Anatomy of a Test Assertion:

A test assertion (or TA) must at the very minimum:

· Refer to the specification requirement(s) that it addresses.

· Characterize the item under test (or IUT) - the target of the test supposed to conform to the specification requirement(s).
· Be uniquely identified by a test assertion identifier (TA id).

In addition, the TA must contain either one or both of the following:

· An assertion prose – high-level definition of the test to be performed on the item.

· An assertion flow, detailed later.

The assertion prose:
This is a piece of narrative describes (a) the operation(s) to be performed on the item under test or on the test environment, (b) the effects to be observed, and how these lead to a “fail” or “pass” outcome. The keywords (RFC2119) MUST, SHOULD, MAY, etc. often found in normative statements of specifications, must not be used in the assertion prose.
Example: An API specification requires the following on the method: java.lang.Integer.toString(int i, int radix): “if the radix is smaller than Character.MIN_RADIX or large than Character.MAX_RADIX then the radix 10 is used instead.”
A “prose” test assertion for this requirement can be:

Specification requirement: <reference to the API /method description, and to above requirement>

Item under test: an API implementation (or it could be a smaller subset of this API).

Assertion prose: when invoking the Integer.toString function with radix < Character.MIN_RADIX, an output showing an actual radix of 10 results in test success. When invoking the toString function with radix > Character.MAX_RADIX, an output showing an actual radix of 10 results in test success.
Notes:
· Although two tests are actually involved, a single TA is appropriate, as these tests are about the handling of a same feature (the radix) by the same function. There are good reasons for always performing these together. An item under test will either pass of fail this TA as a whole, but failure sub-cases may be distinguished in the details of the error messages by the test case(s) that implement this TA.
· The assertion prose can be more specific than the one above (e.g. give a precise value to be used for the radix argument, or be more explicit about failure conditions). But it should not depend on a specific test harness (e.g. it should not tell where to find the argument values to be used – this is the role of a test case). Conversely, in many cases, it is acceptable to be less explicit than above. For example, when the test protocol associated with this type of item is already well defined – as often the case with such APIs – the operations and effects associated with test assertion success/failure, may be obvious enough to simply reuse the specification statement narrative as assertion prose.
· A test assertion ignores the keywords MUST, SHOULD, MAY because its focus is on the feature to be verified on the item under test. Had the last part of the above specification requirement been: “…then the radix 10 SHOULD be used instead.”, the assertion prose would not be any different. The SHOULD keyword is to be interpreted outside the TA logic, and would only affect how a “failure” outcome is to be interpreted for conformance, which is outside the scope of defining test assertions.
The assertion flow:
This is a more structured alternative to the assertion prose. It distinguishes four parts (in addition to the three mandatory items: TA id, item under test, specification reference):
· The pre-condition (optional). This condition acts as a qualifier for the item under test (IUT): it defines which instances of the IUT are qualified for this test, or it defines in which state the test environment must be for an IUT to undergo this test. The pre-condition may be expressed as a predicate or logical expression, of Boolean outcome (true/false). If the pre-condition is false, the TA does not apply. Its outcome is: “not applicable”.

· The test trigger. This is the first part of the actual test operation. It consists of some test action(s) or external event(s), on the IUT and/or on the test environment. If the test trigger cannot occur for some reason, the TA does not fail nor pass: it is not applicable.

· The test effect. This is an observable behavior (action, event) or quality (expresses as a predicate) of the IUT – or the combination {IUT, test environment}, when the pre-condition is met and the test trigger occurs. The test effect must be associated with a “pass” or “fail” TA outcome. If the effect is associated with “pass”, it is said to be a positive effect. If the effect is associated with “fail”, it is said to be a negative effect. Either one or both may be defined in a TA. For example, some requirements may only be testable for failure cases (only negative effects may be observable). For any effect outside those described, the TA outcome is “undetermined”.
· The post-condition (optional). This condition characterizes the final state of the test environment and/or IUT, after the test is complete. If for any reason, the post-condition is “false”, this invalidates whatever result was observed for the test effect. In such a case, the TA outcome is “undetermined”, as it reveals flawed or unreliable conditions under which the test effect was observed.
Examples:

