
DECEMBER 2017  |   VOL.  60  |   NO.  12  |   COMMUNICATIONS OF THE ACM     29

V
viewpoints

I
M

A
G

E
 B

Y
 A

L
I

C
I

A
 K

U
B

I
S

T
A

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

of assassins. Some were all business, 
some were hiding in the governance 
trenches, some were up in the clouds 
and some were architectural. Let’s look 
at the assassins in a little detail. 

One of the business assassins was 
control. When a company embarks 
on a multiyear journey with a big soft-
ware vendor it cedes significant—if not 
total—control to that vendor and the 
business processes embedded in the 

W
H Y  W O U L D  A N Y O N E 
undertake a multi-
year software project 
today? Or upgrade 
an in-house-hosted 

legacy application? Or build—or use—
anything that behaved like a mono-
lithic software application? Big soft-
ware project failure data is legendary.11 
There are myriad horror stories with 
titles like “9 VERY Scary ERP and ERP 
System Implementation Statistics.”12 
The Standish Group actually labels 
their annual technology project analy-
ses as “Chaos Reports.”14 They report-
ed that 66% of all technology projects 
completely or partially failed in 2015.

So assuming that management is 
reasonably well informed, it knows 
that big software projects are likely 
to fail. Yet in the 1990s and early 21st 
century there were still companies 
willing to try their hand with big soft-
ware and prove they were unlike the 
others who failed so spectacularly. In 
spite of this unjustifiable optimism, 
many of these companies also failed. 
Even the U.S. Defense Department 
failed spectacularly.6

So that no one thinks that failure 
only plagues ERP applications, the 
data suggests all kinds of big software 
projects fail.13 Big customer relation-
ship management (CRM) projects fail. 
Big database management systems 
(DBMS) projects fail. Big infrastructure 
projects fail. Big communications proj-
ects fail. In fact, most software projects 
designed to address enterprisewide 

problems with single, integrated plat-
forms fail. Failure crosses vertical and 
functional areas as well, including re-
tail, government, financial services, 
and even science.10 

The high rate of failure helped kill 
big software. But there were other 
causes of death.

Causes of Death
Big software is dead. There were lots 

Viewpoint 
The Death of  
Big Software 
We are past the tipping point in the transition  
away from 20th-century big software architectures. 

DOI:10.1145/3152722 Stephen J. Andriole

http://dx.doi.org/10.1145/3152722


30    COMMUNICATIONS OF THE ACM    |   DECEMBER 2017  |   VOL.  60  |   NO.  12

viewpoints

The cloud also killed big software. 
Years ago, companies would imple-
ment huge software systems in their 
own data centers. Armies of program-
mers would work with armies and na-
vies of (happy) consultants to bring 
big systems to life. Some years later 
the software might “launch” with a 
“switch” that—according to the data—
usually failed (at least the first time). So 
the armies and navies would go back 
to work to get it right (until they got it 
right). Implementation cost was also 
a killer. $10M often turned into $50M, 
which often turned into $250M and 
sometimes into billions: the Standish 
Group reports that big technology proj-
ects run anywhere from 40%–50% over 
budget—and deliver less than 50%–
60% of the promised ROI.14 Cloud deliv-
ery changed all that: it is now possible 
to access an enterprise application di-
rectly from the cloud from any number 
of providers.

While implementation pain was 
avoided through cloud delivery, pro-
cess control was still ceded to the 
big software vendors who owned the 
embedded business processes in the 
cloud-delivered software (while some 
of the control went to the cloud provid-
er who deployed the systems on behalf 
of their clients). While it was almost 
always cheaper (by total cost of owner-
ship [TCO] metrics) to move from on-
premise big software applications to 
cloud hosted applications, companies 
were still denied access to the trans-
formational and disruptive playing 
fields.4,18,a 

a TCO debates around on-premise-versus-
cloud continue. There are all sorts of ways 
to compare costs across services, and many 
of the results will vary depending on indi-
vidual services such as SaaS, IaaS, PaaS, and 
other cloud-based services. But a full com-
parison should include variables like agility, 
governance and long-term costs connected 
with training, testing, upgrades and security, 
among others. If a company is looking to get 
out of the technology business by moving its 
operational and strategic technology to the 
cloud, it will find ways to justify the cost mod-
el. If there is a bias toward keeping everything 
in-house then favorable on-premise cost 
models can be developed. The larger ques-
tion is around core competency: Does the 
company want to be in the technology acqui-
sition, deployment and support business—or 
not? The cloud offers opportunities to reas-
sess core competencies and enables rational 
for various cost models, though ideally the 
models are based on empirical evidence.

