

Mobile Service Architecture Specification
Version 1.00 – 27-September-2006

Java Community ProcessSM
JavaTM Platform, Micro Edition

Keilalahdentie 2-4 Vodafone House
P.O. Box 226 The Connection
FIN-00045 Nokia Group Newbury, Berkshire, RG14 2FN
Finland United Kingdom

JSR 248 Expert Group
jsr-248-comments@jcp.org

Mobile Service Architecture Page 2 (116)

RESEARCH AND EVALUATION LICENSE

The JSR-248 Specification is lead by Nokia and Vodafone Group Services Limited
(“Vodafone”). Nokia and Vodafone have agreed that Nokia is entitled to act as the
sole licensor for the Specification and grant the licenses on the terms of this
License.

NOKIA CORPORATION (“NOKIA”) IS WILLING TO LICENSE THIS SPECIFICATION TO
YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS
CONTAINED IN THIS LICENSE AGREEMENT ("LICENSE"). PLEASE READ THE
TERMS AND CONDITIONS OF THIS LICENSE CAREFULLY. BY ACCESSING OR
USING THE SPECIFICATION YOU WILL BE BOUND BY THE TERMS OF THIS
LICENSE.

In this License, “Specification Lead” shall mean Nokia and “You” shall mean the
individual downloading the Specification and accepting this License and where such
individual downloads the Specification for other than private use, the legal entity
represented by such individual.

JSR 248 - Mobile Service Architecture (“Specification”)

Version: 1.00
Status: Final Specification
Specification Lead: Nokia Corporation, Vodafone Group Services Limited
Release: September 27th, 2006

Copyright 2004 – 2006 Nokia Corporation and Vodafone Group Services Limited.

All rights reserved.

1. NOTICE; LIMITED LICENSE GRANTS

1. The Specification Lead hereby grants You a non-exclusive, non-transferable,
worldwide, royalty-free, fully paid-up, limited license (without the right to sublicense)
solely under intellectual property rights licensable by the Specification Lead to
analyze and to use the Specification for research, evaluation, optimization and
development purposes. In addition You may make a reasonable number of verbatim
copies of this Specification in its entirety for Your private or internal use, as
applicable, in accordance with the terms and conditions of this License.

1.2 No rights are granted under this License for internal deployment, the creation and/or
distribution of implementations of the Specification for direct or indirect (including
strategic) gain or advantage, the modification of the Specification (other than to the
extent of Your fair use rights) or the distribution of the Specification or making the
Specification available for 3rd parties.

1.3 Except as expressly set forth in this License, You acquire no right, title or interest in
or to Specification or any other intellectual property licensable by the Specification
Lead and no other rights are granted by implication, estoppel or otherwise. The

Mobile Service Architecture Page 3 (116)

Specification may only be used in accordance with the license terms set forth herein.
This License will terminate immediately without notice from Specification Lead if You
fail to comply with any provision of this License.

2. TRADEMARKS

2.1 Nokia is a registered trademark of Nokia Corporation. Nokia Corporation's product
names are either trademarks or registered trademarks of Nokia Corporation. Your
access to this Specification should not be construed as granting, by implication,
estoppel or otherwise, any license or right to use any marks appearing in the
Specification without the prior written consent of Nokia Corporation or Nokia's
licensors. No right, title, or interest in or to any trademarks, service marks, or trade
names of any third parties, is granted hereunder.

2.2 Vodafone is a registered trademark of Vodafone Group Plc. Vodafone product names
are either trademarks or registered trademarks of Vodafone Group Plc. Your access
to this Specification should not be construed as granting, by implication, estoppel or
otherwise, any license or right to use any marks appearing in the Specification
without the prior written consent of Vodafone Group Plc or it's licensors. No right,
title, or interest in or to any trademarks, service marks, or trade names of any third
parties, is granted hereunder.

2.3 You shall not be allowed to remove any of the copyright statements or disclaimers or
other proprietary notices contained in the Specification and You are obliged to
include the copyright statement and the disclaimers, if any, in any copies of the
Specification You make.

3. DISCLAIMER OF WARRANTIES

3.1 SUBJECT TO ANY STATUTORY WARRANTIES OR CONDITIONS WHICH CAN
NOT BE EXCLUDED, THE SPECIFICATION IS PROVIDED "AS IS" WITHOUT
WARRANTY OR CONDITION OF ANY KIND EITHER EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, AND STATUTORY ARE HEREBY DISCLAIMED. THE
ENTIRE RISK ARISING OUT OF OR RELATING TO THE USE OR
PERFORMANCE OF THE SPECIFICATION REMAINS WITH YOU.

3.2 THE SPECIFICATION MAY INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO
NEW VERSIONS OF THE SPECIFICATION, IF ANY. SPECIFICATION LEAD MAY
MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of
such changes in the Specification will be governed by the then-current license for the
applicable version of the Specification.

Mobile Service Architecture Page 4 (116)

4. LIMITATION OF LIABILITY

4.1 TO THE FULLEST EXTENT PERMITTED BY LAW, IN NO EVENT WILL THE
SPECIFICATION LEAD, VODAFONE OR THEIR SUPPLIERS BE LIABLE FOR ANY
LOST PROFITS, LOST SAVINGS, LOST REVENUE, LOST DATA,
PROCUREMENT OF SUBSTITUE GOODS, OR FOR ANY DIRECT, INDIRECT,
INCIDENTIAL, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, EVEN IF
THE SPECIFICATION LEAD, VODAFONE OR THEIR SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES OR DAMAGES. IN ADDITION
THE SPECIFICATION LEAD, VODAFONE AND THEIR SUPPLIERS WILL NOT BE
LIABLE FOR ANY DAMAGES CLAIMED BY YOU BASED ON ANY THIRD PARTY
CLAIM.

4.2 Some jurisdictions do not allow the exclusion of implied warranties, or the limitation
for consequential damages, so Section 4.1 may not apply to You in whole, but in
such case Section 4.1 will apply to You to the maximum extent permitted by
applicable law.

5. EXPORT CONTROL

5.1 You shall follow all export control laws and regulations relating to Specification.

6. RESTRICTED RIGHTS LEGEND

6.1 Note to U.S. Government Users. The Specification is a "Commercial Items", as that
term is defined at 48 C.F.R. 2. 101, consisting of "Commercial Computer Software"
and "Commercial Computer Software Documentation", as such terms are used in 48
C.F.R. 12.212 or 48 C.F.R. 227.7202, as applicable. Consistent with 48 C.F.R.
12.212 or 48 C.F.R. 227.7202-1 through 227.7202-4, as applicable, the Commercial
Computer Software Documentation are being licensed to U.S. Government end
users a) only as Commercial Items and b) with only those rights as are granted to all
other end users pursuant to the terms and conditions herein. Unpublished-rights
reserved under the copyright laws of the United States.

Mobile Service Architecture Page 5 (116)

Contents:
1. SCOPE ... 7
2. REFERENCES ... 8

2.1 NORMATIVE REFERENCES ... 8
3. TERMINOLOGY AND CONVENTIONS ... 11

3.1 CONVENTIONS... 11
3.2 DEFINITIONS.. 11
3.3 ABBREVIATIONS .. 11
3.4 TYPOGRAPHIC CONVENTIONS .. 12
3.5 APPROVED VERSION HISTORY ... 12
3.6 CURRENT VERSION HISTORY ... 12
3.7 FEEDBACK .. 13

4. INTRODUCTION (INFORMATIVE) .. 14
4.1 DESIGN GOALS ... 14
4.2 SPECIFICATION STRUCTURE .. 15
4.3 EXPERT GROUP .. 15

5. MSA COMPONENT JSRS (NORMATIVE) .. 17
6. ADDITIONAL CLARIFICATIONS (NORMATIVE).. 21

6.1 J2ME CONNECTED LIMITED DEVICE CONFIGURATION (JSR 139) ... 21
6.2 MOBILE INFORMATION DEVICE PROFILE (JSR 118).. 25
6.3 PDA OPTIONAL PACKAGES FOR THE J2ME PLATFORM (JSR 75) .. 32
6.4 JAVA APIS FOR BLUETOOTH (JSR 82) .. 45
6.5 MOBILE MEDIA API (JSR 135) .. 47
6.6 J2ME WEB SERVICES (JSR 172) .. 52
6.7 SECURITY AND TRUST SERVICES API (JSR 177) ... 54
6.8 LOCATION API FOR J2ME (JSR 179) .. 58
6.9 SIP API FOR J2ME (JSR 180) .. 59
6.10 MOBILE 3D GRAPHICS API (JSR 184) ... 63
6.11 WIRELESS MESSAGING API (JSR 205) .. 66
6.12 CONTENT HANDLER API (JSR 211) ... 71
6.13 SCALABLE 2D VECTOR GRAPHICS API FOR J2ME (JSR 226) .. 72
6.14 PAYMENT API (JSR 229) ... 74
6.15 ADVANCED MULTIMEDIA SUPPLEMENTS (JSR 234) .. 75
6.16 MOBILE INTERNATIONALIZATION API (JSR 238) ... 79

7. ADDITIONAL REQUIREMENTS (NORMATIVE) ... 80
7.1 REQUIREMENTS INHERITED FROM JTWI 1.0 (JSR 185) .. 80
7.2 HARDWARE REQUIREMENTS.. 92
7.3 SECURITY REQUIREMENTS .. 94

8. RECOMMENDATIONS AND GUIDELINES (INFORMATIVE)... 107
8.1 GUIDELINE FOR APPLICATIONS REFERRING NON-MANDATORY APIS 107

9. ROADMAP (INFORMATIVE) ... 110
APPENDIX A. SUMMARY TABLES (INFORMATIVE)... 111

A.1 SYSTEM PROPERTIES .. 111
A.2 NETWORK PROTOCOLS AND CONTENT FORMATS... 114

Mobile Service Architecture Page 6 (116)

A.3 HARDWARE REQUIREMENTS AND RECOMMENDATIONS... 116

Mobile Service Architecture Page 7 (116)

1. Scope
This Mobile Service Architecture (MSA) Specification (JSR 248) defines the next step in the
Java platform evolution for mobile handsets, based on the Connected Limited Device
Configuration (CLDC) of the Java™ Platform, Micro Edition (Java ME). Additionally, the
MSA Specification defines an MSA Subset for devices with limited resources. MSA Subset
is a pure subset of MSA and, as such, MSA is fully backwards compatible with MSA
Subset. Both MSA and MSA Subset can also be implemented using Connected Device
Configuration (CDC) as long as the implementation complies with this specification.

This specification defines a normative collection of component JSRs that together with
Additional Clarifications and Additional Requirements define the Mobile Service
Architecture and its Subset. Additionally, this document includes a set of recommendations
to help the reader create an optimal MSA compliant implementation.

