

</owl:ObjectProperty> 1004
 1005
<owl:ObjectProperty rdf:about="#isSpecifiedBy"> 1006
 <owl:inverseOf> 1007
 <owl:ObjectProperty rdf:about="#specifies"/> 1008
 </owl:inverseOf> 1009
</owl:ObjectProperty> 1010
 1011
<owl:Class rdf:ID="Effect"> 1012
 <rdfs:subClassOf> 1013
 <owl:Restriction> 1014
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1015
 >1</owl:minCardinality> 1016
 <owl:onProperty> 1017
 <owl:ObjectProperty rdf:ID="isSpecifiedBy"/> 1018
 </owl:onProperty> 1019
 </owl:Restriction> 1020
 </rdfs:subClassOf> 1021
</owl:Class> 1022
 1023
<owl:Class rdf:about="#ServiceContract"> 1024
 <rdfs:subClassOf> 1025
 <owl:Restriction> 1026
 <owl:onProperty> 1027
 <owl:ObjectProperty rdf:ID="specifies"/> 1028
 </owl:onProperty> 1029
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1030
 >1</owl:minCardinality> 1031
 </owl:Restriction> 1032
 </rdfs:subClassOf> 1033
</owl:Class> 1034

While a service intrinsically has an effect every time someone interacts with it, in order to trust the effect 1035

to be something in particular, the effect needs to be specified as part of a service contract. The specifies 1036

property, and its inverse isSpecifiedBy, capture the abstract notion of a service contract specifying a 1037

particular effect as part of the agreement for using a service. Note that the specified effect can apply to 1038

both the interactionAspect datatype property (simply specifying what will happen when interacting 1039

with the service according to the service contract) and the legalAspect datatype property (specifying a 1040

contractually promised effect). 1041

Anyone wanting a guaranteed effect of the interaction with a given service must ensure that the desired 1042

effect is specified in a service contract applying to that interaction. By definition, any service contract 1043

must specify at least one effect. In the other direction, an effect must be an effect of at least one service 1044

contract; this represents that fact that we have chosen only to formalize those effects that are specified by 1045

service contracts (and not all intrinsic effects of all services). 1046

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 36

7.10 ServiceContract – Examples 1047

7.10.1 Service-Level Agreements 1048

A Service-Level Agreement (SLA) on a service has been agreed by organizations A and B. It is important to 1049

realize that an SLA always has a context of the parties that have agreed to it, involving at a minimum one 1050

legal “consumer” and one legal “provider”. This can e represented in the ontology as follows: 1051

 A and B are instances of HumanActor. 1052

 Service is an instance of Service. 1053

 ServiceContract is an instance of ServiceContract. 1054

 ServiceContract isContractFor Service. 1055

 ServiceContract involvesParty A. 1056

 ServiceContract involvesParty B. 1057

 The legalAspect datatype property on ServiceContract describes the SLA. 1058

7.10.2 Service Sourcing 1059

Organizations A and B have agreed on B providing certain services for A, yet B wants to source the actual 1060

delivery of those services to third party C. This can be represented in the ontology as follows: 1061

 A, B, and C are instances of HumanActor. 1062

 Service is an instance of Service. 1063

 C provides Service. 1064

 ServiceContract is an instance of ServiceContract. 1065

 ServiceContract isContractFor Service. 1066

 ServiceContract involvesParty A. 1067

 ServiceContract involvesParty B. 1068

 The legalAspect datatype property on ServiceContract describes the legal obligation of B to provide 1069

Service for A. 1070

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 37

7.10.3 Car Wash Example 1071

See Clause 11.2 for the complete Service and ServiceContract aspects of the car wash example. 1072

7.11 The ServiceInterface Class 1073

<owl:Class rdf:about="#ServiceInterface"> 1074
 <owl:disjointWith> 1075
 <owl:Class rdf:ID="Service"/> 1076
 </owl:disjointWith> 1077
 <owl:disjointWith> 1078
 <owl:Class rdf:ID="ServiceContract"/> 1079
 </owl:disjointWith> 1080
 <owl:disjointWith> 1081
 <owl:Class rdf:ID="Effect"/> 1082
 </owl:disjointWith> 1083
 <owl:disjointWith> 1084
 <owl:Class rdf:ID="HumanActor"/> 1085
 </owl:disjointWith> 1086
 <owl:disjointWith> 1087
 <owl:Class rdf:ID="Task"/> 1088
 </owl:disjointWith> 1089
</owl:Class> 1090

An important characteristic of services is that they have simple, well-defined interfaces. This makes it 1091

easy to interact with them, and enables other elements to use them in a structured manner. A service 1092

interface defines the way in which other elements can interact and exchange information with a service. 1093

This concept is captured by the ServiceInterface class which is illustrated below (in Figure 9). 1094

 1095

Figure 9: The ServiceInterface Class 1096

The concept of an interface is in general well understood by practitioners, including the notion that 1097

interfaces define the parameters for information going in and out of them when invoked. What differs 1098

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_serviceinterface#fig_serviceinterface
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_serviceinterface#fig_serviceinterface

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 38

from domain to domain is the specific nature of how an interface is invoked and how information is 1099

passed back and forth. Service interfaces are typically, but not necessarily, message-based (to support 1100

loose coupling). Furthermore, service interfaces are always defined independently from any service 1101

implementing them (to support loose coupling and service mediation). 1102

From a design perspective interfaces may have more granular operations or may be composed of other 1103

interfaces. We have chosen to stay at the concept level and not include such design aspects in the 1104

ontology. 1105

ServiceInterface is defined as disjoint with the Service, ServiceContract, and Effect classes. Instances 1106

of these classes are considered not to define (by themselves) the way in which other elements can 1107

interact and exchange information with a service. Note that that there is a natural synergy between 1108

ServiceInterface and the interactionAspect datatype property on ServiceContract, as the latter defines 1109

any multi-interaction and/or sequencing constraints on how to use a service through interaction with its 1110

service interfaces. 1111

7.11.1 The Constraints Datatype Property 1112

<owl:DatatypeProperty rdf:about="#constraints"> 1113
 <rdfs:domain rdf:resource="#ServiceInterface"/> 1114
</owl:DatatypeProperty> 1115
 1116
<owl:Class rdf:about="#ServiceInterface"> 1117
 <rdfs:subClassOf> 1118
 <owl:Restriction> 1119
 <owl:onProperty> 1120
 <owl:DatatypeProperty rdf:ID="constraints"/> 1121
 </owl:onProperty> 1122
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1123
 >1</owl:minCardinality> 1124
 </owl:Restriction> 1125
 </rdfs:subClassOf> 1126
 <rdfs:subClassOf> 1127
 <owl:Restriction> 1128
 <owl:onProperty> 1129
 <owl:DatatypeProperty rdf:about="#constraints"/> 1130
 </owl:onProperty> 1131
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1132
 >1</owl:maxCardinality> 1133
 </owl:Restriction> 1134
 </rdfs:subClassOf> 1135
</owl:Class> 1136

The Constraints datatype property on ServiceInterface captures the notion that there can be constraints 1137

on the allowed interaction such as only certain value ranges allowed on given parameters. Depending on 1138

the nature of the service and the service interface in question these constraints may be defined either 1139

formally or informally (the informal case being relevant at a minimum for certain types of real-world 1140

services). 1141

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 39

7.12 The hasInterface and isInterfaceOf Properties 1142

<owl:ObjectProperty rdf:about="#hasInterface"> 1143
 <rdfs:domain rdf:resource="#Service"/> 1144
 <rdfs:range rdf:resource="#ServiceInterface"/> 1145
</owl:ObjectProperty> 1146
 1147
<owl:ObjectProperty rdf:ID="isInterfaceOf"> 1148
 <owl:inverseOf> 1149
 <owl:ObjectProperty rdf:about="#hasInterface"/> 1150
 </owl:inverseOf> 1151
</owl:ObjectProperty> 1152
 1153
<owl:Class rdf:about="#Service"> 1154
 <rdfs:subClassOf> 1155
 <owl:Restriction> 1156
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1157
 >1</owl:minCardinality> 1158
 <owl:onProperty> 1159
 <owl:ObjectProperty rdf:ID="hasInterface"/> 1160
 </owl:onProperty> 1161
 </owl:Restriction> 1162
 </rdfs:subClassOf> 1163
</owl:Class> 1164

The hasInterface property, and its inverse isInterfaceOf, capture the abstract notion of a service having 1165

a particular service interface. 1166

In one direction, any service must have at least one service interface; anything else would be contrary to 1167

the definition of a service as a representation of a repeatable activity that has a specified outcome and is 1168

a „ lack ox‟ to its consumers. In the other direction, there can e service interfaces that are not yet 1169

interfaces of any defined services. Also, the same service interface can be an interface of multiple 1170

services. The latter does not mean that these services are the same, nor even that they have the same 1171

effect; it only means that it is possible to interact with all these services in the manner defined by the 1172

service interface in question. 1173

7.13 The InformationType Class 1174

<owl:Class rdf:ID="InformationType"> 1175
 <owl:disjointWith> 1176
 <owl:Class rdf:ID="Effect"/> 1177
 </owl:disjointWith> 1178
 <owl:disjointWith> 1179
 <owl:Class rdf:ID="ServiceContract"/> 1180
 </owl:disjointWith> 1181
</owl:Class> 1182

A service interface can enable another element to give information to or receive information from a 1183

service (when it uses that service); specifically the types of information given or received. The concept 1184

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 40

of information type is captured by the InformationType OWL class, which is illustrated below (in 1185

Figure 10). 1186

 1187

Figure 10: The InformationType Class 1188

In any concrete interaction through a service interface the information types on that interface are 1189

instantiated by information items, yet for the service interface itself it is the types that are important. 1190

Note that the constraints datatype property on ServiceInterface, if necessary, can be used to express 1191

constraints on allowed values for certain information types. 1192

7.14 The hasInput and isInputAt Properties 1193

<owl:ObjectProperty rdf:ID="hasInput"> 1194
 <rdfs:domain rdf:resource="#ServiceInterface"/> 1195
 <rdfs:range rdf:resource="#InformationType"/> 1196
</owl:ObjectProperty> 1197
 1198
<owl:ObjectProperty rdf:ID="isInputAt"> 1199
 <owl:inverseOf> 1200
 <owl:ObjectProperty rdf:ID="hasInput"/> 1201
 </owl:inverseOf> 1202
</owl:ObjectProperty> 1203

The hasInput property, and its inverse isInputAt, capture the abstract notion of a particular type of 1204

information being given when interacting with a service through a service interface. 1205

Note that there is a many-to-many relationship between service interfaces and input information types. A 1206

given information type may be input at many service interfaces or none at all. Similarly, a given service 1207

interface may have many information types as input or none at all. It is important to realize that some 1208

services may have only inputs (triggering an asynchronous action without a defined response) and other 1209