code. For example, ERP modules were 
originally designed to eliminate proc-
ess chaos. Remember when there were 
no intra- or intercompany (or industry) 
standardized processes? Remember 
when software applications never in-
tegrated? Remember when 1970s and 
1980s “legacy” software was a barrier to 
scalability, not to mention how expen-
sive it was to customize and maintain? 
ERP vendors came to the rescue by 
controlling the mess that homegrown 
applications created. But one of the 
side effects was the loss of process con-
trol to the vendors who defined supply 
chain management, financial report-
ing, and other business processes for 
the companies (and industries) they de 
facto managed. 

While tightly bundled standardized 
software made some sense back in the 
day, it makes little or no sense in the era 
of digital transformation where disrup-
tive business processes and business 
models are seen as necessary paths to 
competitiveness: disruption and stan-
dardized big software are not birds of a 
feather. Of course, in 1995 would have 
seemed heretical. Companies were 
desperate to end the chaos of uncoor-
dinated business processes and rules. 
Standardized processes incarnated in 
software were the vitamin pills everyone 
needed. But in retrospect it is not clear 
that everyone understood exactly what 
they were consuming. When business 
models moved slowly in the 20th cen-
tury, slow-and-steady worked, but when 
whole new “disruptive” business mod-
els began to appear in the 21st century 
(fueled by new and more powerful digi-
tal technologies), slow-and-steady be-
came a clear threat to competitiveness.

Governance also killed big software. 
Big software projects that are “stan-
dardized”—that is, required—by cor-
porate technology groups also usually 
failed, not because they did not work 
as advertised (which they often did 
not) but because of the governance 
that forced a one-size-fits-all approach 
to technology use. Huge off-the-shelf 
software packages—like ERP, CRM and 
DBMS packages—or even large custom 
in-house developed applications man-
dated by corporate IT—usually failed 
under the weight of their own gover-
nance which, to make matters worse, 
often resulted in increased “Shadow 
IT” spending.1,2

For further information 
or to submit your 

manuscript, 
visit jdiq.acm.org

ACM Journal of
Data and 
Information Quality
Providing Research and Tools 
for Better Data

ACM JDIQ is a multi-
disciplinary journal 
that attracts papers 
ranging from 
theoretical research 
to algorithmic solutions 
to empirical research 
to experiential 
evaluations. Its 
mission is to publish 
high impact articles 
contributing to the 
field of data and 
information quality (IQ).



DECEMBER 2017  |   VOL.  60  |   NO.  12  |   COMMUNICATIONS OF THE ACM     31

viewpoints

Finally, some of the assassins 
were (sometimes unknowingly) ar-
chitects. The overwhelming technical 
complexity and inflexibility of huge, 
standardized software systems also 
explain the death of big software. 
Enormous whole-company projects 
were often beyond the capabilities 
of even the most experienced project 
and program managers—especially 
when there is never 100% consensus 
about the need for a total enterprise 
project in the first place. High-level 
functional and non-functional re-
quirements were nearly impossible to 
comprehensively define and validate; 
detailed requirements were even 
more elusive. 

But perhaps the real architectural 
assassin was monolithic software de-
sign. Many of the big software ar-
chitectures of the 20th century were 
conceived as integrated functional 
wholes versus decoupled services. 
Over time, monolithic architectures 
became impossible to cost-effectively 
modify or maintain and—much more 
importantly—became obstacles to 
business process change. The trend 
toward microservice-based architec-
tures represents an exciting replace-
ment to monolithic architectures (see 
below).

The Rise of Small,  
Cloudy Software
There are also small software cloud-
based alternatives that scale, in-
tegrate, and share process control 
through customization tools delib-
erately built into smaller, more man-
ageable platforms. Companies can 
find lots of incredibly inexpensive 
alternatives, from vendors like Zoho 
and Zendesk, among many others.b

While “small” software packages 
also embed business rules and pro-
cesses, they are built in smaller, more 
integrate-able pieces, which provides 
much more flexibility to clients who 
want to mix-and-match (existing and 
new) functionality. 

The major driver of software 
change is continuous digital trans-

b Zoho (www.zoho.com), Zendesk (www.ze-
ndesk.com). Also see: https://www.getapp.
com/customer-management-software/a/zoho-
crm/alternatives/ and https://www.crowdre-
views.com/zoho-crm/alternatives

formation. Big standardized software 
systems conceived in the 20th century 
were not designed to adapt or self-
destruct the moment a company or 
industry pivots. 