Mobile Service Architecture Page 8 (116)

2. References
2.1 Normative References

[AMR] 3GPP TS 26.071 "Adaptive Multi-Rate (AMR) Speech Codec; General
Description"

[IRDA] Infrared Data Organization, http://www.irda.org/,
http://irda.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=7

[JAR] JAR File Specification for JDK 1.3.1,
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html

[JPEG] “Information Techology – Digital Compression and Coding of
Continuous-Tone Still Images – Requirements and Guidelines”, ISO/IEC
10918-1, 1994

[JSR75] “PDA Optional Packages for the J2ME Platform”, Version 1.0, Java
Community Process, http://www.jcp.org/en/jsr/detail?id=75

[JSR82] “Java APIs for Bluetooth”, Version 1.1, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=82

[JSR118] “Mobile Information Device Profile”, Version 2.1, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=118

[JSR135] “Mobile Media API”, Version 1.1, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=135

[JSR139] “Connected Limited Device Configuration”, Version 1.1, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=139

[JSR172] “J2ME Web Services Specification”, Version 1.0, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=172

[JSR177] “Security and Trust Services API for J2ME”, Version 1.0, Java
Community Process, http://www.jcp.org/en/jsr/detail?id=177

[JSR179] “Location API for J2ME™”, Version 1.0.1, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=179

[JSR180] “SIP API for J2ME”, Version 1.0.1, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=180

[JSR184] “Mobile 3D Graphics API for J2ME”, Version 1.1, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=184

[JSR185] “Java™ Technology for the Wireless Industry”, Version 1.0, Java
Community Process, http://www.jcp.org/en/jsr/detail?id=185

[JSR205] “Wireless Messaging API 2.0”, Version 2.0, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=205

[JSR211] “Content Handler API”, Version 1.0, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=211

[JSR226] “Scalable 2D Vector Graphics API for J2ME”, Version 1.0, Java
Community Process, http://www.jcp.org/en/jsr/detail?id=226

Mobile Service Architecture Page 9 (116)

[JSR229] “Payment API”, Version 1.1.0, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=229

[JSR234] “Advanced Multimedia Supplements”, Version 1.0, Java Community
Process, http://www.jcp.org/en/jsr/detail?id=234

[JSR238] “Mobile Internationalization API”, Version 1.0, Java Community Process,
http://www.jcp.org/en/jsr/detail?id=238

[PKCS] PKCS#15 v.1.1, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-15/

[PNG] PNG (Portable Network Graphics) Specification, Version 1.0, W3C
Recommendation, October 1, 1999,, http:// www.w3.org/TR/REC-
png.html. Also available as RFC 2083, http://www.ietf.org/rfc/rfc2083.txt

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner,
March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”, D. Crocker, Ed., P.
Overell, November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

[RFC2616] “Hypertext Transfer Protocol - HTTP/1.1”, R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, The Internet
Society, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[RFC2716] “PPP EAP TLS Authentication Protocol”, B. Aboba, D. Simon, October
1999, URL:http://www.ietf.org/rfc/rfc2716.txt

[RFC2976] “The SIP INFO Method ”, S. Donovan, October 2000,
http://www.ietf.org/rfc/rfc2976.txt

[RFC3261] “SIP: Session Initiation Protocol ”, J. Rosenberg, H. Schulzrinne, G.
Gamarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, E. Schooler,
June 2002, http://www.ietf.org/rfc/rfc3261.txt

[RFC3262] “Reliability of Provisional Responses in the Session Initiation Protocol
(SIP)”, J. Rosenberg, H. Schulzrinne, June 2002,
http://www.ietf.org/rfc/rfc3262.txt

[RFC3265] “Session Initiation Protocol (SIP)-Specific Event Notification”, A. B.
Roach, June 2002, URL:http://www.ietf.org/rfc/rfc3265.txt

[RFC3311] “The Session Initiation Protocol (SIP) UPDATE Method”, J. Rosenberg,
September 2002, URL:http://www.ietf.org/rfc/rfc3311.txt

[RFC3428] “Session Initiation Protocol (SIP) Extension for Instant Messaging ”, B.
Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, D. Gurle,
December 2002, URL:http://www.ietf.org/rfc/rfc3428.txt

[RFC3515] “The Session Initiation Protocol (SIP) Refer Method”, R. Sparks, April
2003, URL:http://www.ietf.org/rfc/rfc3515.txt

[RFC3903] “Session Initiation Protocol (SIP) Extension for Event State Publication”,
A. Niemi, October 2004, URL:http://www.ietf.org/rfc/rfc3903.txt

[RFC3966] “The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004,
URL:http://www.ietf.org/rfc/rfc3966.txt

[SCPROV] WAP Smart Card Provisioning (SCPROV), WAP-186-ProvSC-20010710-

Mobile Service Architecture Page 10 (116)

a, 2001, http://www.wapforum.org/what/technical.htm

[SP-MIDI_1] Scalable polyphony MIDI specification, version 1.0, RP-034. The MIDI
Manufacturers Association, Los Angeles, CA, USA, 2002,
http://www.midi.org/about-midi/abtspmidi.shtml

[SP-MIDI_2] Scalable polyphony MIDI device 5–24 note profile for 3GPP, version 1.0,
RP-035. The MIDI Manufacturers Association, Los Angeles, CA, USA,
2002, http://www.midi.org/about-midi/abtspmidi.shtml

[SVG] Scalable Vector Graphics (SVG) 1.1 Specification, W3C, 2003,
http://www.w3.org/TR/2003/REC-SVG11-20030114/

[SVG Mobile] Mobile SVG Profiles: SVG Tiny and SVG Basic, W3C, 2003,
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/

[WIM] WAP Wireless Identity Module Specification (WIM), WAP-260-WIM-
20010712-a, 2001, http://www.wapforum.org/what/technical.htm

Mobile Service Architecture Page 11 (116)

3. Terminology and Conventions
3.1 Conventions

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they
are explicitly indicated to be informative.

3.2 Definitions
Additional
Clarifications Requirements or recommendations that complement component JSR specifications.

Compliant Conforms to the requirements of this specification.

Compliant device A device that has an implementation that conforms to the requirements of this
specification.

Compliant
implementation Implementation that conforms to the requirements of this specification.

Component JSR A Java specification (JSR) referred to in the MSA Specification.

Conditionally
mandatory

MUST be implemented according to the specification if the given condition is
fulfilled.

Mandatory MUST be implemented according to the specification.

MSA compliant
implementation Implementation that conforms to the requirements of this specification.

MSA compliant
device

A device that has an implementation that conforms to the requirements of this
specification.

MSA TCK The documentation and software to be used for testing whether an implementation
is compliant with this specification. It includes:

1) Test cases that can be used to guarantee conformance with the requirements
specified in this specification

2) Instructions and guidance as to how to run these test cases

The individual component JSR TCKs SHALL NOT be included in the MSA TCK
delivery package.

3.3 Abbreviations
CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

J2ME Java 2 Platform, Micro Edition

Java ME Java Platform, Micro Edition

JCP Java Community Process

Mobile Service Architecture Page 12 (116)

JSR Java Specification Request

MIDP Mobile Information Device Profile

MSA Mobile Service Architecture

OMA Open Mobile Alliance

RI Reference Implementation

TCK Technology Compatibility Kit

UI User Interface

3.4 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of package, class
names, and other Java
constructs

java.lang.String
java.util.HashTable.get()

3.5 Approved Version History

Reference Date Description
n/a n/a No prior version

3.6 Current Version History

Document
Identifier

Date Description

Early Draft:
JSR 248, version 0.50

08 April 2005 Initial version

Public Review:
JSR 248 version 0.80

06 September 2005 Added new component JSRs, additional
clarifications, security sections and hardware
requirements/recommendations.

Proposed Final Draft:
JSR 248 version 0.95

28 April 2006 Included MIDP 2.1, improved clarifications, added
MSA Subset support, editorial changes.

Final Approval Ballot:
JSR 248 version 1.00

27 September 2006 Final bug fixes and editorial changes.

Mobile Service Architecture Page 13 (116)

3.7 Feedback
We are interested in improving this specification and welcome your comments and
suggestions. You can email your comments to:

 jsr-248-comments@jcp.org

Note: The following description summarizes the process that the MSA Specification Leads
and the MSA Expert Group use to handle comments and suggestions:

MSA accepts comments and clarification proposals (Contributions) through two main
channels: 1) directly from the MSA Expert Group members, and 2) from the MSA
specification feedback alias (see the e-mail address above). In each case, the
Contribution is recorded and added as an Open Issue into a database that contains the
Contribution, the Contributor (name of a company or a person who submitted the
Contribution, or both), the number of the component JSR or the MSA Specification
section that it addresses, and other relevant information. These Open Issues are then
discussed by the MSA Expert Group. As a result of the discussions, possible new
clarifications might be generated and added to the MSA Specification.

MSA Specification Leads make all clarifications related to a specific component JSR
available to the Specification Leads of the respective component JSR so that the JSR
Specification Leads can evaluate and provide feedback on the clarifications.

The component JSR Specification Lead has the right to produce a new Maintenance
Release of the component JSR, and to include the proposed MSA clarification or
clarifications in the component JSR specification itself. If this happens within a
schedule that is reasonable from the viewpoint of the MSA release schedule, MSA
references the Maintenance Release directly, and does not include the clarification or
clarifications in the MSA Specification itself. If the JSR Specification Lead is not able to
produce a new Maintenance Release within a reasonable time, the component JSR
Specification Lead can at any time later make a Maintenance Release, or a new JSR
(for a major version), that will include the clarification or clarifications. When that
happens, the component JSR TCK must be augmented to contain the necessary test
or tests for the new clarification or clarifications. The next MSA Specification release
then references the Maintenance Release of the component JSR, and removes the
clarification from the MSA Specification and removes the corresponding test or tests
from the MSA TCK.

Important: All contributions sent to the MSA Expert Group (comments, clarification
proposals, and so on) are, by default, also contributions to the respective component
JSR or JSRs. The MSA Specification Leads also make those contributions available to
the component JSR Specification Leads. If this is not desired by the contributor, this
must be explicitly stated in the contribution.

Mobile Service Architecture Page 14 (116)

4. Introduction (informative)
The Java ME community has developed a unified Java application environment standard
for mobile phones as part of the Java Technology for the Wireless Industry (JTWI) initiative.
Mobile Service Architecture Initiative continues the work by introducing two new JSRs to
cover the whole range of platform technologies needed by the mobile industry today.

To address the market needs for high-volume devices that can support the Java platform,
JTWI (JSR 185) focused on mobile devices with limited resources and capabilities. MSA
Specification (JSR 248) addresses an even broader set of devices with more enhanced
and diverse capabilities but continues its focus on high-volume mobile devices. This JSR
broadens the architecture defined by JTWI by adding support for new technologies and
features that are already available or will become available in the foreseeable future. It also
oversees compatibility with the old JTWI environment and with the future MSA Advanced
environment defined by the Mobile Service Architecture Advanced activity (JSR 249).

The MSA Specification is a Java architecture definition that describes the essential Java
client components of an end-to-end wireless environment. The MSA Specification defines a
set of Java ME technologies and shows how these technologies have to be correctly
integrated in a mobile device to create an optimal mobile Java platform. As a normative
specification, the MSA Specification produces compatibility requirements that are reflected
in the MSA TCK. Service and content providers can use the MSA Specification as a
guideline for application development and can benefit from better application portability
between different MSA compliant implementations.

4.1 Design Goals
The primary design goal of the MSA Specification is to minimize fragmentation of mobile
Java environments by defining a predictable and highly interoperable application and
service environment for developers. To achieve this goal, this specification contains two
sets of mandatory component JSRs, additional clarifications, additional requirements and
recommendations for implementers. The specification guides platform implementers in their
efforts to maximize the interoperability of their implementation with other MSA compliant
implementations and application developers in their efforts to make sure that their
applications will work in wide variety of MSA compliant devices.

The second design goal for MSA is to enable its use in a wide variety of different markets
and customer segments. This is achieved by introducing two platform definitions (MSA and
MSA Subset), support for the possibility to use also CDC as the underlying configuration,
and well-defined conditionality for features that may not be available on all MSA compliant
devices.

The third design goal for MSA is to ensure highest level of consistency in the definition of
both MSA and the upcoming MSA Advanced environment. This goal was also reflected in
the selection of the common Expert Group (EG) for both JSR 248 and JSR 249. The MSA
Expert Group has visibility to both specifications and is able to guide the work accordingly.

Special attention was paid to the following two objectives when selecting the mandatory
component JSRs:

Mobile Service Architecture Page 15 (116)

• Build a feature-rich platform that reflects the market needs from 2006 onwards

• Choose only component JSRs that are in final status by May 2006.