../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_informationtype#fig_informationtype
../../../TOG/ts_soa_ontology_rev2%20-%20Claus.source.doc#fig_informationtype#fig_informationtype

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 41

services may have only outputs (elements performing these services execute independently yet may 1210

provide output that is used by other elements). 1211

7.15 The hasOutput and isOutputAt Properties 1212

<owl:ObjectProperty rdf:ID="hasOutput"> 1213
 <rdfs:domain rdf:resource="#ServiceInterface"/> 1214
 <rdfs:range rdf:resource="#InformationType"/> 1215
</owl:ObjectProperty> 1216
 1217
<owl:ObjectProperty rdf:ID="isOutputAt"> 1218
 <owl:inverseOf> 1219
 <owl:ObjectProperty rdf:ID="hasOutput"/> 1220
 </owl:inverseOf> 1221
</owl:ObjectProperty> 1222

The hasOutput property, and its inverse isOutputAt, capture the abstract notion of a particular type of 1223

information being received when interacting with a service through a service interface. 1224

Note that there is a many-to-many relationship between service interfaces and output information types. 1225

A given information type may be output at many service interfaces or none at all. Similarly, a given 1226

service interface may have many information types as output or none at all. It is important to realize that 1227

some services may have only inputs (triggering an asynchronous action without a defined response) and 1228

other services may have only outputs (elements performing these services execute independently yet 1229

may provide output that is used by other elements). 1230

7.16 Examples 1231

7.16.1 Interaction Sequencing 1232

A service contract on a service expresses that the services interfaces on that services must be used in a 1233

certain order: 1234

 Service is an instance of Service. 1235

 ServiceContract is an instance of ServiceContract. 1236

 ServiceContract isContractFor Service. 1237

 X is an instance of ServiceInterface. 1238

 X isInterfaceOf Service. 1239

 Y is an instance of ServiceInterface. 1240

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 42

 Y isInterfaceOf Service. 1241

 The interactionAspect datatype property on ServiceContract describes that X must be used before 1242

Y may be used. 1243

7.16.2 Car Wash Example 1244

See Clause 11.2 for the complete ServiceInterface aspect of the car wash example. 1245

 1246

8 Composition and its Subclasses 1247

8.1 Introduction 1248

The notion of Composition is a core concept of SOA. Services can be composed of other services. 1249

Processes are composed of human actors, tasks, and possibly services. Experienced SOA practitioners 1250

intuitively apply composition as an integral part of architecting, designing, and realizing SOA systems; 1251

in fact, any well structured SOA environment is intrinsically composite in the way services and 1252

processes support business capabilities. What differs from practitioner to practitioner is the exact nature 1253

of the composition – the composition pattern being applied. 1254

This clause describes the following classes of the ontology: 1255

Composition (as a subclass of System) 1256

ServiceComposition (as a subclass of Composition) 1257

Process (as a subclass of Composition) 1258

In addition, it defines the following datatype property: 1259

compositionPattern 1260

8.2 The Composition Class 1261

<owl:Class rdf:about="#Composition"> 1262

 <rdfs:subClassOf> 1263

 <owl:Class rdf:ID="System"/> 1264

 </rdfs:subClassOf> 1265

 <owl:disjointWith> 1266

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 43

 <owl:Class rdf:ID="Task"/> 1267

 </owl:disjointWith> 1268

</owl:Class> 1269

A composition is the result of assembling a collection of things for a particular purpose. Note in 1270

particular that we have purposefully distinguished between the act of composing and the resulting 1271

composition as a thing, and that it is in the latter sense we are using the concept of composition here. The 1272

concept of composition is captured by the Composition OWL class, which is illustrated below (in Figure 1273

11). 1274

 1275

Figure 11: The Composition Class 1276

Being intrinsically (also) an organized collection of other, simpler things, the Composition class is a 1277

subclass of the System class. While a composition is always also a system, a system is not necessarily a 1278

composition in that it is not necessarily a result of anything – note here the difference between a system 1279

producing a result and the system itself being a result. A perhaps more tangible difference between a 1280

system and a composition is that the latter must have associated with it a specific composition pattern 1281

that renders the composition (as a whole) as the result when that composition pattern is applied to the 1282

elements used in the composition. One implication of this is that there is not a single member of a 1283

composition that represents (as an element) that composition as a whole; in other words, the composition 1284

itself is not one of the things being assembled. On the other hand, composition is in fact a recursive 1285

concept (as are all subclasses of System) – being a system, a composition is also an element which 1286

means that it can be used by a higher-level composition. 1287

In the context of the SOA ontology we consider in detail only functional compositions that belong to the 1288

SOA domain. Note that a fully described instance of Composition must have by its nature a uses 1289

relationship to at least one instance of Element. (It need not necessarily have more than one as the 1290

composition pattern applied may be, for instance, simply a transformation.) Again (as for System) it is 1291

important to realize that a composition can use elements outside its own boundary. 1292

Since Composition is a subclass of Element, all compositions have a boundary and are opaque to an 1293

external observer (black box view). The composition pattern in turn is the internal view point (white box 1294

view) of a composition. As an example, for the notion of a service composition this would correspond to 1295

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 44

the difference between seeing the service composition as an element providing a (higher-level) service or 1296

seeing the service composition as a composite structure of (lower-level) services. 1297

8.2.1 The compositionPattern Datatype Property 1298

<owl:DatatypeProperty rdf:about="#compositionPattern"> 1299

 <rdfs:domain rdf:resource="#Composition"/> 1300

</owl:DatatypeProperty> 1301

 1302

<owl:Class rdf:about="#Composition"> 1303

 <rdfs:subClassOf> 1304

 <owl:Restriction> 1305

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1306

 >1</owl:maxCardinality> 1307

 <owl:onProperty> 1308

 <owl:DatatypeProperty rdf:ID="compositionPattern"/> 1309

 </owl:onProperty> 1310

 </owl:Restriction> 1311

 </rdfs:subClassOf> 1312

 <rdfs:subClassOf> 1313

 <owl:Restriction> 1314

 <owl:onProperty> 1315

 <owl:DatatypeProperty rdf:ID="compositionPattern"/> 1316

 </owl:onProperty> 1317

 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1318

 >1</owl:minCardinality> 1319

 </owl:Restriction> 1320

 </rdfs:subClassOf> 1321

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 45

</owl:Class> 1322

As discussed, above any composition must have associated with it a specific composition pattern, that 1323

pattern describing the way in which a collection of elements is assembled to a result. The concept of a 1324

composition pattern is captured by the compositionPattern datatype property. Note that even though 1325

certain kinds of composition patterns are of special interest within SOA (see below), the 1326

compositionPattern data type property may take any value as long as that value describes how to 1327

assemble the elements used by the composition with which it is associated. 1328

 The Orchestration Composition Pattern 1329

One kind of composition pattern that has special interest within SOA is an Orchestration. In an 1330

orchestration (a composition whose composition pattern is an orchestration), there is one particular 1331

element used by the composition that oversees and directs the other elements. Note that the element that 1332

directs an orchestration by definition is different than the orchestration (Composition instance) itself. 1333

Think of an orchestrated executable workflow as an example of an orchestration. The workflow 1334

construct itself is one of the elements being used in the composition, yet it is different from the 1335

composition itself – the composition itself is the result of applying (executing) the workflow on the 1336

processes, human actors, services, etc. that are orchestrated by the workflow construct. 1337

A non-IT example is the foreman of a road repair crew. If the foreman chooses to exert direct control 1338

over the tasks done by his crew, than the resulting composition becomes an orchestration (with the 1339

foreman as the director and provider of the composition pattern). Note that under other circumstances, 1340

with a different team composition model, a road repair crew can also act as a collaboration or a 1341

choreography. (See below for definitions of collaboration and choreography.) 1342

As the last example clearly shows, using an orchestration composition pattern is not a guarantee that 1343

“nothing can go wrong”. That would, in fact, depend on the orchestration director‟s a ility to handle 1344

exceptions. 1345

 The Choreography Composition Pattern 1346

Another kind of composition pattern that has special interest within SOA is a Choreography. In a 1347

choreography (a composition whose composition pattern is a choreography) the elements used by the 1348

composition interact in a non-directed fashion, yet with each autonomous member knowing and 1349

following a predefined pattern of behavior for the entire composition. 1350

Think of a process model as an example of a choreography. The process model does not direct the 1351

elements within it, yet does provide a predefined pattern of behavior that each such element is expected 1352

to conform to when “executing”. 1353

 The Collaboration Composition Pattern 1354

A third kind of composition pattern that has special interest within SOA is a Collaboration. In a 1355

collaboration (a composition whose composition pattern is a collaboration) the elements used by the 1356

composition interact in a non-directed fashion, each according to their own plans and purposes without a 1357

predefined pattern of behavior. Each element simply knows what it has to do and does it independently, 1358

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 46

initiating interaction with the other members of the composition as applicable on its own initiative. This 1359

means that there is no overall predefined “flow” of the colla oration, though there may e a run-time 1360

“o served flow of interactions”. 1361

A good example of a collaboration is a work meeting. There is no script for how the meeting will unfold 1362

and only after the meeting has concluded can we describe the sequence of interactions that actually 1363

occurred. 1364

8.3 The orchestrates and orchestratedBy Properties 1365

<owl:ObjectProperty rdf:about="#orchestratedBy"> 1366

 <rdfs:domain rdf:resource="#Composition"/> 1367

 <rdfs:range rdf:resource="#Element"/> 1368

</owl:ObjectProperty> 1369

 1370

<owl:ObjectProperty rdf:about="#orchestrates"> 1371

 <owl:inverseOf> 1372

 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 1373

 </owl:inverseOf> 1374

</owl:ObjectProperty> 1375

 1376

<owl:Class rdf:about="#Composition"> 1377

 <rdfs:subClassOf> 1378

 <owl:Restriction> 1379

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1380

 >1</owl:maxCardinality> 1381

 <owl:onProperty> 1382

 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 1383

 </owl:onProperty> 1384

 </owl:Restriction> 1385

 </rdfs:subClassOf> 1386

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 47

 <rdfs:subClassOf> 1387

 <owl:Restriction> 1388

 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1389

 >0</owl:minCardinality> 1390

 <owl:onProperty> 1391

 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 1392

 </owl:onProperty> 1393

 </owl:Restriction> 1394

 </rdfs:subClassOf> 1395

</owl:Class> 1396

 1397

<owl:Class rdf:about="#Element"> 1398

 <rdfs:subClassOf> 1399

 <owl:Restriction> 1400

 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1401

 >0</owl:minCardinality> 1402

 <owl:onProperty> 1403

 <owl:ObjectProperty rdf:ID="orchestrates"/> 1404

 </owl:onProperty> 1405

 </owl:Restriction> 1406

 </rdfs:subClassOf> 1407

 <rdfs:subClassOf> 1408

 <owl:Restriction> 1409

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1410

 >1</owl:maxCardinality> 1411

 <owl:onProperty> 1412

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 48

 <owl:ObjectProperty rdf:about="#orchestrates"/> 1413

 </owl:onProperty> 1414

 </owl:Restriction> 1415

 </rdfs:subClassOf> 1416

</owl:Class> 1417

As defined above, an orchestration has one particular element that oversees and directs the other 1418

elements used by the composition. This type of relationship is important enough that we have chosen to 1419

capture the abstract notion in the orchestrates property and its inverse orchestratedBy. 1420

