
38    COMMUNICATIONS OF THE ACM    |   OCTOBER 2017  |   VOL.  60  |   NO.  10

V
viewpoints

P
H

O
T

O
 B

Y
 U

K
’S

 G
O

V
E

R
N

M
E

N
T

 D
I

G
I

T
A

L
 S

E
R

V
I

C
E

/F
L

I
C

K
R

 (
C

C
 B

Y
 2

.0
)

seven iterations, but delivered after 
13, owing to a barrage of change re-
quests. Nevertheless, it worked, and 
we were able to keep a substantial 
formal specification and all the oth-
er design documentation up to date 
as the project evolved. Knowing that 
“change” and “iteration” were at the 
heart of the Agile manifesto, we de-
cided to see what we could learn and 
bring to future projects.

T
HERE I S  MUCH interest in 
Agile engineering, espe-
cially for software develop-
ment. Agile’s proponents 
promote its flexibility, lean-

ness, and ability to manage changing 
requirements, and deride the plan-
driven or waterfall approach. Detrac-
tors criticize Agile’s free-for-all.

At Altran U.K., we use disciplined 
and planned engineering, particu-
larly when it comes to high-integrity 
systems that involve safety, security, 
or other critical properties. A shallow 
analysis is that Agile is anathema to 
high-integrity systems development, 
but this is a naïve reaction. Pertinent 
questions include:

 ˲ Is Agile compatible with high-
integrity systems development?

 ˲ Where is Agile inappropriate?
 ˲ Do Agile’s assumptions hold for 

high-integrity or embedded systems?
 ˲ Could high-integrity best-practice 

improve Agile?
We don’t have all the answers, but 

we hope this Viewpoint continues to 
provoke debate on this important 
topic.

Why bother with Agile at all? We 
often encounter two myths regarding 
the “traditional” approach to high-
integrity software development: that 
we somehow manage to perform a 
single-iteration waterfall style pro-
cess, and that “formal” notations 

are not amenable to change. Neither 
myth rings true with our experience. 
As our projects develop, they must 
absorb change and respond to de-
fects just like any other. This led to 
an observation: your project is going 
to become iterative whatever you do, 
so you might as well plan it that way 
from the beginning. This lesson was 
put to good effect in the MULTOS CA 
project,6 which initially planned for 

Viewpoints 
What Can Agile Methods 
Bring to High-Integrity 
Software Development? 
Considering the issues and opportunities raised by Agile  
practices in the development of high-integrity software.

DOI:10.1145/3133233 Roderick Chapman, Neil White, and Jim Woodcock 

http://dx.doi.org/10.1145/3133233


OCTOBER 2017  |   VOL.  60  |   NO.  10  |   COMMUNICATIONS OF THE ACM     39

viewpoints

V
viewpoints

break the proof (or the tests) … ”
Upfront Activities and Architec-

ture. Agile advocates building what is 
needed now, using refactoring to defer 
decisions. Refactoring must be cheap, 
fast, and limit rework to source code. 

Our principal weapon in meeting 
non-functional requirements is system 
(not just software) architecture, in-
cluding redundancy and separation of 
critical from non-critical. Such things 
can be prohibitively expensive to refac-
tor late in the day. We need just enough 
upfront architecture work to argue sat-
isfaction of key properties. We also do 
a “What If?” exercise to ensure the pro-
posed architecture can accommodate 
foreseeable changes.

The MULTOS CA project had some 
extraordinary security requirements, 
which were met by a carefully consid-
ered combination of physical, opera-
tional, and computer-based mecha-
nisms. The software design was much 
simplified as a result of this whole 
system view. The physical measures 
included the provision of a bank vault 
and enclosing Faraday cage—hardly 
items that we could have ignored and 
then “refactored in” later.

User Stories and Non-Functional 
Requirements. For security and safety, 
we must ensure our specification cov-
ers all possible inputs and states. Ag-
ile uses stories to document require-
ments, but these sample behavior, 
with no completeness guarantee. The 
gaps between stories may contain vul-
nerabilities, bugs, unexpected termi-
nation, and undefined behavior. Mey-
er files user stories under “Bad and 
Ugly,” and we agree.

For critical systems, we prefer a 
(semi-)formal specification that of-
fers some hope of completeness. The 
C130J used Parnas tables to specify 
critical functions. They seemed to 
work well—they were simple enough 
to be understood by system engineers, 
yet sufficiently formal to be imple-
mented and analyzed for correctness.