4.2 Specification Structure
The MSA Specification consists of the following main logical elements:

• Mandatory and Conditionally Mandatory Component JSRs. The MSA
Specification describes the essential client components of an end-to-end wireless
environment. It defines two sets of component JSRs: MSA and MSA Subset. MSA
Subset is a proper subset of MSA component JSRs, providing forward compatibility
for applications written for MSA Subset.

• Additional Clarifications. To improve predictability and interoperability, a description
of each component JSR is accompanied by additional clarifications. Their purpose is
to remove possible problems with the interpretation of component JSRs and minimize
optionality whenever feasible.

• Additional Requirements. These are requirements related to JTWI, security,
supported content formats, and so on. Additional requirements provide implementers
with more requirements and consequently improve backwards compatibility,
interoperability, and predictability of MSA compliant implementations.

• Recommendations and Guidelines. These are suggestions for developers and
implementers of this specification on how to write applications for MSA environment
and create an optimal MSA compliant implementation.

• Roadmap. The MSA roadmap aims to describe the future view of the mobile Java
platform. The separately released roadmap document contains tentative proposals
for the content and timing of future versions of MSA specifications.

4.3 Expert Group
The MSA Specification is a result of a focused effort conducted by an Expert Group
representing the wireless industry across the world.

Following are the members of the MSA Expert Group:

• BEA Systems

• BenQ

• Cingular Wireless

• Motorola

• Nokia Corporation

Mobile Service Architecture Page 16 (116)

• NTT DoCoMo

• Orange France SA

• Research In Motion

• Samsung

• Siemens

• Sony Ericsson Mobile Communications AB

• Sprint

• Sun Microsystems, Inc.

• T-Mobile International AG & Co. KG

• Vodafone Group Services Limited

Mobile Service Architecture Page 17 (116)

5. MSA Component JSRs (normative)
This specification defines two platforms: MSA and MSA Subset. The following picture
shows the content of these two platforms:

JSR 118 (MIDP)
JSR 139 (CLDC)

JSR 75 (File & PIM)

JSR 82 (Bluetooth)

JSR 135 (Mobile Media)

JSR 184 (3D Graphics)

JSR 205 (Messaging)

JSR 226 (Vector Graphics)

JSR 118 (MIDP)
JSR 139 (CLDC)

JSR 75 (File & PIM)

JSR 82 (Bluetooth)

JSR 135 (Mobile Media)

JSR 184 (3D Graphics)

JSR 205 (Messaging)

JSR 226 (Vector Graphics)

JSR 172 (Web Services)

JSR 177 (Security & Trust)

JSR 179 (Location)

JSR 180 (SIP)

JSR 211 (Content Handler)

JSR 229 (Payment)

JSR 234 (Multimedia Supplements)

JSR 238 (Internationalization)

MSA Subset:

MSA:

A compliant implementation MUST conform to the requirements for either MSA or MSA
Subset:

• MSA:

1. Implement every component JSR as specified in the following table.

2. Comply with all the additional requirements per component JSR as specified
in the relevant Additional Clarifications sections.

3. Comply with all the additional requirements as specified in the Additional
Requirements chapter (Chapter 7).

• MSA Subset:

1. Implement every component JSR of the subset as specified in the following
table.

2. Comply with all the additional requirements per component JSR as specified
in the relevant Additional Clarifications sections.

Mobile Service Architecture Page 18 (116)

3. Comply with all the additional requirements as specified in the Additional
Requirements chapter (Chapter 7).

Some component JSRs and their optional packages are conditionally mandatory. This
means that an implementation claiming to be MSA compliant MUST conditionally
implement these component JSRs, and comply with the clarifications outlined in the
corresponding Additional Clarifications sections. Additional Clarifications for these
component JSRs include a statement describing the condition on which the component
JSR is to be a required part of the MSA Specification.

The following table specifies all the MSA and MSA Subset component JSRs and their
optional packages:

Specification Optional
Packages Comments

File API is a
mandatory part of
MSA and MSA
Subset

This API allows access to the file system
available on a device.

JSR 75 – PDA
Optional Packages
for the J2ME Platform
Version 1.0

PIM API is a
mandatory part of
MSA and MSA
Subset

This API provides access to Personal
Information Management functionality.

Bluetooth API is
a conditionally
mandatory part of
MSA and MSA
Subset

This API provides access to Bluetooth
functionality.

JSR 82 – Java APIs
for Bluetooth
Version 1.1

OBEX API is a
conditionally
mandatory part of
MSA and MSA
Subset

This API provides access to OBEX protocol,
allowing the exchange of all kinds of objects
such as files, pictures, calendar entries, and
business cards.

JSR 118 - Mobile
Information Device
Profile
Version 2.1

Is a mandatory
part of MSA and
MSA Subset

This API is a fundamental component of
MSA.

JSR 135 - Mobile
Media API
Version 1.1

Is a mandatory
part of MSA and
MSA Subset

This API provides a standard way to access
media capabilities such as audio and video
playback.

JSR 139 - Connected
Limited Device
Configuration*
Version 1.1

Is a mandatory
part of MSA and
MSA Subset

This API is a fundamental component of
MSA.

* A compliant implementation MAY use CDC instead of CLDC. For more information, see the MIDP 2.1
Specification and the definition of the Runtime-Execution-Environment JAD / JAR manifest attribute.

Mobile Service Architecture Page 19 (116)

Specification Optional
Packages Comments

JSR 184 - Mobile 3D
Graphics API for
J2ME
Version 1.1

Is a mandatory
part of MSA and
MSA Subset

This API provides access to three
dimensional (3D) graphics.

JSR 205 - Wireless
Messaging API 2.0
Version 2.0

Is a mandatory
part of MSA and
MSA Subset

This API provides access to messaging
features such as SMS and MMS.

JSR 226 - Scalable 2D
Vector Graphics API
for J2ME
Version 1.0

Is a mandatory
part of MSA and
MSA Subset

This API provides access to two dimensional
(2D) Scalable Vector Graphics.

XML Parsing is a
mandatory part of
MSA

This API provides a standard way to support
XML parsing in a mobile device.

JSR 172 - J2ME Web
Services
Specification
Version 1.0 Web Services

(JAX RPC) is a
mandatory part of
MSA

This API provides access to basic web
services.

SATSA-CRYPTO
is a mandatory
part of MSA

This API provides a generic way to access
cryptographic services.

SATSA-APDU is a
conditionally
mandatory part of
MSA

This API provides a standard way to
communicate with Smart Cards.

SATSA-PKI is a
conditionally
mandatory part of
MSA

This API provides a generic way to access
Public Key Infrastructure services.

JSR 177 – Security
and Trust Services
API for J2ME
Version 1.0

SATSA-JCRMI is
not part of MSA or
MSA Subset

Not part of MSA or MSA Subset.

JSR 179 – Location
API for J2ME
Version 1.0.1

Is a conditionally
mandatory part of
MSA

This API provides a technology independent
way to access location information.

JSR 180 – SIP API for
J2ME
Version 1.0.1

Is a mandatory
part of MSA

This API provides a standard, low-level
access to Session Initiation Protocol (SIP).

JSR 211 - Content
Handler API
Version 1.0

Is a mandatory
part of MSA

This API enables the launching of Java
applications based on content type.

JSR 229 - Payment
API
Version 1.1.0

Is a mandatory
part of MSA

This API provides access to payment
mechanisms.

Mobile Service Architecture Page 20 (116)

Specification Optional
Packages Comments

JSR 234 - Advanced
Multimedia
Supplements
Version 1.0

Is a mandatory
part of MSA

This API extends JSR 135 to provide more
advanced multimedia capabilities.

JSR 238 - Mobile
Internationalization
API
Version 1.0

Is a mandatory
part of MSA

This API enables the development of
localised applications.

Note: For any of the component JSRs, the version number denotes the required version of
a respective configuration, profile or optional package (for example, MIDP 2.1). Backwards
compatible Maintenance Releases of any component JSRs MAY be used in compliant
implementations. A later version of a configuration, profile, or optional package (for
example, MIDP 3.0) that includes new features MAY also be used in a compliant
implementation, as long as the later version is backwards compatible with the required
version in this specification, and its inclusion is clearly noted in the documentation of the
device.

Backwards compatibility implies that applications that are written assuming the required
version of the component JSR (without relying on any details specific to one particular
implementation) are able to execute on the later version successfully without any changes
to the application.

The Specification Lead and the EG of the component JSRs determine and declare (for
example, by making a statement in the specification) whether the later version is
backwards compatible.

Note to Application Developers: Application developers should develop to the specific
component versions of the JSRs and the clarifications defined in this specification.

Mobile Service Architecture Page 21 (116)

6. Additional Clarifications (normative)
An implementation claiming to be MSA compliant MUST implement all component JSRs
that are mandatory parts of either MSA or MSA Subset. Implementations of component
JSRs MUST comply with the clarifications outlined in the following component JSR
Clarifications sections.

Some of the component JSRs or their optional packages are conditionally mandatory. In
those cases, an implementation claiming to be MSA compliant MUST conditionally
implement those component JSRs and their clarifications. Clarifications section for these
component JSRs include a statement describing the Condition for Inclusion defining the
condition or conditions on which the component JSR is to be a required part of the MSA
Specification.

Note: An implementation compliant with the MSA Subset SHOULD NOT include any
additional MSA component JSRs. When a capability is required that is not provided by the
MSA Subset but is available in one of the MSA component JSRs, implementers SHOULD
create a full MSA Compliant implementation. However, when business needs or external
specifications dictate the implementation of the MSA Subset in conjunction with MSA
component JSRs that are not part of the MSA Subset, then the implementation SHOULD
include the MSA clarifications that are related to those additional MSA component JSRs.

6.1 J2ME Connected Limited Device Configuration (JSR 139)
The MSA Specification uses the J2ME Connected Limited Device Configuration version 1.1
(CLDC 1.1) as the minimum required Java ME configuration.

A configuration of the Java ME platform specifies a subset of the Java programming
language features and Java virtual machine features, as well as the core platform libraries,
to support a wide range of consumer products.

CLDC 1.1 (JSR 139) is a superset of the earlier CLDC 1.0 (JSR 30) standard.

6.1.1 Rationale for Inclusion
CLDC is a fundamental component of the Java ME platform.

6.1.2 Condition for Inclusion
None. A compliant implementation MAY use CDC instead of CLDC. For more information,
see the MIDP 2.1 Specification and the definition of the Runtime-Execution-Environment
JAD / JAR manifest attribute.

Mobile Service Architecture Page 22 (116)

6.1.3 Clarifications

6.1.3.1 Minimum Heap Size
Clarification ID: CID.139.1

 Applicable Document, Section, Classes, and Methods:

CLDC Specification version 1.1, Section 2.2.1 “Hardware Requirements”.

See also the “Hardware Requirements and Recommendations” chapter of this specification
(especially the clarification “Java Heap Size Available to a MIDlet”).

 Requirement Text:

At least 1024 kilobytes of volatile memory (such as DRAM) MUST be available for the Java
virtual machine runtime (for example, the object heap). This requirement overrides the 32-
kilobyte minimum volatile memory requirement defined in the CLDC Specification, version
1.1, Section 2.2.1, “Hardware requirements”.

 Justification/Notes:

The 32-kilobyte minimum heap size specified by the CLDC specification, version 1.1, is too
low for advanced games and media-rich applications. Without a higher minimum memory
requirement, the compatibility and interoperability of applications suffers.

6.1.3.2 Mark/Reset Functionality in InputStream Returned from
Class.getResourceAsStream()

Clarification ID: CID.139.2

 Applicable Document, Section, Classes, and Methods:

CLDC Specification version 1.1.