In one direction, a composition has at most one element that orchestrates it, and the cardinality can only 1421

be 1 if in fact the composition pattern of that composition is an orchestration. In the other direction, an 1422

element can orchestrate at most one composition which then must have an orchestration as its 1423

composition pattern. 1424

Note that in practical applications of the ontology, even though Service is a subclass of Element, a 1425

service (as a purely logical representation) is not expected to orchestrate a composition. 1426

8.4 The ServiceComposition Class 1427

<owl:Class rdf:ID="ServiceComposition"> 1428
 <rdfs:subClassOf> 1429
 <owl:Class rdf:ID="Composition"/> 1430
 </rdfs:subClassOf> 1431
 <owl:disjointWith> 1432
 <owl:Class rdf:ID="ServiceContract"/> 1433
 </owl:disjointWith> 1434
 <owl:disjointWith> 1435
 <owl:Class rdf:ID="ServiceInterface"/> 1436
 </owl:disjointWith> 1437
</owl:Class> 1438

A key SOA concept is the notion of service composition, the result of assembling a collection of services 1439

in order to perform a new higher-level service. The concept of service composition is captured by the 1440

ServiceComposition OWL class, which is illustrated below (in Figure 12). 1441

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 49

 1442

Figure 12: The ServiceComposition Class 1443

As a service composition is the result of assembling a collection of services, ServiceComposition is 1444

naturally a subclass of Composition. 1445

 service composition may, and typically will, add logic or even “code” via the composition pattern. 1446

Note that a service composition is not the new higher-level service itself (due to the System and Service 1447

classes being disjoint); rather it performs (as an element) that higher-level service. 1448

8.5 The Process Class 1449

<owl:Class rdf:ID="Process"> 1450
 <rdfs:subClassOf> 1451
 <owl:Class rdf:ID="Composition"/> 1452
 </rdfs:subClassOf> 1453
 <owl:disjointWith> 1454
 <owl:Class rdf:ID="ServiceContract"/> 1455
 </owl:disjointWith> 1456
 <owl:disjointWith> 1457
 <owl:Class rdf:ID="ServiceInterface"/> 1458
 </owl:disjointWith> 1459
</owl:Class> 1460

Another key SOA concept is the notion of process. A process is a composition whose elements are 1461

composed into a sequence or flow of activities and interactions with the objective of carrying out certain 1462

work. This definition is consistent with, for instance, the Business Process Modeling Notation (BPMN) 1463

2.0 definition of a process. The concept of process is captured by the Process OWL class, which is 1464

illustrated below (in Figure 13). 1465

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 50

 1466

Figure 13: The Process Class 1467

Elements in process compositions can be things like human actors, tasks, services, other processes, etc. 1468

A process always adds logic via the composition pattern; the result is more than the parts. According to 1469

their collaboration pattern, processes can be: 1470

Orchestrated: When a process is orchestrated in a Business Process Management System, then the 1471

resulting IT artifact is in fact an orchestration; i.e., it has an orchestration collaboration pattern. 1472

This type of process is often called a “Process rchestration”. 1473

Choreographed: For example, a process model representing a defined pattern of behavior. This type of 1474

process is often called a “Process Choreography”. 1475

Collaborative: No (pre)defined pattern of behavior (model); the process represents observed 1476

(executed) behavior. 1477

8.6 Service Composition and Process Examples 1478

8.6.1 Simple Service Composition Example 1479

Using a service composition example, services A and B are instances of Service and the composition of A 1480

and B is an instance of ServiceComposition (that uses A and B): 1481

A and B are instances of Service. 1482

X is an instance of ServiceComposition. 1483

X uses both A and B (composes them according to its service composition pattern). 1484

Note that there are various ways in which the service composition pattern can compose A and B, all of 1485

which are relevant in one situation or another. For example, interfaces of X may or may not include some 1486

subset of the interfaces of A and B. Furthermore, the interfaces of A and B may or may not also be 1487

(directly) invocable without going through X – that is, a matter of the service contracts and/or access 1488

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 51

policies apply to the A and B. Finally, X may also use other elements that are not services at all (examples 1489

are composition code, adaptors, etc.). 1490

8.6.2 Process Example 1491

Using a process example, tasks T1 and T2 are instances of Task, roles R1 and R2 are instances of Element, 1492

and the composition of T1, T2, R1, and R2 is an instance of Process (that uses T1, T2, R1, and R2): 1493

T1 and T2 are instances of Task. 1494

R1 and R2 are instances of Element. 1495

Y is an instance of Process. 1496

Y uses all of T1, T2, R1, and R2 (composes them according to its process composition pattern). 1497

 1498

8.6.3 Process and Service Composition Example 1499

Elaborating on the process example above, if T1 is done using service S then: 1500

S is an instance of Service. 1501

T1 uses S. 1502

Note that depending on the particular design approach chosen (and the resulting composition pattern), Y 1503

may or may not use S directly. This depends on whether Y carries the binding between T1 and S or whether 1504

that binding is encapsulated in T1. 1505

8.6.4 Car Wash Example 1506

See Clause 11.4 for the Process aspect of the car wash example. 1507

9 Policy 1508

9.1 Introduction 1509

Policies, the human actors defining them, and the things that they apply to are important aspects of any 1510

system, certainly also SOA systems with their many different interacting elements. Policies can apply to 1511

any element in a system. The concept of Policy is captured by the Policy class and its relationships to the 1512

HumanActor and Thing classes. 1513

This clause describes the following classes of the ontology: 1514

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 52

Policy 1515

In addition, it defines the following properties: 1516

appliesTo and isSubjectTo 1517

setsPolicy and isSetBy 1518

9.2 The Policy Class 1519

<owl:Class rdf:about="#Policy"> 1520
 <owl:disjointWith> 1521
 <owl:Class rdf:ID="InformationType"/> 1522
 </owl:disjointWith> 1523
 <owl:disjointWith> 1524
 <owl:Class rdf:ID="ServiceInterface"/> 1525
 </owl:disjointWith> 1526
 <owl:disjointWith> 1527
 <owl:Class rdf:ID="Element"/> 1528
 </owl:disjointWith> 1529
 <owl:disjointWith> 1530
 <owl:Class rdf:ID="Effect"/> 1531
 </owl:disjointWith> 1532
 <owl:disjointWith> 1533
 <owl:Class rdf:ID="Event"/> 1534
 </owl:disjointWith> 1535
 <owl:disjointWith> 1536
 <owl:Class rdf:ID="ServiceContract"/> 1537
 </owl:disjointWith> 1538
</owl:Class> 1539

A policy is a statement of direction that a human actor may intend to follow or may intend that another 1540

human actor should follow. Knowing the policies that apply to something makes it easier and more 1541

transparent to interact with that something. The concept of policy is captured by the Policy OWL class, 1542

which is illustrated below (in Figure 14). 1543

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 53

 1544

Figure 14: The Policy Class 1545

Policy as a concept is generic and has relevance outside the domain of SOA. For the purposes of this 1546

SOA ontology it has not been necessary or relevant to restrict the generic nature of the Policy class itself. 1547

The relationships between Policy and HumanActor are of course bound by the SOA-specific 1548

restrictions that have been applied on the definition of HumanActor. 1549

From a design perspective policies may have more granular parts or may be expressed and made 1550

operational through specific rules. We have chosen to stay at the concept level and not include such 1551

design aspects in the ontology. 1552

Policy is distinct from all other concepts in this ontology, hence the Policy class is defined as disjoint 1553

with all other defined classes. In particular, Policy is disjoint with ServiceContract. While policies may 1554

apply to service contracts – such as security policies on who may change a given service contract – or 1555

conversely be referred to by service contracts as part of the terms, conditions, and interaction rules that 1556

interacting participants must agree to, service contracts are themselves not policies as they do not 1557

describe an intended course of action. 1558

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 54

9.2.1 The appliesTo and isSubjectTo Properties 1559

<owl:ObjectProperty rdf:ID="appliesTo"> 1560
 <rdfs:domain rdf:resource="#Policy"/> 1561
</owl:ObjectProperty> 1562
 1563
<owl:ObjectProperty rdf:ID="isSubjectTo"> 1564
 <owl:inverseOf> 1565
 <owl:ObjectProperty rdf:ID="appliesTo"/> 1566
 </owl:inverseOf> 1567
</owl:ObjectProperty> 1568

Policies can apply to things other than elements; in fact, policies can apply to anything at all, including 1569

other policies. For instance, a security policy might specify which actors have the authority to change 1570

some other policy. The appliesTo property, and its inverse isSubjectTo, capture the abstract notion that 1571

a policy can apply to any instance of Thing. Note specifically that Element is a subclass of Thing, 1572

hence policies by inference can apply to any instance of Element. 1573

In one direction, a policy can apply to zero (in the case where a policy has been formulated but not yet 1574

explicitly applied to anything), one, or more instances of Thing. Note that having a policy apply to 1575

multiple things does not mean that these things are the same, only that they are (partly) regulated by the 1576

same intent. In the other direction, an instance of Thing may be subject to zero, one, or more policies. 1577

Note that where multiple policies apply to the same instance of Thing this is often because the multiple 1578

policies are from multiple different policy domains (such as security and governance). 1579

The SOA ontology does not attempt to enumerate different policy domains; such policy-focused details 1580

are deemed more appropriate for a policy ontology. It is worth pointing out that a particular policy 1581

ontology may also restrict (if desired) the kinds of things that policies can apply to. 1582

9.3 The setsPolicy and isSetBy Properties 1583

<owl:ObjectProperty rdf:about="#setsPolicy"> 1584
 <rdfs:domain rdf:resource="#HumanActor"/> 1585
 <rdfs:range rdf:resource="#Policy"/> 1586
</owl:ObjectProperty> 1587
 1588
<owl:ObjectProperty rdf:ID="isSetBy"> 1589
 <owl:inverseOf> 1590
 <owl:ObjectProperty rdf:ID="setsPolicy"/> 1591
 </owl:inverseOf> 1592
</owl:ObjectProperty> 1593