Sprint Pipeline. Agile usually re-
quires a single active “Sprint,” deliv-
ered immediately to the customer, so 
only two builds are ever of interest:

 ˲ Build N: in operation with the cus-
tomer; used to report defects.

 ˲ Build N+1: the current develop-
ment sprint.

This assumes the customer is al-

Background and Sources
Many consider Agile as beginning 
with XP,1 but its roots are much older. 
Many of XP’s core practices were well 
established long ago—their combina-
tion and rigorous practice was novel. 
A survey9 notes that both incremen-
tal and iterative styles of engineering 
were used in the 1950s. Redmill’s work 
on evolutionary delivery12 predicted 
many of the problems faced by Agile 
projects. Boehm2 provides some use-
ful insight, while the development of 
MULTOS CA6 compared Correctness-
by-Construction with XP,3 showing 
that the two were not such strange 
bedfellows after all.

Lockheed Martin developed the 
Mission Computers for the C130J by 
combining semi-formal specification, 
strong static verification, iterative de-
velopment, and a strongly Lean mind-
set.11 Use of Agile has been reported by 
Thales Avionics,5 while SINTEF have 
reported success with SafeScrum.13 A 
recent and plain-speaking evaluation 
of Agile comes from Meyer,10 although 
he does not specifically deal with high-
integrity issues.

Agile Assumptions and Issues
How do Agile’s practices and assump-
tions match real high-integrity proj-
ects? Here are some of the most obvi-
ous clashes. For each issue, we start 
with a brief recap of the practice in 
question, then go on to describe the is-
sue or perceived clash, followed by our 
ideas and experiences in overcoming 
it. Where possible, we close each sec-
tion with an example of our experience 
from the C130J, MULTOS, or iFACTS 
projects.

Dependence on “Test”
Agile calls for continuous integra-
tion, with a regression test suit, and a 
test-first development style, with each 
function associated with specific tests. 
Meyer calls these practices “brilliant” 
in his summary analysis,10 but Agile as-
sumes that dynamic test is the princi-
pal (possibly only) verification activity, 
saying when refactoring is complete, 
or when the product is good enough to 
ship.

The safety-critical community hit 
the limits of testing long ago. Ultra-
reliability cannot be claimed from 
“lots of testing.” Security is even more 

difficult—corner-case vulnerabilities, 
such as HeartBleed—defy an arbitrari-
ly large amount of testing and use. In 
high-integrity development, we use di-
verse forms of verification, including 
checklist-driven reviews, automated 
static verification, traceability analy-
sis, and structural coverage analysis.

There is no barrier between these 
verification techniques and Agile, es-
pecially with an automated integra-
tion pipeline. We try to use verifica-
tion techniques that complement, not 
repeat each other. If possible, we ad-
vocate for sound static analyses (tools 
that find all the bugs, not just some of 
them), since this gives greater assur-
ance and reduces pre-test defect den-
sity. With careful consideration of the 
assumptions that underpin the static,8 
we can reduce or entirely remove later 
testing activities.

The NATS iFACTS system4 augments 
the software tools available to air-traf-
fic controllers in the U.K. It supplies 
electronic flight-strip management, 
trajectory prediction, and medium-
term conflict detection for the U.K.’s 
en-route airspace, giving controllers 
substantially improved ability to plan 
ahead and predict potential loss-of-
separation in a sector. The developers 
precede commit, build, and testing 
activities with static analysis using the 
SPARK toolset. Overnight, the integra-
tion server rebuilds an entire proof of 
the software, populating a persistent 
cache, accessible to all developers the 
next morning. Working on an isolated 
change, the developers can repro-
duce the proof of the entire system in 
about 15 minutes on their desktop ma-
chines, or in a matter of seconds for a 
change to a single module. While Agile 
projects might have a “don’t break the 
tests” mantra, on iFACTS it’s “don’t 

How do Agile’s 
practices and 
assumptions match 
real high-integrity 
projects?



40    COMMUNICATIONS OF THE ACM    |   OCTOBER 2017  |   VOL.  60  |   NO.  10

viewpoints

In mitigation, we reduce on-target 
testing with more static verification. 
Secondly, if we know that code is com-
pletely unambiguous, then we can jus-
tify testing on host development ma-
chines and reduce the need to repeat 
the test runs on target. Hardware sim-
ulation can give each developer a desk-
top virtual target or a fast cloud for the 
deployment pipeline. While virtual-
ization of popular microprocessors is 
common, high-fidelity simulation of 
a target’s operating environment re-
mains a significant challenge.