Class java.lang.Class

public java.io.InputStream getResourceAsStream(String name)

Class java.io.InputStream

public boolean markSupported()
public synchronized void mark(int readlimit)
public synchronized void reset() throws IOException

 Requirement Text:

The implementations of the InputStream interface returned from method
Class.getResourceAsStream() MUST support the mark/reset functionality as
defined in the description of this interface in the CLDC Specification.

Mobile Service Architecture Page 23 (116)

 Justification/Notes:

This requirement improves the interoperability between different CLDC implementations
and supports more efficient memory management in applications that load large resources.

6.1.3.3 Output Format of System Property microedition.platform
Clarification ID: CID.139.3

 Applicable Document, Section, Classes, and Methods:

CLDC Specification version 1.1, Section 6.2.10 “Property Support”, Table 1.

 Requirement Text:

The value returned by the system property microedition.platform MUST follow the
syntax described in the following table:

System Property Explanation Value
microedition.platform Name of the host

platform or device
Manufacturer_name
Device_model_number
[“/”version_number]
[“/”additional_comments]

Manufacturer name and device model number are mandatory and MUST be concatenated
without spaces between the manufacturer name and device model number. An optional
version number and optional additional comments MAY be present. If present, the version
number and additional comments MUST be separated from the rest of the string with a
forward slash (/). The value of the property MUST NOT contain any forward slash (/)
characters other than those that are used to separate the version number and additional
comments from the rest of the information.

 Justification/Notes:

In the CLDC Specification, the value returned by the system property
microedition.platform is defined as implementation-dependent (see CLDC
Specification version 1.1, Section 6.2.10, Table 1). Consequently, additional requirements
for the property value are needed to allow applications to precisely identify the type of the
host device or platform.

6.1.3.4 System Property for MSA Version
Clarification ID: CID.139.4

 Applicable Document, Section, Classes, and Methods:

CLDC Specification, version 1.1, Section 6.2.10 “Property Support”.

Mobile Service Architecture Page 24 (116)

 Requirement Text:

An MSA compliant implementation MUST support the following system property (through
the System.getProperty() method):

System Property Explanation
microedition.msa.version Version number of the supported MSA Specification.

MUST be 1.0 or 1.0-SUBSET for implementations
conforming to this specification.

 Justification/Notes:

Applications can query this property to learn whether an implementation is compliant with
the MSA Specification, and which version of the specification is supported.

Mobile Service Architecture Page 25 (116)

6.2 Mobile Information Device Profile (JSR 118)
JSR 118 defines the Mobile Information Device Profile version 2.1 (MIDP 2.1).

6.2.1 Rationale for Inclusion
MIDP is a fundamental component of MSA.

6.2.2 Condition for Inclusion
None.

6.2.3 Clarifications

6.2.3.1 Minimum Size of TextBox and TextField UI Elements
Clarification ID: CID.118.1

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, pages 321-342.

Class javax.microedition.lcdui.TextBox
Class javax.microedition.lcdui.TextField

 Requirement Text:

The minimum size (storage capacity) of a TextField or a TextBox MUST NOT be less
than 1000 characters.

 Justification/Notes:

The MIDP specification does not define the minimum capacity of TextField and
TextBox UI elements. Therefore, this requirement is needed to improve the predictability
of implementations.

6.2.3.2 Image Object Size
Clarification ID: CID.118.2

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, page 16.

Mobile Service Architecture Page 26 (116)

 Requirement Text:

A compliant implementation MUST support at least the creation of Image objects
(regardless of the format) with sizes equal to (screen width) by (screen height) by (colour
depth in bits) or 262144 bits (128x128x16 bits = 32 kB), whichever value is greater. Note
that the internal representation of an Image object SHOULD hold at least 16 bits of
colour/transparency data per pixel.

This clarification does not supersede the “Bitmaps Minimums” clarification in the “MIDP-
Related JTWI Clarifications” subsection. A compliant implementation MUST satisfy
requirements from the both clarifications.

 Justification/Notes:

Definition of a minimum supported Image object size improves the predictability of
implementations.

6.2.3.3 Support for Communication Protocols
Clarification ID: CID.118.3

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, pages 55-60.

Package javax.microedition.io

 Requirement Text:

A compliant implementation MUST provide support for the following network
communication protocols, that is, provide an implementation of the following Java ME
interfaces:

• javax.microedition.io.SocketConnection

• javax.microedition.io.SecureConnection

• javax.microedition.io.HttpsConnection

 Justification/Notes:

The MIDP specification describes the possibility of supporting network communication
protocols but leaves their implementation optional. This requirement improves the
predictability of implementations.

6.2.3.4 Protocols Supported by PushRegistry
Clarification ID: CID.118.4

Mobile Service Architecture Page 27 (116)

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, pages 98-101.

Class javax.microedition.io.PushRegistry

 Requirement Text:

In a compliant implementation the MIDP PushRegistry MUST support the following
protocols and services:

• Bluetooth RFCOMM (Conditional on support for Bluetooth API. For more information,
see the “Java APIs for Bluetooth (JSR 82)” section in the “Additional Clarifications”
chapter).

• Bluetooth L2CAP (Conditional on support for Bluetooth API. For more information,
see the “Java APIs for Bluetooth (JSR 82)” section in the “Additional Clarifications”
chapter).

• SMS

• MMS

• SIP (Conditional on support for SIP API. For more information, see the “SIP API for
J2ME (JSR 180)” section in the “Additional Clarifications” chapter).

The exact requirements for implementing PushRegistry support for a particular protocol
or service are defined in the corresponding JSR specifications.

 Justification/Notes:

The MIDP specification does not define which protocols and services must be supported by
the PushRegistry. Mandating PushRegistry support for certain protocols and
services improves the predictability of implementations.

6.2.3.5 Number of Application-Created Threads per MIDlet
Clarification ID: CID.118.5

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, , Section 1.4 “Device Requirements”, pages 15-16.

 Requirement Text:

A compliant implementation MUST allow a MIDlet to create a minimum of 10
simultaneously running threads.

 Justification/Notes:

A need exists to define a minimum number of application-created threads that every
compliant implementation must support.

Mobile Service Architecture Page 28 (116)

6.2.3.6 MIDlet Suite Download and Install Sizes
Clarification ID: CID.118.6

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, pages 15-16.

MIDP 2.1 Specification, Chapter 2 “Over The Air User Initiated Provisioning Specification”,
pages 19-29.

 Requirement Text:

A compliant implementation MUST provide the following minimum storage capacity for JAD
and JAR files to support OTA download and installation of MIDlet suites:

• At least 10 kB for a JAD file

• At least 300 kB for a JAR file

This requirement does not apply if there is not enough room to store a MIDlet suite
because the storage space is filled with other downloaded content (including other MIDlet
suites).

 Justification/Notes:

For OTA download and installation of MIDlet suites a need exists to define a minimum
supported size for JAD and JAR files.

6.2.3.7 Number and Sizes for Attributes in JADs and Manifests
Clarification ID: CID.118.7

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, pages 15-16.

MIDP 2.1 Specification, Chapter 2 “Over The Air User Initiated Provisioning Specification”,
pages 19-29.

 Requirement Text:

A compliant implementation MUST support at least 512 attributes in both JAD files and
manifests.

A compliant implementation MUST support JAD attribute value size of at least 2048 bytes
in both JAD files and manifests.

A compliant implementation MUST support attribute name size of 70 bytes in both JAD files
and manifests. The JAR File Specification [JAR] defines the maximum length for an
attribute name to be 70 bytes.

Mobile Service Architecture Page 29 (116)

 Justification/Notes:

This clarification defines minimum supported numbers and sizes of attributes for both JAD
files and manifests, thus improving the predictability of implementations.

6.2.3.8 Number of MIDlets in MIDlet Suite
Clarification ID: CID.118.8

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, pages 15-16.

 Requirement Text:

A compliant implementation MUST support MIDlet suites containing any number of MIDlets
between one and five (inclusive). A compliant implementation MAY support MIDlet suites
containing more than five MIDlets.

This requirement applies to suite installation and MIDlet presentation in the device UI. It
does not apply to the ability to run MIDlets simultaneously.

 Justification/Notes:

A need exists to define a minimum supported number of MIDlets in a MIDlet suite (for the
purposes of installation, presentation in the UI, and so on). The goal of this clarification is to
improve the predictability of implementations.

6.2.3.9 RMS Data Size per MIDlet Suite
Clarification ID: CID.118.9

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, pages 15-16.

 Requirement Text:

A compliant implementation MUST be able to honour requests by MIDlet suites for an RMS
data size of at least 64 kB. This means that if a MIDlet suite requests to reserve 64 kB (or
less) for its RMS data (using its MIDlet-Data-Size attribute), an implementation MUST
reserve the requested amount of memory for RecordStores created by MIDlets from this
suite. This requirement does not apply in cases where insufficient memory is available to
honour the request because the device memory is occupied with other data (including
RecordStores of other MIDlet suites).

However, if an implementation honours a request for a certain size of RMS data, this
amount of memory MUST be available to MIDlets from the suite during the entire time the
suite is installed on the device.

More precisely, a compliant implementation MUST ensure the following:

Mobile Service Architecture Page 30 (116)

• A MIDlet suite requesting the RMS data size less than or equal to 64 kB in the
MIDlet-Data-Size attribute can be successfully installed and MIDlets from that
suite can run.

• If a MIDlet from the suite creates a single (empty) RecordStore, the
RecordStore.getSizeAvailable() method returns a value greater than or
equal to the value of the MIDlet-Data-Size attribute.

• At any time, a MIDlet from the suite can store a single byte array of at least
RecordStore.getSizeAvailable() bytes using the RecordStore.
addRecord() method. In particular, a single byte array size of the value of the
MIDlet-Data-Size attribute can be stored in an empty record store.

 Justification/Notes:

This clarification defines a minimum supported RMS data size per MIDlet suite, thus
improving the predictability of implementations

6.2.3.10 Number of Independent RecordStores per MIDlet Suite
Clarification ID: CID.118.10

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, pages 15-16.

 Requirement Text:

A compliant implementation MUST permit a MIDlet suite to create at least 10 independent
RecordStores.

 Justification/Notes:

This clarification defines a minimum supported number of independent RecordStores per
MIDlet suite thus improving the predictability of implementations.

6.2.3.11 Behaviour of MIDlet.platformRequest()
Clarification ID: CID.118.11

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, pages 443-444.

Method javax.microedition.midlet.platformRequest()

 Requirement Text:

In a compliant implementation, method MIDlet.platformRequest() MUST support at
least the following types of requests:

Mobile Service Architecture Page 31 (116)

• URL pointing to a web site (http://... , according to RFC 2716). In this case, the
implementation MUST either launch the native browser application, bring it to the
foreground while keeping the MIDlet running in the background, or wait until the
MIDlet exits and then start the browser application. In the former case the
MIDlet.PlatformRequest() method MUST return false; in the latter case it
MUST return true.

• URL pointing to a phone number (tel:<number>, according to RFC 3966). In this
case, the implementation MUST either launch the native call application and bring it
to the foreground while keeping the MIDlet running in the background, or wait until
the MIDlet exits and then start the call application. In the former case the
MIDlet.PlatformRequest() method MUST return false; in the latter case it
MUST return true.

If a URL passed in to the platformRequest() method points to a MIDlet suite residing
in the network (either to a JAD or a JAR file), an implementation MUST interpret the
method call as a request to install the suite. In this case, the normal MIDlet suite OTA
provisioning process MUST be performed, and the user MUST be allowed to control the
process (including cancelling the download, the installation, or both). If the MIDlet suite
being installed is an update of an installed MIDlet suite, and if some MIDlets from that suite
are currently being executed, the platform MUST stop all such MIDlets before performing
the update.