Another way of thinking about all 
this is the relationship between micro 
and macro (or monolithic) services. 
Big software begins with macroservices 
in monolithic architectures.3,5 Or we 
could just think about all this as small 
versus large programming.8

Architectural assassins argue that 
monolithic architectures are stiff, 
inflexible, and unyielding. They are 
also difficult and expensive to main-
tain primarily because functionality 
is so interconnected and interdepen-
dent. They also argue that monolithic 
architectures should be replaced by 
microservice-based architectures.16,17 
According to Annenko,3 “the concept 
is rather easy, it’s about building an 
application consisting of many small 
services that can be independently 
deployed and maintained, don’t have 
any dependencies but rather com-
municate with each other through 
lightweight mechanisms and lack a 
centralized infrastructure. It is even 
possible to write these small (micro-) 
services each in its own language.” 
Why microservice-based architec-
tures? Annenko continues: “their 
benefits are undoubted, too: they 
easily allow for continuous deploy-
ment, and certain parts of an appli-
cation can be changed, debugged or 
even replaced quickly and without af-
fecting the rest. With microservices, 
you absolutely cannot break an ap-

Software 
architectures  
must be blank 
canvasses  
capable of yielding 
tiny pictures  
or large 
masterpieces. 

plication: if something goes wrong, 
it will go wrong only within its own 
microspace, while the rest of the ap-
plication will continue working as be-
fore.” 

Was there any doubt that these ar-
chitectural assassins would hit their 
target?

All of that said, SOA architecture 
dreams continue to develop.9 The big 
data world, for example, has already 
defined an open source architecture 
that is fast, flexible, cost-effective—
and always changing.15 The tools en-
able low latency and real-time pro-
cessing through Spark and Flink, 
among other open source tools. The 
details are specified in tools like Lam-
da, Kappa, and SummingBird. Ma-
pReduce moved us from parallel pro-
cessing, and file systems have evolved 
from Google File Systems to Hadoop. 
Building on Hadoop, Spark and Flink 
provide real-time runtime environ-
ments. Even data streaming has been 
addressed with tools like Storm and 
Spark Streaming. But while SOA com-
plements microservice-based archi-
tecture, they are different.7 SOA is not 
the threat to monolithic big software 
that microservice-based architecture 
is; in fact, SOA often behaves like a big 
software vitamin supplement. Said 
differently, SOA is not a replacement 
for monolithic big software and is 
therefore not a big software assassin.c 
But candidly, SOA-based integration 
and interoperability have proved il-
lusive in spite of continued promises 
and a growing library of open source 
application programming interfaces 
(APIs) and Web services. SOA is still 
more of a dream than an answer for 
continuous digital transformation. It 
might, in fact, be the wrong answer. 

In addition, cloud delivery is be-
coming increasingly flexible. Contain-
er technology offered by companies 
like Docker offers freedom to compa-
nies who may need to pivot away from 

c Clark7 describes the differences simply: “mi-
croservices architecture is an alternative ap-
proach to structuring applications. An ap-
plication is broken into smaller, completely 
independent components, enabling them to 
have greater agility, scalability, and availabil-
ity. SOA exposes the functions of applications 
as more readily accessible service interfaces, 
making it easier to use their data and logic in 
the next generation of applications.”



32    COMMUNICATIONS OF THE ACM    |   DECEMBER 2017  |   VOL.  60  |   NO.  12

viewpoints

“big” software and the liberators of 
new “small” software. In 20 years very 
few of us will recognize the software 
architectures of the 20th century or how 
software in the cloud enables ever-
changing business requirements. 

References 
1. Andriole, S. Who owns IT? Commun. ACM 58, 8 (Aug. 

2015).
2. Andriole, S., Cox, T. and Khin, K. Technology Adoption 

& Digital Transformation. CRC Press, 2017.
3. Annenko, O. Breaking down the monolithic: 

Microservices vs. self-contained systems. DZone, June 
2016; http://bit.ly/2dEfFBG

4. Boisvert, G. Cost of Server Ownership: On-Premise Vs. 
IaaS. SherWeb, Sept. 2015; http://bit.ly/2z3Sg9l

5. Brown, S. What is agile software architecture, 
Coding the Architecture, 2013; http://www.codingthe 
architecture.com/2013/09/03/what_is_agile_
software_architecture.html