On one embedded project, all de-
velopment of code, static analysis, and 
testing is done on developers’ host ma-
chines, which are plentiful, fast, and 
offer a friendly environment. A final 
re-run of the test cases is performed 
on the target hardware with the expec-
tation of pass-first-time, and allowing 
the collection of structural coverage 
data at the object-code level.

Opportunities
High-integrity practices can comple-
ment Agile. We previously mentioned 
the use of static verification tools. 
While we have a preference for devel-
oper-led, sound analysis, we recog-
nize that some projects might find 
more benefit in unsound, but easier to 

ways able to accept delivery of the 
product and use it immediately. This 
is not realistic for high-integrity proj-
ects. Some customers have their own 
acceptance process, and regulators 
may have to assess the system before 
deployment. These processes can be 
orders-of-magnitude slower than a 
typical Agile tempo.

iFACTS uses a deeper pipeline and 
multiple iteration rates, with at least 
four builds in the pipeline:

 ˲ Build N: in operation with the cus-
tomer.

 ˲ Build N+1: undergoing customer 
acceptance. This process is subject to 
regulatory requirements, and so can 
take months.

 ˲ Build N+2: in development and 
test.

 ˲ Build N+3: undergoing require-
ments and formal specification.

All four pipeline stages run concur-
rently with multiple internal iteration 
rates and delivery standards. The de-
velopment team can deliver to our test 
team several times a day. A rapid build 
can be delivered to the customer (in, 
say, 24 hours), but comes with limita-
tions on its assurance package and 
allowed use: it is not intended for op-
erational use, but for feedback from 
the customer on a new feature. A full 

build (perhaps once every six months) 
has a complete assurance package, in-
cluding a safety case, and is designed 
for eventual operation. The trick is 
to make the iteration rates harmonic, 
both with each other and with the cus-
tomer and regulator’s ability to accept 
and deploy releases.

Embedded Systems Issues. Agile 
presumes plentiful availability of fast 
testing resources to drive the devel-
opment pipeline. For embedded sys-
tems, if the hardware exists, there may 
be just one or two target rigs that are 
slow, hostile to automation, and dif-
ficult to access. We have seen projects 
revert to 24-hour-a-day shift-working 
to allow access to the target hardware.

Agile presumes 
plentiful availability 
of fast testing 
resources to drive the 
development pipeline.

High-integrity Agile evidence engine.



OCTOBER 2017  |   VOL.  60  |   NO.  10  |   COMMUNICATIONS OF THE ACM     41

viewpoints

ification activity, minimizing upfront 
activities in the face of non-functional 
requirements, the incompleteness of 
user stories (especially for secure sys-
tems), the need to align sprints and it-
eration rates with customers and regu-
lators ability to accept deliveries, and 
the (non-)availability of test hardware 
for embedded systems.

 ˲ Agile assumptions: customer deci-
sion-making power and tempo, avail-
ability of plentiful test hardware, and 
commercial and contractual models 
needed to “procure Agile.”

 ˲ Opportunities: Adoption of formal 
languages, automated synthesis, and 
static verification as part of the deploy-
ment pipeline. Generalization of con-
tinuous integration into an “Evidence 
Engine.”

We are deploying these ideas on fur-
ther projects, and look forward to be-
ing able to report the results. We hope 
others will do the same. 

References
1. Beck, K. Extreme Programming Explained: Embrace 

Change. Addison Wesley, 1999.
2. Boehm, B. and Turner, R. Balancing Agility and Discipline: 

A Guide for the Perplexed. Addison Wesley, 2003.
3. Chapman, R. and Amey, P. Static verification and 

extreme programming. In Proceedings of the ACM 
SIGAda Conference (2003).

4. Chapman, R. and Schanda, F. Are we there yet? 20 
years of industrial theorem proving with SPARK. In 
Proceedings of Interactive Theorem Proving 2014. 
Springer LNCS Vol. 8558, (2014), 17–26.

5. Chenu, E. Agility and Lean for Avionics. Thales 
Avionics, 2009; http://www.open-do.org/2009/05/07/
avionics-agility-and-lean/ 

6. Hall, A. and Chapman, R. Correctness by construction: 
Building a commercial secure system. IEEE Software 
19, 1 (2002), 18–25.