The setsPolicy property, and its inverse isSetBy, capture the abstract notion that a policy can be set by 1594

one or more human actors. 1595

In one direction, a policy can be set by zero (in the case where actors setting the policy by choice are not 1596

defined or captured), one, or more human actors. Note specifically that some policies are set by multiple 1597

human actors in conjunction, meaning that all these human actors need to discuss and agree on the policy 1598

before it can take effect. A real-world example would be two parents in conjunction setting policies for 1599

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 55

acceptable child behavior. In the other direction, a human actor may potentially set (or be part of setting) 1600

multiple policies. 1601

The SOA ontology purposefully separates the setting of the policy itself and the application of the policy 1602

to one or more instances of Thing. In some cases these two acts may be inseparably bound together, yet 1603

in other cases they are definitely not. One such example is an overall compliance policy that is 1604

formulated at the corporate level yet applied by the compliance officer in each line of business. 1605

Also, while a particular case of interest for this ontology is that where the provider of a service has a 1606

policy for the service, a policy for a service is not necessarily owned by the provider. For example, 1607

government food and hygiene regulations (a policy that is law) cover restaurant services independently 1608

of anything desired or defined by the restaurant owner. 1609

9.4 Examples 1610

9.4.1 Car Wash Example 1611

See The Washing Policies (Clause 11.5) for the Policy aspect of the car wash example. 1612

10 Event 1613

10.1 Introduction 1614

Events and the elements that generate or respond to them are important aspects of any event emitting 1615

system. SOA systems are in fact often event emitting, hence event is defined as a concept in the SOA 1616

ontology. 1617

This clause describes the following classes of the ontology: 1618

Event 1619

In addition, it defines the following properties: 1620

generates and generatedBy 1621

respondsTo and respondedToBy 1622

10.2 The Event Class 1623

<owl:Class rdf:about="#Event"> 1624
 <owl:disjointWith> 1625
 <owl:Class rdf:ID="Policy"/> 1626
 </owl:disjointWith> 1627
 <owl:disjointWith> 1628
 <owl:Class rdf:ID="ServiceContract"/> 1629
 </owl:disjointWith> 1630

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 56

 <owl:disjointWith> 1631
 <owl:Class rdf:ID="ServiceInterface"/> 1632
 </owl:disjointWith> 1633
</owl:Class> 1634

An event is something that happens, to which an element may choose to respond. Events can be 1635

responded to by any element. Similarly, events may be generated (emitted) by any element. Knowing the 1636

events generated or responded to by an element makes it easier and more transparent to interact with that 1637

element. Note that some events may occur whether generated or responded to by an element or not. The 1638

concept of event captured by the Event OWL class, which is illustrated below (in Figure 15). 1639

 1640

Figure 15: The Event Class 1641

Event as a concept is generic and has relevance to the domain of SOA as well as many other domains. 1642

For the purposes of this ontology, Event is used in its generic sense. 1643

From a design perspective events may have more granular parts or may be expressed and made 1644

operational through specific syntax or semantics. We have chosen to stay at the concept level and not 1645

include such design aspects in the ontology. 1646

10.3 The generates and generatedBy Properties 1647

<owl:ObjectProperty rdf:ID="generates"> 1648
 <rdfs:domain rdf:resource="#Element"/> 1649
 <rdfs:range rdf:resource="#Event"/> 1650
</owl:ObjectProperty> 1651
 1652
<owl:ObjectProperty rdf:ID="generatedBy"> 1653
 <owl:inverseOf> 1654
 <owl:ObjectProperty rdf:ID="generates"/> 1655
 </owl:inverseOf> 1656
</owl:ObjectProperty> 1657

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 57

Events can, but need not necessarily, be generated by elements. The generates property, and its inverse 1658

generatedBy, capture the abstract notion that an element generates an event. 1659

Note that the same event may be generated by many different elements. Similarly, the same element may 1660

generate many different events. 1661

10.4 The respondsTo and respondedToBy Properties 1662

<owl:ObjectProperty rdf:ID="respondsTo"> 1663
 <rdfs:domain rdf:resource="#Element"/> 1664
 <rdfs:range rdf:resource="#Event"/> 1665
</owl:ObjectProperty> 1666
 1667
<owl:ObjectProperty rdf:ID="respondedToBy"> 1668
 <owl:inverseOf> 1669
 <owl:ObjectProperty rdf:ID="respondsTo"/> 1670
 </owl:inverseOf> 1671
</owl:ObjectProperty> 1672

Events can, but need not necessarily, be responded to by elements. The respondsTo property, and its 1673

inverse respondedToBy, capture the abstract notion that an element responds to an event. 1674

Note that the same event may be responded to by many different elements. Similarly, the same element 1675

may respond to many different events. 1676

11 Complete Car Wash Example 1677

This clause contains the complete car wash example that has been used in parts throughout the 1678

definitional clauses of the ontology. 1679

11.1 The Organizational Aspect 1680

Joe the owner chooses to organize his business into two organizational units: Administration and CarWash: 1681

CarWashBusiness is an instance of both HumanActor and System. 1682

Administration is an instance of HumanActor (organizational unit). 1683

CarWash is an instance of HumanActor (organizational unit). 1684

CarWashBusiness uses (has organizational units) Administration and CarWash. 1685

AdministrativeSystem is an instance of System. 1686

Administration represents AdministrativeSystem. 1687

CarWashSystem is an instance of System. 1688

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 58

CarWash represents CarWashSystem. 1689

And using well-defined roles within each organization: 1690

Owner (role) is an instance of Element and is used by AdministrativeSystem. 1691

Joe is an instance of HumanActor and is represented by (has role) Owner. 1692

Secretary (role) is an instance of Element and is used by AdministrativeSystem. 1693

Mary is an instance of HumanActor and is represented by (has role) Secretary. 1694

PreWashGuy (role) is an instance of Element and is used by CarWashSystem. 1695

John is an instance of HumanActor and is represented by (has role) PreWashGuy. 1696

WashManager (role) is an instance of Element and is used by CarWashSystem. 1697

WashOperator (role) is an instance of Element and is used by CarWashSystem. 1698

Jack is an instance of HumanActor and is represented by (has roles) both WashManager and 1699

WashOperator. 1700

 1701

Figure 16: Car Wash Example – The Organizational Aspect 1702

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 59

11.2 The Washing Services 1703

Joe offers two different services to his customers: a basic wash and a gold wash: 1704

GoldWash is an instance of Service. 1705

BasicWash is an instance of Service. 1706

CarWash performs both BasicWash and GoldWash. 1707

WashManager represents both BasicWash and GoldWash (i.e., it is the interaction point where customers 1708

can order services as well as pay for them). 1709

In return for payment, Joe‟s BasicWash service cleans the car of customer Judy: 1710

Judy is an instance of HumanActor (the customer). 1711

BasicWashContract is an instance of ServiceContract. 1712

BasicWash has contract BasicWashContract. 1713

CleanCar is an instance of Effect. 1714

BasicWashContract specifies CleanCar as its effect. 1715

BasicWashContract involves parties CarWashBusiness and Judy and specifies that Judy (as the legal 1716

consumer) pays CarWashBusiness (as the legal provider) $10 for the one consumption of BasicWash 1717

with the effect of (one) CleanCar. Note that BasicWash is actually performed by CarWash and not by 1718

the legal provider CarWashBusiness – in this particular example CarWash happens to be a member 1719

of CarWashBusiness but such need not always be the case, CarWash could have been some third 1720

party provider. 1721

Judy uses WashManager (in order to invoke the BasicWash service). 1722

Note that in this example Judy does not interact with the (abstract) BasicWash service directly, rather she 1723

interacts with the WashManager that represents the service. This is due to Joe deciding that in his car wash 1724

customers are not to interact with the washing machinery directly. 1725

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 60

 1726

Figure 17: Car Wash Example – The Washing Services 1727

11.3 Interfaces to the Washing Services 1728

The way to interact with the car wash services is simple for the customer; he or she simply gives money 1729

to the wash manager and asks to have to the car washed using one of the two available wash services. 1730

Due to the fact that Joe has decided to interpose the wash manager between the customer and the 1731

washing machine, the customer actually never interacts with the wash services themselves. We could 1732

have chosen to formally define a proxy service provided by the wash manager but have omitted that 1733

level of formality in this real-world example. 1734

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 61

The wash manager in turn does interact with the wash services through their interfaces defined as 1735

follows: 1736

WashingMachineInterface is an instance of ServiceInterface. 1737

TypeOfWash is an instance of InformationType. 1738

WashingMachineInterface has input TypeOfWash. 1739

BasicWash has interface WashingMachineInterface. 1740

GoldWash has interface WashingMachineInterface. 1741

Note how both washing services in fact have the same service interface. Even though Joe has chosen to 1742

offer basic wash and gold wash as two different services, both are in effect done by the same washing 1743

machine (one simply has to choose the type of wash when initializing the washing machine). 1744

11.4 The Washing Processes 1745

An important part of the car wash system is the car washing process itself: 1746

AutomatedCarWashProcess is an instance of both Process and Orchestration. 1747

Wash is an instance of Task and is used by AutomatedCarWashProcess. 1748

Dry is an instance of Task and is used by AutomatedCarWashProcess. 1749

AutomatedCarWash is an instance of Element (the automated washing machine) and represents 1750

AutomatedCarWashProcess (encapsulates the process) as well as directs AutomatedCarWashProcess. 1751

CarWashProcess is an instance of Process and is used by (part of) CarWashSystem (no need to create an 1752

explicit opaque building block). 1753

AutomatedCarWash is used by CarWashProcess (automated activity in the process). 1754

WashWindows is an instance of Task and is done by John. 1755

PreWash is an instance of Element, represents WashWindows, and is used by CarWashProcess (logical 1756

activity in the process). 1757

PrewashGuy is a member of CarWashProcess (role in the process). 1758

PushWashButton is an instance of Task and is done by Jack. 1759

InitiateAutomatedWash is an instance of Element, represents PushWashButton, and is used by 1760

CarWashProcess (logical activity in the process). 1761

WashOperator is a member of CarWashProcess (role in the process). 1762

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 62

 1763

Figure 18: Car Wash Example – The Washing Processes 1764

11.5 The Washing Policies 1765

Joe sets a payment up-front policy for the washing services: 1766

PaymentUpFront is an instance of both Policy. 1767

PaymentUpFront is set by Joe. 1768

PaymentUpFront applies to both GoldWash and BasicWash. 1769

Note how the PaymentUpFront policy enhances the service contract BasicWashContract. While 1770

BasicWashContract only specifies that Judy has to pay $10 for one consumption of the BasicWash service, 1771

the PaymentUpFront policy makes it specific that payment has to happen up-front. One of the advantages 1772

of separating policy from service contract is that the payment policy can be changed independently of the 1773

service contract. For instance, at some later point in time Joe may decide that recurring customers need not 1774