6. Charette, R.N. U.S. Air Force blows $1 billion on failed 
ERP project. IEEE Spectrum, Nov. 2012; http://bit.
ly/2zim1El

7. Clark, T. Microservices, SOA, and APIs: Friends 
or enemies?: A comparison of key integration and 
application architecture concepts for an evolving 
enterprise. IBM DeveloperWorks, Jan. 2016; https://
ibm.co/2zhsMWR

8. DeRemer, F. and Kron, H.K. Programming-in-the-
large versus programming-in-the-small. IEEE 
Transactions on Software Engineering, 2 (June 1976); 
http://bit.ly/2xyLvZM

9. Erl, T. et al. Next Generation SOA: A Concise 
Introduction to Service Technology & Service-
Orientation. Prentice Hall, 2015. 

10. Gorton, I. Cyberinfrastructures: Bridging the divide 
between scientific research and software engineering, 
Computer 47, 8 (Aug. 2014); 48, 55; http://bit.
ly/2yWVjkf 

11. Kimberling, E. Key Findings from the 2015 Report. 
Panorama Consulting, Apr. 2015; http://bit.
ly/2hpGwWo

12. Lee, J. 9 VERY scary ERP and ERP system 
implementation statistics. ERP/VAR, Oct. 2014; http://
bit.ly/2yukxFj

13. Leibowitz, J. IT project failures: What management 
can learn. IEEE IT Professional (Apr. 2016); http://bit.
ly/2ynZhlF

14. Lynch, J. The Chaos Report. The Standish Group, 
2015; http://bit.ly/2zScMqv

15. Madan, A. 100 open source big data architecture 
papers for data professionals. LinkedIn, (June 2015); 
http://bit.ly/1UEZdRt

16. McLarty, M. Microservice architecture is agile 
software architecture. Infoworld, May 2016; http://bit.
ly/24hvrnD

17. Proctor, S. From monolith to microservices: Big 
rewards from small software architecture. IT World 
Canada, (Aug. 2016); http://bit.ly/2iglbgk

18. Tomkins, B. SaaS solutions 77% cheaper than on-
premises. Information Week, (May 2010); http://ubm.
io/2z4wAd9

19. Townsend, K. Containers: The pros and the cons of 
these VM alternatives. TechRepublic, Feb. 2015; http://
tek.io/2nfzjav

20. Wailgum, T. 10 famous ERP disasters, dustups and 
disappointments. CIO Magazine (Mar. 2009); http://
bit.ly/2zv2mxK

Stephen J. Andriole (steve@andriole.com) is the Thomas 
G. Labrecque Professor of Business at the Villanova 
School of Business at Villanova University where he 
teaches and conducts research in emerging technologies, 
requirements modeling and business technology strategy. 
His most recent book is Ready Technology: Fast Tracking 
Emerging Business Technologies (CRC Press, 2014).

The author thanks the reviewers who significantly 
improved the article. With their help, the “death of big 
software” message was clarified especially regarding the 
discussion of microservice-based architectures. 

Copyright held by author.

their cloud providers to another pro-
vider for any number of reasons. Con-
tainers enable clients to retain control 
over their applications just as emerg-
ing application architectures enable 
them to retain control over their soft-
ware-enabled business processes.19 
This means that dependencies are 
shrinking. So the combination of 
microservice-based architectures and 
container technology may be the re-
sponse to monolithic applications. 

Will the big software vendors re-
spond? Yes. 

They will milk the current big en-
terprise revenue streams for as long 
as they can and then systematically 
make their offerings to look more 
and more like their small software 
competitors. Many of them, like SAP 
and Oracle, have already by neces-
sity begun this process through small 
business and mid-market cloud of-
ferings that are much cheaper than 
the gold-plated goliaths they sold for 
years. They began to cannibalize their 
own products because they too know 
that the days of big software are num-
bered. But they have not fundamen-
tally rearchitected their applications. 
They have shrunken them.

The Death and Resurrection 
of Software
The entire world of big software de-
sign, development, deployment and 
support is dead. Customers know it, 
big software vendors know it and next 
generation software architects know it. 
The implications are far-reaching and 
likely permanent. Business require-
ments, governance, cloud delivery and 
architecture are the assassins of old 

The entire world 
of traditional big 
software design, 
development, 
deployment, and 
support is dead. 

ACM 
Transactions on 

Accessible
Computing

◆ ◆ ◆ ◆ ◆

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

◆ ◆ ◆ ◆ ◆

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1  6/9/09  1:04 PM  Page 1