 Justification/Notes:

This clarification contains additional requirements for implementations of the
MIDlet.platformRequest() method. These requirements improve the predictability of
the method behaviour in different implementations.

6.2.3.12 WAV and JPEG Formats Are Mandatory
Clarification ID: CID.118.12

 Applicable Document, Section, Classes, and Methods:

MIDP 2.1 Specification, Section 1.4 “Device Requirements”, page 17.

 Requirement Text:

A compliant implementation MUST support the wav format (8-bit, 8 KHz, mono linear PCM
wav format). A compliant implementation MUST support sampled audio.

A compliant implementation MUST support JPEG format.

 Justification/Notes:

In the MIDP Specification, the wav format (8-bit, 8 KHz, mono linear PCM wav format) is
mandatory only in a case where the device supports sampled audio. This clarification
requires unconditional support for the wav format, sampled audio and JPEG format thus
improving the predictability of implementations.

Mobile Service Architecture Page 32 (116)

6.3 PDA Optional Packages for the J2ME Platform (JSR 75)
JSR 75 defines two independent optional packages, Personal Information Management
and File Connection.

6.3.1 Rationale for Inclusion
PDA Optional Packages for the Java ME Platform contain two independent optional
packages:

• Personal Information Management (PIM): This package gives Java ME applications
access to personal information in address books, calendars, and to-do lists that are
found on many mobile devices.

• FileConnection (FC): This package gives Java ME applications access to various
forms of data (images, sounds, videos, and more) residing in file systems of mobile
devices (including removable storage devices such as external memory cards).

6.3.2 Condition for Inclusion
None.

6.3.3 Clarifications

6.3.3.1 Support for ContactList, ToDoList, and EventList Is Mandatory
Clarification ID: CID.75.1

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Class javax.microedition.pim.PIM
Method javax.microedition.pim.PIM.openPIMList()

 Requirement Text:

An implementation of PIM APIs MUST support the following PIMList types:

• ContactList
• ToDoList
• EventList

Mobile Service Architecture Page 33 (116)

All PIMList types MUST be supported in the following modes:

• READ_ONLY
• READ_WRITE
• WRITE_ONLY

 Justification/Notes:

This clarification defines mandatory PIMList types and modes, thus improving the
predictability of implementations.

6.3.3.2 Mandatory ContactList Attributes
Clarification ID: CID.75.2

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Method javax.microedition.pim.PIMList.getSupportedAttributes()
Method javax.microedition.pim.PIMList.getAttributeLabel()
Method javax.microedition.pim.PIMList.isSupportedAttribute()
Method javax.microedition.pim.PIMItem.getAttributes()

 Requirement Text:

ContactList MUST support the following attributes:

• ATTR_FAX
• ATTR_HOME
• ATTR_MOBILE
• ATTR_PREFERRED
• ATTR_WORK
• ATTR_NONE

The fields MUST be mapped to the attributes in the following way:

Field Attribute
All fields ATTR_NONE

TEL ATTR_FAX, ATTR_HOME, ATTR_MOBILE, ATTR_PREFERRED, ATTR_WORK,
ATTR_NONE

 Justification/Notes:

This clarification defines mandatory ContactList attributes, thus improving the
predictability of implementations.

Mobile Service Architecture Page 34 (116)

6.3.3.3 Mandatory ContactList Fields
Clarification ID: CID.75.3

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Class javax.microedition.pim.PIMList
Method javax.microedition.pim.PIMList.isSupportedField()
Method javax.microedition.pim.PIMList.getSupportedFields()
Method javax.microedition.pim.PIMList.getFieldDataType()
Method javax.microedition.pim.PIMList.maxValues()

 Requirement Text:

ContactList MUST support the following fields:

Field Associated Data Type
ADDR PIMItem.STRING_ARRAY
EMAIL, NOTE, TEL, URL PIMItem.STRING
PHOTO PIMItem.BINARY

The EMAIL field MUST support at least two data values (email addresses). In addition,
any ContactList MUST support one of the following fields:

• Contact.FORMATTED_NAME field

• Contact.NAME field with at least Contact.NAME_FAMILY and
Contact.NAME_GIVEN indices supported

 Justification/Notes:

This clarification defines mandatory ContactList fields, thus improving the predictability
of implementations.

6.3.3.4 Mandatory EventList Fields
Clarification ID: CID.75.4

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Class javax.microedition.pim.PIM
Method javax.microedition.pim.PIM.listPIMLists()

Class javax.microedition.pim.PIMList
Method javax.microedition.pim.PIMList.isSupportedField()
Method javax.microedition.pim.PIMList.getSupportedFields()

Mobile Service Architecture Page 35 (116)

Method javax.microedition.pim.PIMList.getFieldDataType()

 Requirement Text:

EventList MUST support the following fields:

Field Associated Data Type
SUMMARY PIMItem.STRING
START PIMItem.DATE

In addition, the first EventList returned by the
PIM.listPIMLists(PIM.EVENT_LIST) method MUST support all of the following
fields:

Field Associated Data Type
LOCATION, SUMMARY PIMItem.STRING
END, START PIMItem.DATE
ALARM PIMItem.INT

 Justification/Notes:

This clarification defines mandatory EventList fields, thus improving the predictability of
implementations.

6.3.3.5 Mandatory ToDoList Fields
Clarification ID: CID.75.5

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Class javax.microedition.pim.PIMList
Method javax.microedition.pim.PIMList.isSupportedField()
Method javax.microedition.pim.PIMList.getSupportedFields()
Method javax.microedition.pim.PIMList.getFieldDataType()

 Requirement Text:

ToDoList MUST support the following fields:

Field Associated Data Type
SUMMARY PIMItem.STRING
PRIORITY PIMItem.INT
COMPLETION_DATE, DUE PIMItem.DATE
COMPLETED PIMItem.BOOLEAN

Mobile Service Architecture Page 36 (116)

 Justification/Notes:

This clarification defines mandatory ToDoList fields, thus improving the predictability of
implementations.

6.3.3.6 Order of Contact Lists Returned by
PIM.listPIMLists(PIM.CONTACT_LIST)

Clarification ID: CID.75.6

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Class javax.microedition.pim.PIM
Method javax.microedition.pim.PIM.listPIMLists()

 Requirement Text:

An implementation of the javax.microedition.pim.PIM.
listPIMLists(PIM.CONTACT_LIST) method MUST return contact lists in the following
order:

• Contact list from the default phone book

• Contact list from the device’s phone book

• Contact list from the smart card (such as SIM, USIM, or RUIM) used to identify the
customer in the mobile network

• Any other contact lists

 Justification/Notes:

This clarification defines the order in which contact lists are returned by the
PIM.listPIMLists(PIM.CONTACT_LIST) method, thus improving the predictability of
implementations.

6.3.3.7 Localisation of PIM List Names, Field Names, and Attribute Names
Clarification ID: CID.75.7

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

 Requirement Text:

List names, field labels, and attribute labels in an implementation of a PIM API MUST be
the same as in the native PIM applications. That is, if these names and labels are localised

Mobile Service Architecture Page 37 (116)

in the native PIM applications, the PIM APIs implementation MUST also use the same
localised values.

 Justification/Notes:

The goal of this clarification is to ensure consistent user experience accross Java and
native PIM applications.

6.3.3.8 Order for Lists, Fields, and Attributes
Clarification ID: CID.75.8

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification.

Interface javax.microedition.pim.PIMList
Method javax.microedition.pim.PIMList. items()
Method javax.microedition.pim.PIMList.getSupportedFields()
Method javax.microedition.pim.PIMList.getSupportedAttributes()

 Requirement Text:

Items in an Enumeration returned by PIMList.items() methods MUST be in the
same order in which they are presented to the user by the User Interface of the native PIM
application.

Fields in an array returned by the PIMList.getSupportedFields() method MUST be
in the same order in which they are presented to the user by the User Interface of the PIM
application.

Attributes in an array returned by the PIMList.getSupportedAttributes() method
MUST be in the same order in which they are presented to the user by the User Interface
of the PIM application.

 Justification/Notes:

The goal of this clarification is to ensure consistent user experience accross Java and
native PIM applications.

6.3.3.9 RepeatRule Class Functionality Compared With vCalendar v1.0
Specification

Clarification ID: CID.75.9

 Applicable Document, Section, Classes, and Methods:

PIM Optional Package Specification tool documents.

Class javax.microedition.pim.RepeatRule

Mobile Service Architecture Page 38 (116)

 Requirement Text:

The functionality available in the javax.microedition.pim.RepeatRule class is more
restricted than the functionality available through the vCalendar 1.0 object. Namely, the
RepeatRule class supports only a single repeat rule and list of exception dates.

 Justification/Notes:

An imported vCalendar 1.0 object allows for multiple repeat rules and complex exception
criteria that is not supported by the RepeatRule class. The RepeatRule class only
supports a single repeat rule and list of exception dates.

6.3.3.10 Mark/Reset Functionality in Implementations of InputStream and
DataInputStream

Clarification ID: CID.75.10

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

Class javax.microedition.pim.PIM
Interface javax.microedition.io.file.FileConnection
Method javax.microedition.io.file.
 FileConnection.openInputStream()
Method javax.microedition.io.file.
 FileConnection.openDataInputStream()

 Requirement Text:

Implementations of InputStream and DataInputStream interfaces (returned from the
FileConnection.openInputStream() and FileConnection.
openDataInputStream() methods respectively) MUST support mark/reset functionality
defined in the description of these interfaces in the CLDC specification.

 Justification/Notes:

The clarification follows the same concept as outlined in the corresponding clarification for
JSR 139 (CLDC 1.1) titled “Mark/Reset Functionality in InputStream Returned from
Class.getResourceAsStream()”.

6.3.3.11 MIDlet Suite’s Storage Directory
Clarification ID: CID.75.11

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

Mobile Service Architecture Page 39 (116)

 Requirement Text:

Each MIDlet suite in the device MUST be assigned a new directory where a suite’s MIDlets
can store its data. This directory MUST be created when a MIDlet suite is installed on the
device and deleted when a MIDlet suite is removed. If a MIDlet suite is removed and the
directory is not empty, an implementation SHOULD make the user aware of the fact that
the data in the directory will be deleted together with the MIDlet suite and SHOULD give
the user an option to cancel the deletion.

During a MIDlet suite update, a new version of a MIDlet suite can retain data from the
directory of an older version of a MIDlet suite. This data MUST be retained if RMS record
stores are retained. In other words, MIDP 2.1 rules on the inheritance of RMS record stores
(pages 22-23 of the MIDP 2.1 specification) MUST also be followed for data from the
directory assigned to the MIDlet suite.

MIDlets from a MIDlet suite can find the name of their storage directory by querying the
fileconn.dir.private system property. Localised names can be obtained from the
fileconn.dir.private.name system property. See JSR 75 clarification “Directory
Locator System Properties” for more details on these system properties.

Since the implementation is allowed to change the directory assigned to the MIDlet suite
(this involves moving the data stored in the directory), MIDlets from the suite SHOULD
query the properties each time before accessing the directory.

MIDlets belonging to other MIDlet suites MUST NOT have access to the MIDlet suites
directory (same as with RMS record stores). In addition, the implementation SHOULD
make its best effort to ensure that only MIDlets belonging to the MIDlet suite have access
to the directory. However, MIDlets from a MIDlet suite SHOULD NOT assume that they
have exclusive or secure access to the directory because in some implementations other
native applications might still be able to access the data stored in the directory. In general,
no security guarantees protect the data in the directory.

 Justification/Notes:

This clarification addresses the need for a special directory where MIDlets belonging to the
same MIDlet suite can store their files.