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 63

pay up-front, and can institute this change in policy without changing anything else related to 1775

CarWashBusiness. 1776

 1777

12 Internet Purchase Example 1778

Jill is purchasing a new TV on the Internet through an online sales site: 1779

Jill is an instance of Actor (person). 1780

PurchaseTV is an instance of Task. 1781

Jill does PurchaseTV. 1782

BuyTVOnline is an instance of Service. 1783

PurchaseTV uses BuyTVOnline. 1784

OnlineTVSales is the company that is selling TVs: 1785

OnlineTVSales is an instance of Actor (organization). 1786

BuyTVOnlineContract is an instance of ServiceContract (and describes how to interact with 1787

BuyTVOnline as well as the legal contract between TV buyer and OnlineTVSales). 1788

BuyTVOnline has contract BuyTVOnlineContract. 1789

OnlineTVSales is party to BuyTVOnlineContract. 1790

Jill is party to BuyTVOnlineContract. 1791

The online site is implemented using web site software: 1792

OnlineSalesComponent is an instance of Element. 1793

OnlineSalesComponent performs OnlineTVSales. 1794

SelectWhatToBuyComponent is an instance of Element. 1795

SelectWhatToBuyService is an instance of Service. 1796

SelectWhatToBuyComponent performs SelectWhatToBuyService. 1797

PayComponent is an instance of Element. 1798

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 64

PayService is an instance of Service. 1799

PayComponent performs PayService. 1800

OnlineSalesComponent is also an instance of ServiceComposition. 1801

OnlineSalesComponent uses SelectWhatToBuyService and PayService. 1802

To complete the purchase transaction, Jill needs to pay for the purchase and then the TV will be delivered: 1803

PayForTV is an instance of Task. 1804

Jill does PayForTV. 1805

PayForTV uses BuyTVOnline. 1806

DeliverTV is an instance of Task. 1807

OnlineTVSales does DeliverTV. 1808

OnlineTVSalesProcess is an instance of Process. 1809

OnlineTVSalesProcess uses Jill, OnlineTVSales, PurchaseTV, PayForTV, and DeliverTV. 1810

 1811
 1812

 1813

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 65

Annex A The OWL Definition of the SOA Ontology 1814

The OWL ontology is available online at: 1815

13 Editors note: need to find out from JTC1 how / where to post the Ontology RDF file 1816

14 The Ontology is reproduced below. 1817

15 <?xml version="1.0"?> 1818
16 1819
17 <rdf:RDF 1820
18 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 1821
19 xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 1822
20 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 1823
21 xmlns:owl="http://www.w3.org/2002/07/owl#" 1824
22 xmlns="http://www.semanticweb.org/ontologies/2010/01/core-soa.owl#" 1825
23 xml:base="http://www.semanticweb.org/ontologies/2010/01/core-soa.owl" 1826
24 > 1827
25 1828
26 <!-- ontology --> 1829
27 1830
28 <owl:Ontology rdf:about=""/> 1831
29 1832
30 <!-- classes --> 1833
31 1834
32 <owl:Class rdf:ID="Event"> 1835
33 <owl:disjointWith> 1836
34 <owl:Class rdf:ID="Policy"/> 1837
35 </owl:disjointWith> 1838
36 <owl:disjointWith> 1839
37 <owl:Class rdf:ID="ServiceContract"/> 1840
38 </owl:disjointWith> 1841
39 <owl:disjointWith> 1842
40 <owl:Class rdf:ID="ServiceInterface"/> 1843
41 </owl:disjointWith> 1844
42 </owl:Class> 1845
43 1846
44 <owl:Class rdf:ID="InformationType"> 1847
45 <owl:disjointWith> 1848
46 <owl:Class rdf:about="#Policy"/> 1849
47 </owl:disjointWith> 1850
48 <owl:disjointWith> 1851
49 <owl:Class rdf:ID="ServiceContract"/> 1852
50 </owl:disjointWith> 1853
51 <owl:disjointWith> 1854
52 <owl:Class rdf:ID="Effect"/> 1855
53 </owl:disjointWith> 1856
54 </owl:Class> 1857
55 1858

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 66

56 <owl:Class rdf:ID="ServiceComposition"> 1859
57 <rdfs:subClassOf> 1860
58 <owl:Class rdf:ID="Composition"/> 1861
59 </rdfs:subClassOf> 1862
60 <owl:disjointWith> 1863
61 <owl:Class rdf:ID="ServiceContract"/> 1864
62 </owl:disjointWith> 1865
63 <owl:disjointWith> 1866
64 <owl:Class rdf:ID="ServiceInterface"/> 1867
65 </owl:disjointWith> 1868
66 </owl:Class> 1869
67 1870
68 <owl:Class rdf:ID="Effect"> 1871
69 <owl:disjointWith> 1872
70 <owl:Class rdf:about="#Policy"/> 1873
71 </owl:disjointWith> 1874
72 <owl:disjointWith> 1875
73 <owl:Class rdf:ID="ServiceInterface"/> 1876
74 </owl:disjointWith> 1877
75 <owl:disjointWith> 1878
76 <owl:Class rdf:ID="InformationType"/> 1879
77 </owl:disjointWith> 1880
78 <rdfs:subClassOf> 1881
79 <owl:Restriction> 1882
80 <owl:minCardinality 1883
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1884
81 >1</owl:minCardinality> 1885
82 <owl:onProperty> 1886
83 <owl:ObjectProperty rdf:ID="isSpecifiedBy"/> 1887
84 </owl:onProperty> 1888
85 </owl:Restriction> 1889
86 </rdfs:subClassOf> 1890
87 </owl:Class> 1891
88 1892
89 <owl:Class rdf:about="#Task"> 1893
90 <owl:disjointWith> 1894
91 <owl:Class rdf:ID="Policy"/> 1895
92 </owl:disjointWith> 1896
93 <owl:disjointWith> 1897
94 <owl:Class rdf:ID="System"/> 1898
95 </owl:disjointWith> 1899
96 <owl:disjointWith> 1900
97 <owl:Class rdf:ID="HumanActor"/> 1901
98 </owl:disjointWith> 1902
99 <owl:disjointWith> 1903
100 <owl:Class rdf:ID="Service"/> 1904
101 </owl:disjointWith> 1905
102 <owl:disjointWith> 1906
103 <owl:Class rdf:ID="ServiceContract"/> 1907
104 </owl:disjointWith> 1908
105 <owl:disjointWith> 1909
106 <owl:Class rdf:ID="ServiceInterface"/> 1910
107 </owl:disjointWith> 1911

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 67

108 <owl:disjointWith> 1912
109 <owl:Class rdf:ID="Composition"/> 1913
110 </owl:disjointWith> 1914
111 <rdfs:subClassOf> 1915
112 <owl:Class rdf:ID="Element"/> 1916
113 </rdfs:subClassOf> 1917
114 <rdfs:subClassOf> 1918
115 <owl:Restriction> 1919
116 <owl:onProperty> 1920
117 <owl:ObjectProperty rdf:ID="doneBy"/> 1921
118 </owl:onProperty> 1922
119 <owl:minCardinality 1923
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1924
120 >0</owl:minCardinality> 1925
121 </owl:Restriction> 1926
122 </rdfs:subClassOf> 1927
123 <rdfs:subClassOf> 1928
124 <owl:Restriction> 1929
125 <owl:maxCardinality 1930
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1931
126 >1</owl:maxCardinality> 1932
127 <owl:onProperty> 1933
128 <owl:ObjectProperty rdf:about="#doneBy"/> 1934
129 </owl:onProperty> 1935
130 </owl:Restriction> 1936
131 </rdfs:subClassOf> 1937
132 </owl:Class> 1938
133 1939
134 <owl:Class rdf:about="#System"> 1940
135 <owl:disjointWith> 1941
136 <owl:Class rdf:ID="Task"/> 1942
137 </owl:disjointWith> 1943
138 <owl:disjointWith> 1944
139 <owl:Class rdf:ID="Service"/> 1945
140 </owl:disjointWith> 1946
141 <rdfs:subClassOf> 1947
142 <owl:Class rdf:about="#Element"/> 1948
143 </rdfs:subClassOf> 1949
144 </owl:Class> 1950
145 1951
146 <owl:Class rdf:about="#Service"> 1952
147 <owl:disjointWith> 1953
148 <owl:Class rdf:ID="System"/> 1954
149 </owl:disjointWith> 1955
150 <owl:disjointWith> 1956
151 <owl:Class rdf:ID="Task"/> 1957
152 </owl:disjointWith> 1958
153 <owl:disjointWith> 1959
154 <owl:Class rdf:ID="HumanActor"/> 1960
155 </owl:disjointWith> 1961
156 <owl:disjointWith> 1962
157 <owl:Class rdf:ID="ServiceInterface"/> 1963
158 </owl:disjointWith> 1964

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 68

159 <rdfs:subClassOf> 1965
160 <owl:Class rdf:about="#Element"/> 1966
161 </rdfs:subClassOf> 1967
162 <rdfs:subClassOf> 1968
163 <owl:Restriction> 1969
164 <owl:minCardinality 1970
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 1971
165 >1</owl:minCardinality> 1972
166 <owl:onProperty> 1973
167 <owl:ObjectProperty rdf:ID="hasInterface"/> 1974
168 </owl:onProperty> 1975
169 </owl:Restriction> 1976
170 </rdfs:subClassOf> 1977
171 </owl:Class> 1978
172 1979
173 <owl:Class rdf:about="#Policy"> 1980
174 <owl:disjointWith> 1981
175 <owl:Class rdf:ID="InformationType"/> 1982
176 </owl:disjointWith> 1983
177 <owl:disjointWith> 1984
178 <owl:Class rdf:ID="ServiceInterface"/> 1985
179 </owl:disjointWith> 1986
180 <owl:disjointWith> 1987
181 <owl:Class rdf:ID="Element"/> 1988
182 </owl:disjointWith> 1989
183 <owl:disjointWith> 1990
184 <owl:Class rdf:ID="Effect"/> 1991
185 </owl:disjointWith> 1992
186 <owl:disjointWith> 1993
187 <owl:Class rdf:ID="Event"/> 1994
188 </owl:disjointWith> 1995
189 <owl:disjointWith> 1996
190 <owl:Class rdf:ID="ServiceContract"/> 1997
191 </owl:disjointWith> 1998
192 </owl:Class> 1999
193 2000
194 <owl:Class rdf:about="#HumanActor"> 2001
195 <rdfs:subClassOf> 2002
196 <owl:Class rdf:ID="Element"/> 2003
197 </rdfs:subClassOf> 2004
198 <owl:disjointWith> 2005
199 <owl:Class rdf:ID="Task"/> 2006
200 </owl:disjointWith> 2007
201 <owl:disjointWith> 2008
202 <owl:Class rdf:ID="Service"/> 2009
203 </owl:disjointWith> 2010
204 <owl:disjointWith> 2011
205 <owl:Class rdf:ID="ServiceContract"/> 2012
206 </owl:disjointWith> 2013
207 <owl:disjointWith> 2014
208 <owl:Class rdf:ID="ServiceInterface"/> 2015
209 </owl:disjointWith> 2016
210 </owl:Class> 2017

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 69

211 2018
212 <owl:Class rdf:about="#Composition"> 2019
213 <owl:disjointWith> 2020
214 <owl:Class rdf:ID="Task"/> 2021
215 </owl:disjointWith> 2022
216 <rdfs:subClassOf> 2023
217 <owl:Class rdf:ID="System"/> 2024
218 </rdfs:subClassOf> 2025
219 <rdfs:subClassOf> 2026
220 <owl:Restriction> 2027
221 <owl:maxCardinality 2028
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2029
222 >1</owl:maxCardinality> 2030
223 <owl:onProperty> 2031
224 <owl:DatatypeProperty rdf:ID="compositionPattern"/> 2032
225 </owl:onProperty> 2033
226 </owl:Restriction> 2034
227 </rdfs:subClassOf> 2035
228 <rdfs:subClassOf> 2036
229 <owl:Restriction> 2037
230 <owl:onProperty> 2038
231 <owl:DatatypeProperty rdf:ID="compositionPattern"/> 2039
232 </owl:onProperty> 2040
233 <owl:minCardinality 2041
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2042
234 >1</owl:minCardinality> 2043
235 </owl:Restriction> 2044
236 </rdfs:subClassOf> 2045
237 <rdfs:subClassOf> 2046
238 <owl:Restriction> 2047
239 <owl:maxCardinality 2048
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2049
240 >1</owl:maxCardinality> 2050
241 <owl:onProperty> 2051
242 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 2052
243 </owl:onProperty> 2053
244 </owl:Restriction> 2054
245 </rdfs:subClassOf> 2055
246 <rdfs:subClassOf> 2056
247 <owl:Restriction> 2057
248 <owl:minCardinality 2058
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2059
249 >0</owl:minCardinality> 2060
250 <owl:onProperty> 2061
251 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 2062
252 </owl:onProperty> 2063
253 </owl:Restriction> 2064
254 </rdfs:subClassOf> 2065
255 </owl:Class> 2066
256 2067
257 <owl:Class rdf:about="#ServiceInterface"> 2068
258 <owl:disjointWith> 2069
259 <owl:Class rdf:ID="Service"/> 2070

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 70

260 </owl:disjointWith> 2071
261 <owl:disjointWith> 2072
262 <owl:Class rdf:ID="ServiceContract"/> 2073
263 </owl:disjointWith> 2074
264 <owl:disjointWith> 2075
265 <owl:Class rdf:ID="Effect"/> 2076
266 </owl:disjointWith> 2077
267 <owl:disjointWith> 2078
268 <owl:Class rdf:ID="Policy"/> 2079
269 </owl:disjointWith> 2080
270 <owl:disjointWith> 2081
271 <owl:Class rdf:ID="HumanActor"/> 2082
272 </owl:disjointWith> 2083
273 <owl:disjointWith> 2084
274 <owl:Class rdf:ID="Task"/> 2085
275 </owl:disjointWith> 2086
276 <owl:disjointWith> 2087
277 <owl:Class rdf:ID="ServiceComposition"/> 2088
278 </owl:disjointWith> 2089
279 <owl:disjointWith> 2090
280 <owl:Class rdf:ID="Process"/> 2091
281 </owl:disjointWith> 2092
282 <owl:disjointWith> 2093
283 <owl:Class rdf:ID="Event"/> 2094
284 </owl:disjointWith> 2095
285 <rdfs:subClassOf> 2096
286 <owl:Restriction> 2097
287 <owl:onProperty> 2098
288 <owl:DatatypeProperty rdf:ID="constraints"/> 2099
289 </owl:onProperty> 2100
290 <owl:maxCardinality 2101
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2102
291 >1</owl:maxCardinality> 2103
292 </owl:Restriction> 2104
293 </rdfs:subClassOf> 2105
294 <rdfs:subClassOf> 2106
295 <owl:Restriction> 2107
296 <owl:minCardinality 2108
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2109
297 >1</owl:minCardinality> 2110
298 <owl:onProperty> 2111
299 <owl:DatatypeProperty rdf:about="#constraints"/> 2112
300 </owl:onProperty> 2113
301 </owl:Restriction> 2114
302 </rdfs:subClassOf> 2115
303 </owl:Class> 2116
304 2117
305 <owl:Class rdf:about="#Element"> 2118
306 <owl:disjointWith> 2119
307 <owl:Class rdf:ID="Policy"/> 2120
308 </owl:disjointWith> 2121
309 <rdfs:subClassOf> 2122
310 <owl:Restriction> 2123

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 71

311 <owl:minCardinality 2124
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2125
312 >0</owl:minCardinality> 2126
313 <owl:onProperty> 2127
314 <owl:ObjectProperty rdf:ID="orchestrates"/> 2128
315 </owl:onProperty> 2129
316 </owl:Restriction> 2130
317 </rdfs:subClassOf> 2131
318 <rdfs:subClassOf> 2132
319 <owl:Restriction> 2133
320 <owl:maxCardinality 2134
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2135
321 >1</owl:maxCardinality> 2136
322 <owl:onProperty> 2137
323 <owl:ObjectProperty rdf:about="#orchestrates"/> 2138
324 </owl:onProperty> 2139
325 </owl:Restriction> 2140
326 </rdfs:subClassOf> 2141
327 </owl:Class> 2142
328 2143
329 <owl:Class rdf:about="#ServiceContract"> 2144
330 <owl:disjointWith> 2145
331 <owl:Class rdf:ID="ServiceInterface"/> 2146
332 </owl:disjointWith> 2147
333 <owl:disjointWith> 2148
334 <owl:Class rdf:ID="Policy"/> 2149
335 </owl:disjointWith> 2150
336 <owl:disjointWith> 2151
337 <owl:Class rdf:ID="HumanActor"/> 2152
338 </owl:disjointWith> 2153
339 <owl:disjointWith> 2154
340 <owl:Class rdf:ID="Task"/> 2155
341 </owl:disjointWith> 2156
342 <owl:disjointWith> 2157
343 <owl:Class rdf:ID="ServiceComposition"/> 2158
344 </owl:disjointWith> 2159
345 <owl:disjointWith> 2160
346 <owl:Class rdf:ID="Process"/> 2161
347 </owl:disjointWith> 2162
348 <owl:disjointWith> 2163
349 <owl:Class rdf:ID="Event"/> 2164
350 </owl:disjointWith> 2165
351 <owl:disjointWith> 2166
352 <owl:Class rdf:ID="InformationType"/> 2167
353 </owl:disjointWith> 2168
354 <rdfs:subClassOf> 2169
355 <owl:Restriction> 2170
356 <owl:onProperty> 2171
357 <owl:DatatypeProperty rdf:ID="legalAspect"/> 2172
358 </owl:onProperty> 2173
359 <owl:minCardinality 2174
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2175
360 >1</owl:minCardinality> 2176

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 72

361 </owl:Restriction> 2177
362 </rdfs:subClassOf> 2178
363 <rdfs:subClassOf> 2179
364 <owl:Restriction> 2180
365 <owl:maxCardinality 2181
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2182
366 >1</owl:maxCardinality> 2183
367 <owl:onProperty> 2184
368 <owl:DatatypeProperty rdf:ID="legalAspect"/> 2185
369 </owl:onProperty> 2186
370 </owl:Restriction> 2187
371 </rdfs:subClassOf> 2188
372 <rdfs:subClassOf> 2189
373 <owl:Restriction> 2190
374 <owl:onProperty> 2191
375 <owl:DatatypeProperty rdf:ID="interactionAspect"/> 2192
376 </owl:onProperty> 2193
377 <owl:maxCardinality 2194
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2195
378 >1</owl:maxCardinality> 2196
379 </owl:Restriction> 2197
380 </rdfs:subClassOf> 2198
381 <rdfs:subClassOf> 2199
382 <owl:Restriction> 2200
383 <owl:onProperty> 2201
384 <owl:DatatypeProperty rdf:about="#interactionAspect"/> 2202
385 </owl:onProperty> 2203
386 <owl:minCardinality 2204
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2205
387 >1</owl:minCardinality> 2206
388 </owl:Restriction> 2207
389 </rdfs:subClassOf> 2208
390 <rdfs:subClassOf> 2209
391 <owl:Restriction> 2210
392 <owl:onProperty> 2211
393 <owl:ObjectProperty rdf:ID="isContractFor"/> 2212
394 </owl:onProperty> 2213
395 <owl:minCardinality 2214
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2215
396 >1</owl:minCardinality> 2216
397 </owl:Restriction> 2217
398 </rdfs:subClassOf> 2218
399 <rdfs:subClassOf> 2219
400 <owl:Restriction> 2220
401 <owl:onProperty> 2221
402 <owl:ObjectProperty rdf:ID="specifies"/> 2222
403 </owl:onProperty> 2223
404 <owl:minCardinality 2224
rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 2225
405 >1</owl:minCardinality> 2226
406 </owl:Restriction> 2227
407 </rdfs:subClassOf> 2228
408 </owl:Class> 2229

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 73

409 2230
410 <owl:Class rdf:about="#Process"> 2231
411 <owl:disjointWith> 2232
412 <owl:Class rdf:ID="ServiceContract"/> 2233
413 </owl:disjointWith> 2234
414 <owl:disjointWith> 2235
415 <owl:Class rdf:ID="ServiceInterface"/> 2236
416 </owl:disjointWith> 2237
417 <rdfs:subClassOf> 2238
418 <owl:Class rdf:ID="Composition"/> 2239
419 </rdfs:subClassOf> 2240
420 </owl:Class> 2241
421 2242
422 <!-- object properties --> 2243
423 2244
424 <owl:ObjectProperty rdf:about="#isPartyTo"> 2245
425 <rdfs:domain rdf:resource="#HumanActor"/> 2246
426 <rdfs:range rdf:resource="#ServiceContract"/> 2247
427 </owl:ObjectProperty> 2248
428 2249
429 <owl:ObjectProperty rdf:ID="involvesParty"> 2250
430 <owl:inverseOf> 2251
431 <owl:ObjectProperty rdf:ID="isPartyTo"/> 2252
432 </owl:inverseOf> 2253
433 </owl:ObjectProperty> 2254
434 2255
435 <owl:ObjectProperty rdf:about="#orchestratedBy"> 2256
436 <rdfs:domain rdf:resource="#Composition"/> 2257
437 <rdfs:range rdf:resource="#Element"/> 2258
438 </owl:ObjectProperty> 2259
439 2260
440 <owl:ObjectProperty rdf:about="#orchestrates"> 2261
441 <owl:inverseOf> 2262
442 <owl:ObjectProperty rdf:ID="orchestratedBy"/> 2263
443 </owl:inverseOf> 2264
444 </owl:ObjectProperty> 2265
445 2266
446 <owl:ObjectProperty rdf:about="#isContractFor"> 2267
447 <rdfs:domain rdf:resource="#ServiceContract"/> 2268
448 <rdfs:range rdf:resource="#Service"/> 2269
449 </owl:ObjectProperty> 2270
450 2271
451 <owl:ObjectProperty rdf:ID="hasContract"> 2272
452 <owl:inverseOf> 2273
453 <owl:ObjectProperty rdf:about="#isContractFor"/> 2274
454 </owl:inverseOf> 2275
455 </owl:ObjectProperty> 2276
456 2277
457 <owl:ObjectProperty rdf:about="#setsPolicy"> 2278
458 <rdfs:domain rdf:resource="#HumanActor"/> 2279
459 <rdfs:range rdf:resource="#Policy"/> 2280
460 </owl:ObjectProperty> 2281
461 2282