7. Jackson, M. Problem Frames. Pearson, 2000.
8. Kanig, J. et al. Explicit assumptions—A prenup for 

marrying static and dynamic program verification. In 
Proceedings of Tests and Proofs 2014. Springer-Verlag 
LNCS, 8570, (2014), 142–157; DOI: 10.1007/978-3-
319-09099-3_11

9. Larman, C. and Basili, V. Iterative and incremental 
development: A brief history. IEEE Computer, 2003.

10. Meyer, B. Agile! The Good, the Hype, and the Ugly. 
Springer, 2014.

11. Middleton, P. and Sutton, J. Lean Software Strategies. 
Productivity Press, 2005.

12. Redmill, F. Software Projects: Evolutionary vs. Big-
Bang Delivery. Wiley, 1997; http://www.safetycritical.
info/library/NFR/. 

13. SINTEF. SafeScrum website, 2015; http://www.sintef.
no/safescrum. 

Roderick Chapman (rod@proteancode.com) is an 
independent consultant software engineer, and an 
honorary visiting professor at the University of York, U.K.

Neil White (neil.white@altran.com) is Director of the 
Intelligent Systems Expertise Centre of Altran U.K. 

Jim Woodcock (jim.woodcock@york.ac.uk) is Professor 
of Software Engineering in the Department of Computer 
Science at the University of York, U.K.

Thanks to Felix Redmill, Jon Davies, Mike Parsons, Harold 
Thimbleby, and Communications’ reviewers for their 
comments on earlier versions of this Viewpoint.

Copyright held by authors.

adopt, technologies, such as bounded 
model checking. Computing power is 
readily available to make these analy-
ses tractable at an Agile tempo.

A second opportunity comes with 
the realization that, if we can automate 
analysis, building and testing of code, 
why not automate the production of 
other artifacts, such as synthesis of 
code from formal models, traceability 
analysis, and all the other documenta-
tion that might be required by a partic-
ular customer, regulator, or standard? 
An example of such an “Evidence En-
gine” is shown in the accompanying 
figure.

Commercial Issues
A crucial issue: How can we adopt an 
Agile approach, and still estimate, bid, 
win, and deliver projects at a reason-
able profit? Our customers’ default ap-
proach is often to require a competi-
tive bid at a fixed price, but how can 
this be possible in an Agile fashion if 
we are brave enough to admit that we 
don’t know everything at the start of a 
project? In most of our projects, the 
users, procurers, and regulators are 
distinct groups, all of whom may have 
wildly different views of what “Agile” 
means anyway.

We have had good experience with 
a two-phase approach to contracting, 
akin to the “architect/builder” model 
for building a house. Phase 1 consists 
of the “Upfront” work—requirements, 
architectural design, and construction 
of a skeletal satisfaction argument. 
The “just enough” termination criteria 
for phase 1 are:

 ˲ Convincing evidence that the arc  
hitecture will work, meet non-func-
tional requirements, and can accom-
modate foreseeable change.

 ˲ An estimate of the size (and there-
fore cost) of the remaining work, given 
the currently understood scope.

 ˲ Established ground rules for agree-
ing the scope, size, and additional cost 
of change requests, and commitment 
to the tempo of decision making for 
triage of changes and defects.

Phase 2 (possibly a competitive 
bid) could be planned as an iterative 
development, using the ideas set out 
here. The MULTOS CA was delivered 
in this fashion, with phase 1 on a time-
and-materials basis, and phase 2 on a 
capped-price risk-sharing contract.

High-Integrity Deployment Pipeline
We have used the ideas described in 
this Viewpoint at Altran, but we have 
yet to deploy all of them at once. An 
idealized Agile development process 
would use:

 ˲ Principled requirements engi-
neering,7 concentrating initially on 
non-functional requirements and de-
velopment of architecture, specifica-
tion, and associated satisfaction argu-
ments.

 ˲ A rolling formal specification, 
with just enough formality to estimate 
the remaining work and opening de-
velopment iterations.

 ˲ An evidence engine, combining 
static verification, continuous regres-
sion testing, automated generation of 
documents and assurance evidence, 
and a cloud of virtualized target plat-
forms for integration and deployment 
testing.

 ˲ A planned, iterative development 
style, starting with a partial-order 
over system infrastructure and fea-
tures that exposes potential for paral-
lel development. Early iterations are 
planned in detail, while the plans for 
later iterations are left open to accom-
modate change.

Conclusion
Returning to the questions posed at 
the beginning of this Viewpoint, we 
could summarize our findings as fol-
lows:

 ˲ No clash: continuous integration, 
verification-driven development style, 
continuous regression testing, and an 
explicitly planned iterative approach.

 ˲ Potential clash or inappropriate: 
overdependence on test as the sole ver-

How can we adopt  
an Agile approach, 
and still estimate,  
bid, win, and  
deliver projects  
at a reasonable 
profit?