6.3.3.12 Minimum Supported Length of Pathname
Clarification ID: CID.75.12

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

 Requirement Text:

An implementation MUST support full pathnames that are at least 255 Unicode characters
long. This requirement defines the minimum supported length of a native pathname of a file
in a file system, not the length of a URL that points to this file.

Mobile Service Architecture Page 40 (116)

 Justification/Notes:

This clarification defines a minimum supported length of full pathnames, thus improving the
predictability of implementations.

6.3.3.13 Unescaping of URLs Before Security Checks
Clarification ID: CID.75.13

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

 Requirement Text:

When a User Interface element (for example, a security prompt) with a file URL (or part of
it) needs to be shown to the user, an implementation MUST perform the necessary
unescaping of escaped file URLs before presenting the UI element to the user.

 Justification/Notes:

This clarification prevents malicious applications from misleading the user about the real
name of a file. A malicious application could attempt to mislead the user with a file URL that
contains escaped sequences (such as %2R%2E). For example,
file:///%66%69%6C%65%2E%74%78%74 could be used to represent
file:///file.txt.

6.3.3.14 Directory Locator System Properties
Clarification ID: CID.75.14

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

 Requirement Text:

The following table contains names and descriptions of directory locator system properties
that MUST be available to MIDlets:

System Property Explanation
fileconn.dir.photos The URL of the default storage directory for photos

captured with the integrated camera and other images.
fileconn.dir.videos The URL of the default storage directory for video clips

captured with the integrated camera or for downloaded
and saved video clips.

Mobile Service Architecture Page 41 (116)

System Property Explanation
fileconn.dir.graphics The URL of the default storage directory for clip art

graphics (caller group icons, background pictures, and
other similar items).

fileconn.dir.tones The URL of the default storage directory for ring tones
and other related audio files.

fileconn.dir.music The URL of the default storage directory for music files
(MP3, AAC, and others).

fileconn.dir.recordings The URL of the default storage directory for voice
recordings made with the device.

fileconn.dir.private The URL of the of MIDlet suite’s storage directory.

Property values differ from one implementation to another, but each non-null value MUST
be a file URL that points to a specific directory in the file system of the device. If the device
does not have a storage directory indicated by the system property, the value returned
MUST be null. Two or more properties from the table above can map to the same directory
and have exactly the same file URL. The implementation can change the values of all
properties in this table dynamically (that is, during the execution of a MIDlet). This is
REQUIRED to ensure proper handling of situations where the user, for example, changes a
default directory through a native UI. Also, the properties in this table are accessible to all
installed MIDlets, regardless of a protection domain. At the same time, the security policy of
the device MAY restrict access to certain folders from MIDlets authenticated to a certain
protection domain. A MIDlet can therefore be denied access to a directory pointed by a
system property.

Directory names can be localised, that is, they can vary according to the user interface
language. For this purpose, the following table provides system properties that can be used
by MIDlets to get localised names for the directories, which can be shown in the user
interface. The properties from this table MUST be available to MIDlets. FileConnection
API implementations MUST define these properties (that is, return a non-null value) if they
also define the directory URL properties in the previous table.

System Property Explanation
fileconn.dir.photos.name Localised name of directory corresponding to the

system property fileconn.dir.photos.
fileconn.dir.videos.name Localised name of directory corresponding to the

system property fileconn.dir.videos.
fileconn.dir.graphics.name Localised name of directory corresponding to the

system property fileconn.dir.graphics.
fileconn.dir.tones.name Localised name of directory corresponding to the

system property fileconn.dir.tones.
fileconn.dir.music.name Localised name of directory corresponding to the

system property fileconn.dir.music.
fileconn.dir.recordings.name Localised name of directory corresponding to the

system property fileconn.dir.recordings.

Mobile Service Architecture Page 42 (116)

System Property Explanation
fileconn.dir.roots.names

Localised names corresponding to roots returned
by FileSystemRegistry.listRoots()
method. One localised name corresponds to each
root returned by the method. Localised names are
in the same order as returned by the method and
are separated by a semicolon (;) character. If no
localised name exists for the root, the non-
localised (logical) name is returned in the property
for this root. Root names returned through this
property cannot contain the semicolon (;)
character.

fileconn.dir.private.name Localised name of directory corresponding to the
system property fileconn.dir.private.

Also in this case, the implementation can dynamically change values of all properties in this
table (that is, during the execution of a MIDlet).

 Justification/Notes:

This clarification addresses the need to provide application developers with a method to
learn about locations of common storage areas in the file system.

6.3.3.15 Unescaping of URLs by FileConnection.setFileConnection() Method
Clarification ID: CID.75.15

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

Method javax.microedition.io.file.FileConnection.setFileConnection()

 Requirement Text:

An implementation of the FileConnection.setFileConnection() method MUST
NOT unescape the fileName argument. This is needed to allow MIDlets to open files and
directories containing names with embedded escaped sequences (for example,
My%20Doc.txt).

 Justification/Notes:

The file system of the device might have files that have escape sequences literally
embedded in their names (My%20Doc.txt compared with My Doc.txt). This clarification
addresses the need for a method that MIDlets can use to open files with such names.

Mobile Service Architecture Page 43 (116)

6.3.3.16 Types of Memory and Memory Cards Supported by FileConnection
API

Clarification ID: CID.75.16

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

 Requirement Text:

FileConnection APIs specification lists several memory card formats that could be
supported by the implementation. A compliant implementation MUST support access to all
memory cards (with file systems) that are available on the device.

 Justification/Notes:

This clarification improves the predictability of implementations.

6.3.3.17 Throwing Correct Exception When Accessing “..” From
FileConnection Root

Clarification ID: CID.75.17

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification.

Method javax.microedition.io.file.FileConnection.setFileConnection()
 Requirement Text:

If a FileConnection instance is connected to the file system’s root and the parameter “..”
is passed to the setFileConnection() method, java.io.IOException MUST be
thrown.

 Justification/Notes:

The specification for the setFileConnection() method does not specify what exception
should be thrown when the current file connection is connected to the file system’s root and
the parameter ".." is passed to the setFileConnection() method. This clarification
removes the ambiguity.

6.3.3.18 Typographical Errors in Security Section of FileConnection Interface
Specification

Clarification ID: CID.75.18

Mobile Service Architecture Page 44 (116)

 Applicable Document, Section, Classes, and Methods:

FileConnection Optional Package Specification, “Security” section of the
FileConnection interface specification.

Interface javax.microedition.io.file.FileConnection

 Requirement Text:

The sentence:

"All three connections modes (READ_WRITE; WRITE_ONLY; and READ_ONLY) are
supported for a file connection and determine the access requested from the security
model."

MUST be interpreted as:

"All three connection modes (READ_WRITE; WRITE; and READ) are supported for a file
connection and determine the access requested from the security model."

 Justification/Notes:

This clarification corrects typographical errors in the “Security” section of the
FileConnection interface specification.

Mobile Service Architecture Page 45 (116)

6.4 Java APIs for Bluetooth (JSR 82)
Bluetooth wireless technology (BT) is a widely used standard for wireless communication
between devices. The JSR 82 specification defines a set of APIs that allow Java
applications to use Bluetooth wireless technology.

6.4.1 Rationale for Inclusion
The JSR 82 Bluetooth API provides developers a mechanism to create applications and
services using Bluetooth wireless technology. OBEX protocol is also widely used in mobile
devices, and the JSR 82 OBEX API can be used to exchange objects such as files,
pictures, calendar entries and business cards.

6.4.2 Condition for Inclusion
Conditions for inclusion of JSR 82 Bluetooth API and OBEX API are as follows::

• If the device supports Bluetooth wireless technology, the Bluetooth API MUST be
supported.

• If the device supports the Bluetooth wireless technology, OBEX over Bluetooth
(btgoep:// URL prefix) and the OBEX API MUST be supported.

• If the device supports Infrared, OBEX over Infrared (irdaobex:// URL prefix) and the
OBEX API MAY be supported.

• If the device supports TCP/IP sockets, OBEX over TCP (tcpobex://) and the OBEX
API MAY be supported.

6.4.3 Clarifications

6.4.3.1 Recommendation for Developers Not to Use ReceiveMTU and
TransmitMTU

Clarification ID: CID.82.1

 Applicable Document, Section, Classes, and Methods:

Java APIs for Bluetooth Specification v1.1.

Mobile Service Architecture Page 46 (116)

 Requirement Text:

When opening an L2CAP connection, an application SHOULD NOT use optional
parameters ReceiveMTU and TransmitMTU. The use of these parameters significantly
increases the risk of the connection establishment process ending in a failure.

If an application requires an L2CAP connection with certain values of ReceiveMTU and
TransmitMTU parameters, an application SHOULD act as follows:

• Try to establish a connection not using ReceiveMTU and TransmitMTU parameters
in the connection URL.

• After the connection is established, check the values of the parameters. If the values
are unsatisfactory, terminate the connection.

 Justification/Notes:

The JSR 82 specification defines two optional parameters that can be used by applications
when establishing L2CAP connections: ReceiveMTU and TransmitMTU. If an application
uses these parameters, the risk of failure in connection establishment increases
significantly, due to complex negotiation rules defined in the JSR 82 specification; and also
because the semantics of the parameters are specific to the JSR 82 Bluetooth API. These
new semantics can cause problems when the Bluetooth API is implemented on top of a
standard Bluetooth stack. Therefore, this clarification recommends the developers not to
use ReceiveMTU and TransmitMTU during connection establishment.

6.4.3.2 Bluetooth Power-Save Mode
Clarification ID: CID.82.2

 Applicable Document, Section, Classes, and Methods:

Java APIs for Bluetooth Specification v1.1.

 Requirement Text:

Some Bluetooth implementations use certain power-saving measures to avoid
unnecessary battery drain. It is therefore possible that the Bluetooth stack expects regular
activity on Bluetooth connections to keep them open.

The developer SHOULD take this into account when developing applications that
communicate irregularly via Bluetooth (for example, turn-based games) and either be
prepared to handle an exception or keep the connection active with a “heartbeat”
mechanism.

 Justification/Notes:

This clarification helps create a predictable application environment by warning the
developers that some Bluetooth stacks can go into a "power-save mode" and suggesting a
solution to mitigate this risk.

Mobile Service Architecture Page 47 (116)

6.5 Mobile Media API (JSR 135)
This small-footprint API allows easy and simple access to and control of basic audio and
multimedia resources and also addresses scalability and support for more sophisticated
features.

6.5.1 Rationale for Inclusion
Multimedia capabilities are an essential feature in creating compelling, rich mobile
applications. This API provides developers with capabilities for playback and capture of
multimedia content.

6.5.2 Condition for Inclusion
None.

6.5.3 Clarifications

6.5.3.1 MIDI Content Format Support
Clarification ID: CID.135.1

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification.

Method javax.microedition.media.Manager.createPlayer().

 Requirement Text:

A compliant implementation MUST support the playback of Musical Instrument Digital
Interface (MIDI) format content. This requirement concerns an implementation of the
Manager.createPlayer() method.

The MIDI implementation MUST support SP-MIDI [SP-MIDI_1] and the SP-MIDI 5-to-24
note profile for 3GPP specifications [SP-MIDI_2].

 Justification/Notes:

JSR 135 specification does not require support for MIDI and also does not require the SP-
MIDI implementation. This clarification mandates the support for the mentioned features
and thus improves the predictability of implementations.

Mobile Service Architecture Page 48 (116)

6.5.3.2 Support of AMR Content Format
Clarification ID: CID.135.2

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification. This clarification applies to the implementation of AMR
content format for files that are provided as input to method javax.microedition.
media.Manager.createPlayer.

 Requirement Text:

All compliant implementations MUST support the 3GPP Adaptive Multi Rate, Narrowband
(AMR-NB) content format for playback of sampled audio. All the bitrates required by the
AMR-NB specification MUST be supported.

If the 3D Audio Capability of JSR 234 is supported as part of an MSA compliant
implementation (this requirement does not apply to implementations supporting only MSA
Subset), the method javax.microedition.amms.SoundSource3D.addPlayer MUST support
adding Players for AMR content format.

However, AMR support is NOT REQUIRED for compliant development tools, device
emulators, or a reference implementation running on a device emulator. Such
implementations MUST support the initiation of AMR content playback in the API, but it is
sufficient to only simulate the behaviour of an AMR player. No actual sound needs to be
generated, or if it is generated for simulation purposes, it does not need to play the actual
content provided. The details related to such simulation are implementation dependent.

 Justification/Notes:

To provide consistent support for a more efficient audio coding format, MSA mandates
support for AMR-NB content format.

6.5.3.3 PlayerListener Events
Clarification ID: CID.135.3

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification.

Interface javax.microedition.media.Player
Interface javax.microedition.media.PlayerListener

 Requirement Text:

Additional requirements concerning PlayerListener events are as follows:

• All Players MUST support the CLOSED, END_OF_MEDIA, ERROR, STARTED
and STOPPED events.

Mobile Service Architecture Page 49 (116)

• Players for media types with an unknown duration at the start of the playback
MUST support the DURATION_UPDATED event.

• All VolumeControl implementations MUST support the VOLUME_CHANGED
event.

• All VideoControl implementations MUST support the SIZE_CHANGED event.

• All RecordControl implementations MUST support the RECORD_ERROR,
RECORD_STARTED and RECORD_STOPPED events.

• All StopTimeControl implementations MUST support the STOPPED_AT_TIME
event.

All the events mentioned above MUST be delivered to registered PlayerListeners.

 Justification/Notes:

JSR 135 specification does not specify which events need to be supported by various
Players. This clarification mandates a set of events to be supported by all
implementations.

6.5.3.4 Media Playback and Paused State of MIDP Application Model
Clarification ID: CID.135.4

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification.

Interface javax.microedition.media.Player

 Requirement Text:

In the MIDP application model, the state of a MIDlet MAY be changed to Paused.

If a Player is playing some media, the state of the Player MUST NOT be automatically
altered by the implementation when the state of the MIDlet is changed.

However, the implementation is allowed to mute the audio output, if it is conflicting with any
other use of the device. An ongoing telephone call is one example of such a conflict.
Muting the audio output MUST NOT affect the state of the Player.

 Justification/Notes:

This clarification explains certain aspects of the relationship between the behaviour of
Players and the MIDlet Paused state.

Mobile Service Architecture Page 50 (116)

6.5.3.5 Full-Screen Behaviour of Visual Players
Clarification ID: CID.135.5

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification.

Interface javax.microedition.media.VideoControl

Method javax.microedition.media.VideoControl.setDisplayLocation()
Method javax.microedition.media.VideoControl.setDisplaySize()
Method javax.microedition.media.VideoControl.setDisplayFullScreen()

 Requirement Text:

The VideoControl interface includes methods setDisplayLocation(),
setDisplaySize() and setDisplayFullScreen().

If the device supports playback of visual content with MMAPI, the implementation MUST
support full-screen playback for visual content.

In full-screen mode, the media content is scaled to a size as large as possible, given the
constraints of the display, the scaling capability of the implementation for the given media
content, and possibly other constraints of the device’s user interface. The aspect ratio of
the original content MUST be preserved. If the media content does not fill the entire display
(due to the aspect ratio difference or implementation capability in scaling), it is
implementation dependent how the remaining area of the display is filled. It is possible that
even in full-screen mode the display contains some device specific graphics in addition to
the rendered media content.

If the display is set to full-screen mode using setDisplayFullScreen(), calling
setDisplayLocation() and setDisplaySize() MUST NOT affect the full-screen
presentation of the video. However, the parameters set in those method calls MUST be
stored by the implementation, and the most recently set values MUST take effect if the
video is brought into non-full-screen presentation by calling
setDisplayFullScreen(false).

 Justification/Notes:

In the JSR 135 specification the definition of the interaction between the full-screen mode
and the positioning and size parameters is ambiguous. This clarification removes that
ambiguity.

6.5.3.6 VolumeControl Support by Players Producing Audio Is Mandatory
Clarification ID: CID.135.6

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification.

Mobile Service Architecture Page 51 (116)

Interface javax.microedition.media.Controllable

Method javax.microedition.media.Controllable.getControl()

 Requirement Text:

All Players producing audio output MUST support VolumeControl.

 Justification/Notes:

The JSR 135 specification does not mandate support for any specific Controls. This
clarification mandates support for the VolumeControl for all Players producing audio
output, thus improving the predictability of implementations.

6.5.3.7 Camera Image Capture Resolution
Clarification ID: CID.135.7

 Applicable Document, Section, Classes, and Methods:

Mobile Media API Specification. This clarification applies to implementation of camera
capture functionality.

 Requirement Text:

Implementations MUST support the same resolutions for image capture as supported by
the system camera applications of the phone.

 Justification/Notes:

Java applications should be able to use the same level of image capture capabilities as are
available for the end user in the phone’s system camera applications.

This applies to image capture functionality in both JSR 135 and JSR 234.

Mobile Service Architecture Page 52 (116)

6.6 J2ME Web Services (JSR 172)
The J2ME Web Services Specification (JSR 172) defines the APIs for utilizing web services
in Java ME client devices.

The JSR 172 specification consists of two optional packages that can be implemented
independently:

• XML parser optional package (JAXP subset)

• Web services optional package (JAX-RPC subset)

6.6.1 Rationale for Inclusion
This API provides a standard way to support web services and XML parsing in a mobile
device.

6.6.2 Condition for Inclusion
None.

6.6.3 Clarifications

6.6.3.1 System Property for JAXP Subset API Version
Clarification ID: CID.172.1

 Applicable Document, Section, Classes, and Methods:

J2ME Web Services Specification, Section 2.8, “JAXP Subset APIs”.

 Requirement Text:

An implementation of JAXP Subset APIs MUST support the following system property
(through the CLDC System.getProperty() method):

System Property Explanation

xml.jaxp.subset.version Version of JAXP Subset APIs supported by the
device, for example, 1.0.

Mobile Service Architecture Page 53 (116)

 Justification/Notes:

Application developers can use this property to determine if JAXP Subset APIs are present
on the device and the version of those APIs.

6.6.3.2 System Property for JAX-RPC Subset API Version
Clarification ID: CID.172.2

 Applicable Document, Section, Classes, and Methods:

J2ME Web Services Specification, Chapter 7, “JAX-RPC Subset Core APIs”.

 Requirement Text:

An implementation of JAX-RPC Subset APIs MUST support the following system property
(through the CLDC System.getProperty() method):

System Property Explanation

xml.rpc.subset.version Version of JAX-RPC Subset APIs supported by the
device, for example, 1.0.

 Justification/Notes:

Application developers can use this property to determine if JAX-RPC Subset APIs are
present on the device and the version of those APIs.

Mobile Service Architecture Page 54 (116)

6.7 Security and Trust Services API (JSR 177)
The Security and Trust Services API (SATSA) Specification (JSR 177) defines optional
packages to specify APIs that provide security and trust services for mobile devices. JSR
177 addresses the following needs:

• Secure storage to protect sensitive data, such as the user’s private keys, public key
(root) certificates, service credentials, and personal information,.

• Cryptographic operations to support payment protocols, data integrity, and data
confidentiality.

• A secure execution environment to deploy custom security features.

Java ME applications can rely on these features to handle several value-added services,
such as user identification and authentication, banking, payment, and loyalty applications.

The JSR 177 specification consists of four optional packages that can be implemented
independently:

• The SATSA-APDU optional package defines an API to support communication with
smart card applications using the APDU protocol.

• The SATSA-CRYPTO optional package defines a subset of the J2SE cryptography
API. It provides basic cryptographic operations to support message digest, signature
verification, encryption, and decryption.

• The SATSA-PKI optional package defines an API to support application-level digital
signature signing (but not verification) and basic user credential management. To
enable broader reuse, this API is independent of the types of security elements that
are utilised by a Java ME device.

• The SATSA-JCRMI optional package defines a Java Card RMI client API that allows
a Java ME application to invoke a method of a remote Java Card object.

6.7.1 Rationale for Inclusion
Security is an important element in a wide variety of mobile applications and services. This
API provides a generic way to access security services provided by the underlying system.

6.7.2 Condition for Inclusion
JSR 177 MUST be implemented, depending on the following conditions:

• The SATSA-CRYPTO optional package is MANDATORY and MUST be supported.

Mobile Service Architecture Page 55 (116)

• The SATSA-APDU optional package is CONDITIONALLY MANDATORY: If an
applicable security element (such as a smart card) is present, the SATSA-APDU
optional package MUST be supported.

• The SATSA-PKI optional package is CONDITIONALLY MANDATORY: If an
applicable security element (such as a smart card) is present, the SATSA-PKI
optional package MUST be supported.

• The SATSA-JCRMI optional package is NOT REQUIRED.

6.7.3 Clarifications

6.7.3.1 Recommended Cryptography Algorithms Are Mandatory
Clarification ID: CID.177.1

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Appendix E, “Recommended Algorithms for
the SATSA-CRYPTO Optional Package”.

 Requirement Text:

Implementations of the JSR 177 Crypto Optional Package MUST implement the
recommended algorithms, algorithm modes, and padding schemes as described in
Appendix E of the JSR 177 Specification.

 Justification/Notes:

This clarification is based on the feedback received from several device manufacturers.
Mandating the recommended practices in this area improves the compatibility and
interoperability of JSR 177 implementations.

6.7.3.2 Access Control
Clarification ID: CID.177.2

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Appendix A, “Recommended Security
Element Access Control”.

 Requirement Text:

A compliant implementation MUST define the necessary Access Control mechanisms. The
implementation MUST follow the conventions defined in JSR 177, Appendix A,
“Recommended Security Element Access Control”, unless these mechanisms are explicitly
superseded by another comprehensive Access Control Policy.

Mobile Service Architecture Page 56 (116)

 Justification/Notes:

Access control is an essential part of JSR 177 security.

6.7.3.3 JSR 177 Security Permissions
Clarification ID: CID.177.3

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Appendix B, “Security Permissions”.

 Requirement Text:

A compliant implementation MUST define the necessary Security Permissions according to
JSR 177, Appendix B, “Security Permissions” except where superseded by Table 6 of the
“Security Requirements” section (“Assigning Permissions and API Calls Specified in the
Security and Trust Services API to Function Groups”).

The security policy MAY be superseded by another comprehensive security policy.

 Justification/Notes:

Security permissions are an essential part of JSR 177 security.

6.7.3.4 System Property for the SATSA-CRYPTO API Version
Clarification ID: CID.177.4

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Chapter 2, “Package Summary”.

 Requirement Text:

An implementation of the SATSA-CRYPTO API MUST support the following system
property (through the CLDC System.getProperty() method):

System Property Explanation

microedition.satsa.crypto.version Version of the SATSA-CRYPTO API
supported by the device. For example,
1.0.

 Justification/Notes:

Application developers can use this property to determine if the SATSA-CRYPTO API is
present on a device, and the version of the API.

Mobile Service Architecture Page 57 (116)

6.7.3.5 System property for the SATSA-APDU API version
Clarification ID: CID.177.5

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Chapter 2, “Package Summary”.

 Requirement Text:

An implementation of the SATSA-APDU API MUST support the following system property
(through the CLDC System.getProperty() method):

System Property Explanation

microedition.satsa.apdu.version Version of the SATSA-APDU API
supported by the device. For example,
1.0.