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 74

462 <owl:ObjectProperty rdf:ID="isSetBy"> 2283
463 <owl:inverseOf> 2284
464 <owl:ObjectProperty rdf:ID="setsPolicy"/> 2285
465 </owl:inverseOf> 2286
466 </owl:ObjectProperty> 2287
467 2288
468 <owl:ObjectProperty rdf:ID="generates"> 2289
469 <rdfs:domain rdf:resource="#Element"/> 2290
470 <rdfs:range rdf:resource="#Event"/> 2291
471 </owl:ObjectProperty> 2292
472 2293
473 <owl:ObjectProperty rdf:ID="generatedBy"> 2294
474 <owl:inverseOf> 2295
475 <owl:ObjectProperty rdf:ID="generates"/> 2296
476 </owl:inverseOf> 2297
477 </owl:ObjectProperty> 2298
478 2299
479 <owl:ObjectProperty rdf:about="#represents"> 2300
480 <rdfs:domain rdf:resource="#Element"/> 2301
481 <rdfs:range rdf:resource="#Element"/> 2302
482 </owl:ObjectProperty> 2303
483 2304
484 <owl:ObjectProperty rdf:ID="representedBy"> 2305
485 <owl:inverseOf> 2306
486 <owl:ObjectProperty rdf:ID="represents"/> 2307
487 </owl:inverseOf> 2308
488 </owl:ObjectProperty> 2309
489 2310
490 <owl:ObjectProperty rdf:ID="hasInput"> 2311
491 <rdfs:domain rdf:resource="#ServiceInterface"/> 2312
492 <rdfs:range rdf:resource="#InformationType"/> 2313
493 </owl:ObjectProperty> 2314
494 2315
495 <owl:ObjectProperty rdf:ID="isInputAt"> 2316
496 <owl:inverseOf> 2317
497 <owl:ObjectProperty rdf:ID="hasInput"/> 2318
498 </owl:inverseOf> 2319
499 </owl:ObjectProperty> 2320
500 2321
501 <owl:ObjectProperty rdf:about="#doneBy"> 2322
502 <rdfs:domain rdf:resource="#Task"/> 2323
503 <rdfs:range rdf:resource="#HumanActor"/> 2324
504 </owl:ObjectProperty> 2325
505 2326
506 <owl:ObjectProperty rdf:ID="does"> 2327
507 <owl:inverseOf> 2328
508 <owl:ObjectProperty rdf:about="#doneBy"/> 2329
509 </owl:inverseOf> 2330
510 </owl:ObjectProperty> 2331
511 2332
512 <owl:ObjectProperty rdf:about="#specifies"> 2333
513 <rdfs:domain rdf:resource="#ServiceContract"/> 2334
514 <rdfs:range rdf:resource="#Effect"/> 2335

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 75

515 </owl:ObjectProperty> 2336
516 2337
517 <owl:ObjectProperty rdf:about="#isSpecifiedBy"> 2338
518 <owl:inverseOf> 2339
519 <owl:ObjectProperty rdf:about="#specifies"/> 2340
520 </owl:inverseOf> 2341
521 </owl:ObjectProperty> 2342
522 2343
523 <owl:ObjectProperty rdf:ID="appliesTo"> 2344
524 <rdfs:domain rdf:resource="#Policy"/> 2345
525 </owl:ObjectProperty> 2346
526 2347
527 <owl:ObjectProperty rdf:ID="isSubjectTo"> 2348
528 <owl:inverseOf> 2349
529 <owl:ObjectProperty rdf:ID="appliesTo"/> 2350
530 </owl:inverseOf> 2351
531 </owl:ObjectProperty> 2352
532 2353
533 <owl:ObjectProperty rdf:about="#hasInterface"> 2354
534 <rdfs:domain rdf:resource="#Service"/> 2355
535 <rdfs:range rdf:resource="#ServiceInterface"/> 2356
536 </owl:ObjectProperty> 2357
537 2358
538 <owl:ObjectProperty rdf:ID="isInterfaceOf"> 2359
539 <owl:inverseOf> 2360
540 <owl:ObjectProperty rdf:about="#hasInterface"/> 2361
541 </owl:inverseOf> 2362
542 </owl:ObjectProperty> 2363
543 2364
544 <owl:ObjectProperty rdf:ID="respondsTo"> 2365
545 <rdfs:domain rdf:resource="#Element"/> 2366
546 <rdfs:range rdf:resource="#Event"/> 2367
547 </owl:ObjectProperty> 2368
548 2369
549 <owl:ObjectProperty rdf:ID="respondedToBy"> 2370
550 <owl:inverseOf> 2371
551 <owl:ObjectProperty rdf:ID="respondsTo"/> 2372
552 </owl:inverseOf> 2373
553 </owl:ObjectProperty> 2374
554 2375
555 <owl:ObjectProperty rdf:ID="performs"> 2376
556 <rdfs:domain rdf:resource="#Element"/> 2377
557 <rdfs:range rdf:resource="#Service"/> 2378
558 </owl:ObjectProperty> 2379
559 2380
560 <owl:ObjectProperty rdf:ID="performedBy"> 2381
561 <owl:inverseOf> 2382
562 <owl:ObjectProperty rdf:ID="performs"/> 2383
563 </owl:inverseOf> 2384
564 </owl:ObjectProperty> 2385
565 2386
566 <owl:ObjectProperty rdf:about="#uses"> 2387
567 <rdfs:domain rdf:resource="#Element"/> 2388

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 76

568 <rdfs:range rdf:resource="#Element"/> 2389
569 </owl:ObjectProperty> 2390
570 2391
571 <owl:ObjectProperty rdf:ID="usedBy"> 2392
572 <owl:inverseOf> 2393
573 <owl:ObjectProperty rdf:ID="uses"/> 2394
574 </owl:inverseOf> 2395
575 </owl:ObjectProperty> 2396
576 2397
577 <owl:ObjectProperty rdf:ID="hasOutput"> 2398
578 <rdfs:domain rdf:resource="#ServiceInterface"/> 2399
579 <rdfs:range rdf:resource="#InformationType"/> 2400
580 </owl:ObjectProperty> 2401
581 2402
582 <owl:ObjectProperty rdf:ID="isOutputAt"> 2403
583 <owl:inverseOf> 2404
584 <owl:ObjectProperty rdf:ID="hasOutput"/> 2405
585 </owl:inverseOf> 2406
586 </owl:ObjectProperty> 2407
587 2408
588 <!-- datatype properties --> 2409
589 2410
590 <owl:DatatypeProperty rdf:about="#legalAspect"> 2411
591 <rdfs:domain rdf:resource="#ServiceContract"/> 2412
592 </owl:DatatypeProperty> 2413
593 2414
594 <owl:DatatypeProperty rdf:about="#constraints"> 2415
595 <rdfs:domain rdf:resource="#ServiceInterface"/> 2416
596 </owl:DatatypeProperty> 2417
597 2418
598 <owl:DatatypeProperty rdf:about="#compositionPattern"> 2419
599 <rdfs:domain rdf:resource="#Composition"/> 2420
600 </owl:DatatypeProperty> 2421
601 2422
602 <owl:DatatypeProperty rdf:about="#interactionAspect"> 2423
603 <rdfs:domain rdf:resource="#ServiceContract"/> 2424
604 </owl:DatatypeProperty> 2425
605 2426
606 </rdf:RDF> 2427

 2428

 2429

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 77

2430

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

 ISO/IEC WD 1 18384 Part 3 SOA Ontology 78

Annex B (Informative) Class Relationship Matrix 2431

This appendix contains a class relationship matrix that illustrates the class-to-class relationships intrinsic in 2432
the OWL definitions of the SOA ontology. The matrix is deterministically derived from the ontology OWL 2433
definitions. Each row X and each column Y corresponds to an OWL class. A relation appears in cell (X,Y) if 2434
and only if class X is part of the domain and class Y is part of the range of the corresponding OWL property. 2435
Note that this means that datatype properties (which do not have a range) are not included in the class 2436
relationship matrix. 2437

As outlined in the body of the document there are four relationships in the table (plus their inverses and sub-2438

classed derivatives) that are technically allowed according to the OWL definitions, but would not be expected 2439

to occur in a practical application of the ontology. Specifically, services are not expected to perform services, 2440

services are not expected to use elements (directly), services are not expected to represent elements, and 2441

services are not expected to orchestrate compositions – all due to the Service class being defined as a logical 2442

representation of a repeatable activity; see The performs and performedBy Properties (Clause 7.3), The uses 2443

and usedBy Properties Applied to Service (Clause 7.4.1), The represents and representedBy Properties 2444

Applied to Service (Clause 7.4.2) and The orchestrates and orchestratedBy Properties (Clause 8.3) for details. 2445

ISO/IEC WD 1 18384 Part 3 SOA Ontology

ISO/IEC WD 1 18384 Part 3 SOA Ontology 79

 Element System Service Human Actor Task Composition Process Service

Composition

Service

Contract

Effect Service

Interface

Information

Type

Event Policy Thing

Element uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

 generates

respondsTo

isSubjectTo

System uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

 generates

respondsTo

isSubjectTo

Service Uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performs

performedBy

Uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performedBy

orchestrates

uses

usedBy

represents

representedBy

performedBy

orchestrates

uses

usedBy

represents

representedBy

performedBy

orchestrates

hasContract hasInterface generates

respondsTo

isSubjectTo

Human

Actor

Uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

does

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

isPartyTo generates

respondsTo

setsPolicy

isSubjectTo

Task Uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

doneBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

 generates

respondsTo

isSubjectTo

Composition uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

 generates

respondsTo

isSubjectTo

Process uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

 generates

respondsTo

isSubjectTo

Service

Composition

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

 generates

respondsTo

isSubjectTo

Service

Contract

 isContractFot involvesParty specifies isSubjectTo

Effect isSpecifiedBy isSubjectTo

Service

Interface

 isInterfaceOf hasInput

hasOutput

 isSubjectTo

Information

Type

 isInputAt

isOutputAt

 isSubjectTo

Event generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

 isSubjectTo

Policy appliesTo appliesTo appliesTo isSetBy

appliesTo

appliesTo appliesTo appliesTo appliesTo appliesTo appliesTo appliesTo appliesTo appliesTo appliesTo

isSubjectTo

appliesTo

Thing isSubjectTo

WORKING DRAFT ISO/IEC WD 18384-3

© ISO 2002 – All rights reserved 81

Annex C (Informative) Issues List

The following issues remain to be addressed:

Comment Ref Comment summary Action/Disposition

:

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

82 © ISO 2002 – All rights reserved

Annex D (Informative) Bibliography
Editors Note: The bibliography needs reducing, ensure all references are actually used

1. ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2001

2. ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International Standardized
Profiles — Part 1: General principles and documentation framework

3. ISO 10241, International terminology standards — Preparation and layout

4. ISO 128-30, Technical drawings — General principles of presentation — Part 30: Basic conventions for
views

1. ISO 690, Documentation — Bibliographic references — Content, form and structure

2. ISO 690-2, Information and documentation — Bibliographic references — Part 2: Electronic
documents or parts thereof

3. ISO/IEC JTC 1/SC 38 N0043, Research Report on China’s SOA Standards System

4. ISO/IEC JTC 1/SC 38 N0022, Chinese National Body Contribution on Proposed NP for General
Technical Requirement of Service Oriented Architecture

5. OASIS Reference Model for SOA, Version 1.0, OASIS Standard, October 2006: Available from

World Wide Web: <http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf>

6. The Open Group, Open Group Standard SOA Reference Architecture Technical Standard,
Available from World Wide Web: < http://www.opengroup.org/soa/source-book/soa_refarch/index.htm>,
pdf: https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12490

7. The Open Group, Technical Standard Service-Oriented Architecture Ontology
Available from World Wide Web: http://www.opengroup.org/soa/source-book/ontology/index.htm, pdf
format available:
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12245

8. Open Group Technical Standard, SOA Governance Framework, Available from World Wide Web:

http://www.opengroup.org/soa/source-book/gov/intro.htm, pdf format available:
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12205

9. OMG Business Process Management Notation (BPMN), see
http://www.omg.org/spec/BPMN/2.0/

10. ISO Technical Report TR9007, Concepts and Terminology for the Conceptual Schema and the
Information Base

11. The Open Group Architecture Framework (TOGAF), section 8.1.1 Version 9 Enterprise Edition,
February 2009; see www.opengroup.org/togaf

12. OASIS Reference Architecture for SOA Foundation, Version 1.0, OASIS Public Review Draft 1,
April 2008: see docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf

13. W3C Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001, see
http://www.w3.org/TR/wsdl

14. OASIS Web Services for Remote Portlets Specification v2.0 OASIS Standard, 1 April 2008
(WSRP), see http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12490
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12245
http://www.opengroup.org/soa/source-book/gov/intro.htm
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12205
http://www.omg.org/spec/BPMN/2.0/
http://www.opengroup.org/togaf/
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

ISO/IEC WD 1 18384 Part 3 SOA Ontology

© ISO 2002 – All rights reserved 83

15. OMG Model Driven Architecture (MDA) Guide, Version 1.0.1, Object Management Group (OMG),

June 2003: see www.omg.org/docs/omg/03-06-01.pdf

16. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.2, OMG Doc. No.:
formal/2009-02-02, Object Management Group (OMG), February 2009: see
www.omg.org/spec/UML/2.2/Superstructure

17. OMG SOA Modeling Language (OMG SoaML) Specification for the UML Profile and Metamodel
for Services (UPMS), Revised Submission, OMG Doc. No.: ad/2008-11-01, Object Management Group

(OMG), November 2008: see www.omg.org/cgi-bin/doc?ad/08-11-01

18. W3C Web Ontology Language (OWL), World Wide Web Consortium (W3C), April 2009: see
www.w3.org/2007/OWL/wiki/OWL_Working_Group

19. Garrett, Jesse James, A New Approach to Web Applications, Feb 18, 2005 see
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

20. OASIS Web Services Coordination (WS-Coordination) Version 1.2, OASIS Standard, Feb 2,
2009, http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf

21. Web Services Atomic Transaction (WS-Atomic Transaction) Versions 1.2 OASIS Standard, Feb
2, 2009, http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf

22. Web Services Business Activity (WS-Business Activity) Version 1.2 OASIS Standard, Feb 2,
2009, http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf

23. Business Process Modeling Notation (BPMN), Version 1.1, Object Management Group;

available from www.omg.org.

24. Beyond Concepts: Ontology as Reality Representation, by Barry Smith; available from

http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf.

25. Definition of SOA: The Open Group; available from

www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA.

26. IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of Software-

intensive Systems (adopted by ISO/IEC JTC1/SC7 as ISO/IEC 42010:2007); available from

standards.ieee.org.

27. IETF RFC 2119: Key Words for use in RFCs to Indicate Requirement Levels, March 1997; refer

to www.ietf.org.

28. ISO/IEC 42010:2007: Systems and Software Engineering – Recommended Practice for

Architectural Description of Software-intensive Systems; available from www.iso.org.

29. Navigating the SOA Open Standards Landscape Around Architecture (W096), White Paper

published by The Open Group, November 2009.

30. OASIS Reference Model for Service-Oriented Architecture, Version 1.0, Organization for the

Advancement of Structured Information Standards (OASIS); available from www.oasis-

open.org.

31. OWL Web Ontology Language Reference, W3C Recommendation, 10 February 2004, World-

Wide Web Consortium; available from www.w3.org/TR/owl-ref.

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/cgi-bin/doc?ad/08-11-01_
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf
http://www.omg.org/
http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf
http://www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA
http://standards.ieee.org/
http://www.ietf.org/
http://www.iso.org/
http://www.oasis-open.org/
http://www.oasis-open.org/
http://www.w3.org/TR/owl-ref/

 ISO/IEC WD 1 18384 Part 3 SOA Ontology

84 © ISO 2002 – All rights reserved

32. Service-Oriented Architecture Modeling Language (SoaML), Object Management Group;

available from www.omg.org.

33. The Open Group Architecture Framework (TOGAF), The Open Group; available from

www.opengroup.org.

34. What is an Ontology? Stanford University; available from www-ksl.stanford.edu/kst/what-is-an-

ontology.html.

http://www.omg.org/
http://www.opengroup.org/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

	Distributed Application Platforms and Services (DAPS)
	SOA Reference Architecture
	Service Oriented Architecture Ontology
	1 Scope
	2 Normative references
	3 Terms, Definitions, Notations, and Conventions
	3.1 Definitions
	3.2 Acronyms
	3.3 Notations
	3.4 Conventions

	4 SOA Ontology Overview
	4.1.1 Applications
	4.1.2 Conformance

	5 System and Element
	5.1 Introduction
	5.2 The Element Class
	5.3 The uses and usedBy Properties
	5.4 Element – Organizational Example
	5.5 The System Class
	5.6 System – Examples
	5.6.1 Organizational Example
	5.6.2 Service Composition Example
	5.6.3 Car Wash Example

	5.7 The represents and representedBy Properties
	5.8 Examples
	5.8.1 Organizational Example
	5.8.2 Car Wash Example

	6 HumanActor and Task
	6.1 Introduction
	6.2 The HumanActor Class
	6.3 HumanActor – Examples
	6.3.1 The uses and usedBy Properties Applied to HumanActor
	6.3.2 The represents and representedBy Properties Applied to HumanActor
	6.3.3 Organizational Example
	6.3.4 Car Wash Example

	6.4 The Task Class
	6.5 The does and doneBy Properties
	6.6 Task – Examples
	6.6.1 The uses and usedBy Properties Applied to Task
	6.6.2 The represents and representedBy Properties Applied to Task
	6.6.3 Organizational Example
	6.6.4 Car Wash Example

	7 Service, ServiceContract, and ServiceInterface
	7.1 Introduction
	7.2 The Service Class
	7.3 The performs and performedBy Properties
	7.3.1 Service Consumers and Service Providers

	7.4 Service – Examples
	7.4.1 The uses and usedBy Properties Applied to Service
	7.4.2 The represents and representedBy Properties Applied to Service
	7.4.3 Exemplifying the Difference between Doing a Task and Performing a Service
	7.4.4 Car Wash Example

	7.5 The ServiceContract Class
	7.5.1 The interactionAspect and legalAspect Datatype Properties

	7.6 The hasContract and isContractFor Properties
	7.7 The involvesParty and isPartyTo Properties
	7.8 The Effect Class
	7.9 The specifies and isSpecifiedBy Properties
	7.10 ServiceContract – Examples
	7.10.1 Service-Level Agreements
	7.10.2 Service Sourcing
	7.10.3 Car Wash Example

	7.11 The ServiceInterface Class
	7.11.1 The Constraints Datatype Property

	7.12 The hasInterface and isInterfaceOf Properties
	7.13 The InformationType Class
	7.14 The hasInput and isInputAt Properties
	7.15 The hasOutput and isOutputAt Properties
	7.16 Examples
	7.16.1 Interaction Sequencing
	7.16.2 Car Wash Example

	8 Composition and its Subclasses
	8.1 Introduction
	8.2 The Composition Class
	8.2.1 The compositionPattern Datatype Property

	8.3 The orchestrates and orchestratedBy Properties
	8.4 The ServiceComposition Class
	8.5 The Process Class
	8.6 Service Composition and Process Examples
	8.6.1 Simple Service Composition Example
	8.6.2 Process Example
	8.6.3 Process and Service Composition Example
	8.6.4 Car Wash Example

	9 Policy
	9.1 Introduction
	9.2 The Policy Class
	9.2.1 The appliesTo and isSubjectTo Properties

	9.3 The setsPolicy and isSetBy Properties
	9.4 Examples
	9.4.1 Car Wash Example

	10 Event
	10.1 Introduction
	10.2 The Event Class
	10.3 The generates and generatedBy Properties
	10.4 The respondsTo and respondedToBy Properties

	11 Complete Car Wash Example
	11.1 The Organizational Aspect
	11.2 The Washing Services
	11.3 Interfaces to the Washing Services
	11.4 The Washing Processes
	11.5 The Washing Policies

	12 Internet Purchase Example
	Annex C (Informative) Issues List
	Annex D (Informative) Bibliography