 Justification/Notes:

Application developers can use this property to determine if the SATSA-APDU API is
present on a device, and the version of the API.

6.7.3.6 System property for the SATSA-PKI API version
Clarification ID: CID.177.6

 Applicable Document, Section, Classes, and Methods:

Security and Trust Services API Specification, Chapter 2, “Package Summary”.

 Requirement Text:

An implementation of the SATSA-PKI API MUST support the following system property
(through the CLDC System.getProperty() method):

System Property Explanation

microedition.satsa.pki.version Version of the SATSA-PKI API supported
by the device. For example, 1.0.

 Justification/Notes:

Application developers can use this property to determine if the SATSA-PKI API is present
on a device, and the version of the API.

Mobile Service Architecture Page 58 (116)

6.8 Location API for J2ME (JSR 179)
JSR 179 defines an API that enables developers to write mobile location-based
applications for devices with limited resources. It is a compact and generic API that
produces information on the present physical location of the device.

6.8.1 Rationale for Inclusion
An increasing number of mobile phones have the capability of determining their
geographical location. This API enables developers to create new types of location-based
applications and to enhance the usability of existing applications with location awareness.

6.8.2 Condition for Inclusion
JSR 179 MUST be implemented if the target device meets at least one of the following
conditions:

• The device has a GPS receiver that is able to deliver the geographical coordinates
within the device

• The device supports a location method that is capable of delivering the geographical
coordinates and is used to deliver the coordinates to downloadable applications (in
Java ME or other runtime platforms)

• The device supports an accessory device that can be used to obtain geographical
coordinates, and which is used to deliver the location to downloadable applications
(in Java ME or other runtime platforms)

6.8.3 Clarifications
No Additional Clarifications.

Mobile Service Architecture Page 59 (116)

6.9 SIP API for J2ME (JSR 180)
JSR 180 defines a multipurpose SIP API for Java ME clients. It enables SIP applications to
be executed in memory-limited terminals, especially targeting mobile phones.

6.9.1 Rationale for Inclusion
JSR 180 enables applications to take advantage of the SIP protocol.

6.9.2 Condition for Inclusion
None.

6.9.3 Clarifications

6.9.3.1 SIP Methods Support
Clarification ID: CID.180.1

 Applicable Document, Section, Classes, and Methods:

SIP API for J2ME Specification.

Interface SipClientConnection
Interface SipServerConnection

 Requirement Text:

All compliant implementations MUST support at least the methods defined in RFC 2976,
RFC 3261, RFC 3262, RFC 3265, RFC 3311, RFC 3428, RFC 3515, and RFC 3903.

In particular, implementations MUST support:

• Sending INFO, REGISTER, OPTIONS, INVITE, CANCEL, BYE, ACK, PRACK,
SUBSCRIBE, NOTIFY, UPDATE, MESSAGE, REFER, and PUBLISH requests on
the SipClientConnection interface

• Receiving INFO, OPTIONS, INVITE, CANCEL, BYE, ACK, PRACK, SUBSCRIBE,
NOTIFY, UPDATE, MESSAGE, and REFER requests on the
SipServerConnection interface

Implementations MUST also freely allow sending and receiving of any other non-dialog-
creating requests, whether in-dialog or out-of-dialog, as described in RFC3261.

Mobile Service Architecture Page 60 (116)

The API contains dedicated methods for initiating some of these requests. Each request
type is only required to be supported using the appropriate API method (as defined in the
JSR 180 specification).

These RFCs have requirements for both the SIP protocol stack underneath the JSR 180
API as well as for the application level corresponding to the applications using the API. The
SIP protocol stack MUST implement those requirements of the RFCs that are relevant for
the stack, but following the application level requirements is the responsibility of the
applications using the JSR 180 API. The responsibilities are approximately divided as
follows:

Following are the requirements of the SIP protocol stack:

• Support the defined method type

• Support possible new header types defined in the RFC

• Support the responses defined in the RFC

• Manage basic transactions for new requests and responses

• Create and manage the dialog, if the request creates a dialog

Following are the requirements of the application level:

• Send appropriate requests and responses in the correct order

• Fill required user headers

• Fill required content with the required content type

• Maintain and provide event states and content for the PUBLISH method, as defined
in RFC 3903

• Other application=specific requirements defined by the RFC that are not directly
related to the SIP protocol

 Justification/Notes:

JSR 180 does not explicitly declare which SIP protocol requests are supported via the API.
The API itself can support all possible requests, but it does not explicitly mandate the
support for them.

6.9.3.2 Transport Protocol Support
Clarification ID: CID.180.2

 Applicable Document, Section, Classes, and Methods:

SIP API for J2ME Specification. This clarification applies to the SIP protocol stacks
supported through the JSR 180 API.

Mobile Service Architecture Page 61 (116)

 Requirement Text:

All compliant implementations MUST support sending and receiving SIP messages, at
least on UDP and TCP transport protocols, as defined in RFC3261 (section 18). The
default transport protocol MUST be UDP. Whenever requested, the preferred transport
protocol MUST be indicated with the ;transport={transport} parameter within the
URI indicated in the Connector.open() method, either for client or server connections.

 Justification/Notes:

The JSR 180 specification does not mandate any particular underlying transfer protocol for
SIP.

6.9.3.3 SIP Authentication
Clarification ID: CID.180.3

 Applicable Document, Section, Classes, and Methods:

SIP API for J2ME Specification. This clarification applies to the SIP protocol stacks
supported through the JSR 180 API.

 Requirement Text:

The implementations MUST support at least the Digest authentication, as defined in RFC
3261.

Implementations that interface with a GSM or IMS/MMD identity module MUST also
support Digest-AKA authentication.

Implementations MUST handle both 401 and 407 responses if the required authentication
mechanism is supported.

Implementations MUST support the invocation of javax.microedition.sip.
SipClientConnection.setCredentials both in Initialized and Unauthorized states.

 Justification/Notes:

This clarification is necessary for uniform authentication support.

6.9.3.4 SIP Dialogs
Clarification ID: CID.180.4

 Applicable Document, Section, Classes, and Methods:

SIP API for J2ME Specification. This clarification applies to obtaining SipDialog
instances from SipConnection.

Mobile Service Architecture Page 62 (116)

 Requirement Text:

Implementations MUST support at least the creation of dialogs based on INVITE,
SUBSCRIBE/NOTIFY, and REFER/NOTIFY requests, in accordance with RFC 3515.

 Justification/Notes:

This clarification removes ambiguity about which requests can result in creation of
SipDialog instances.

6.9.3.5 Refresh Support
Clarification ID: CID.180.5

 Applicable Document, Section, Classes, and Methods:
SIP API for J2ME Specification. This clarification applies to the SIP protocol stacks
supported through the JSR 180 API.

 Requirement Text:

The implementations MUST support at least the refresh of the REGISTER, SUBSCRIBE,
and PUBLISH methods.

 Justification/Notes:

This clarification removes ambiguity about for which SIP methods refresh needs to be
supported.

Mobile Service Architecture Page 63 (116)

6.10 Mobile 3D Graphics API (JSR 184)
JSR 184 specifies a lightweight, interactive 3D graphics API. The API is flexible enough for
a wide range of applications, such as games, animated messages, screen savers, custom
user interfaces, and product visualization.

6.10.1 Rationale for Inclusion
3D Graphics are very important for games, rich graphical user interfaces, and other
graphics intensive applications.

6.10.2 Condition for Inclusion
None.

6.10.3 Clarifications

6.10.3.1 Security When Loading M3G Content Over Network Connections
Clarification ID: CID.184.1

 Applicable Document, Section, Classes, and Methods:

Mobile 3G Graphics API.

Class javax.microedition.m3g.Loader
Method public static Object3D[] load(java.lang.String name)
Method public static Object3D[] load(byte[] data, int offset)

 Requirement Text:

If the load method is used for loading content from a resource that is accessed by using a
networking protocol such as HTTP, this method has the same requirements for security
checks as the corresponding API for using the networking protocol directly (when using, for
example, javax.microedition.io.HttpConnection).

This applies when the name parameter directly contains an URI requiring retrieval over a
networking protocol, and when a M3G file is loaded and the contents of the file references
resources using such URIs.

Mobile Service Architecture Page 64 (116)

 Justification/Notes:

JSR 184 leaves open the security aspect of using a networking protocol. This requirement
makes it consistent with other APIs that are part of the MSA.

6.10.3.2 Relation to the MIDlet Paused State
Clarification ID: CID.184.2

 Applicable Document, Section, Classes, and Methods:

Mobile 3G Graphics API. This clarification applies to implementations of the JSR 184 API
and the MIDlet Paused state.

 Requirement Text:

The implementation of the JSR 184 API MUST NOT automatically release any resources
or take any other action as a result of the MIDlet moving to the Paused state.

However, according to the semantics of the Paused states, applications SHOULD release
resources, including any resources held using the JSR 184 API.

 Justification/Notes:

Although the MIDP specification specifies the semantics of the Paused state, some
confusion exists regarding its relation with some APIs. This clarification specifies that the
Paused state does not have any direct relation in the implementation with the JSR 184 API.

6.10.3.3 JPEG IS a Mandatory Format for Image2D
Clarification ID: CID.184.3

 Applicable Document, Section, Classes, and Methods:

Mobile 3G Graphics API.

Class javax.microedition.m3g.Image2D
Class javax.microedition.m3g.Loader

 Requirement Text:

JPEG (with the same detailed definitions about the JPEG image format as defined in the
JSR 118 MIDP 2.1 specification for LCDUI) MUST be supported by compliant
implementations as a 2D bitmap image format for the Image2D class using the Loader
class, and for M3G content files referencing bitmap images.

For colour JPEG images, the pixel format of the returned Image2D object MUST be
Image2D.RGB and for monochrome JPEG images, the pixel format MUST be
Image2D.LUMINANCE.

Mobile Service Architecture Page 65 (116)

 Justification/Notes:

JSR 184 mandates only PNG as a mandatory image format and JSR 185 mandates JPEG
for LCDUI. This clarification makes support for JPEG consistent for the component JSRs of
MSA.

6.10.3.4 Inconsistent Exception Condition in Loader
Clarification ID: CID.184.4

 Applicable Document, Section, Classes, and Methods:

Mobile 3G Graphics API.

Class javax.microedition.m3g.Loader

Method public static Object3D[] load(java.lang.String name)
Method public static Object3D[] load(byte[] data, int offset)

 Requirement Text:

The condition for throwing IOException MUST be implemented as follows:

IOException MUST be thrown if the data in name/data, or in any resource referenced
from it, does not comply with file format specifications supported by the platform
implementation.

 Justification/Notes:

The Loader class description in JSR 184 specifies that:

“Some implementations may support other formats as well. If the data is not in a supported
format, is otherwise invalid, or can not be loaded for some other reason, an exception is
thrown.” However, the throws clause in the load method description is inconsistent with
this. It requires the IOException to be thrown if the data is not in the M3G or PNG
format.

MSA requires the JPEG bitmap image format be supported. This clarification provides an
unambiguous way to support JPEG images with JSR 184.

Mobile Service Architecture Page 66 (116)

6.11 Wireless Messaging API (JSR 205)
JSR 205 API provides an interface to the messaging functionality of the device. It allows
the device to send and receive messages in SMS and MMS formats and receive
messages in CBS format.

6.11.1 Rationale for Inclusion
Messaging is a phone feature that must be available to Java application developers.

6.11.2 Condition for Inclusion
None.

6.11.3 Clarifications

6.11.3.1 Handling of Messages If the Associated Java Application Isn’t
Running

Clarification ID: CID.205.1

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification, Chapters D2.3 (page 62), B2.0 (page 53) and A2.3
(page 49).

 Requirement Text:

An implementation can work in a way that a message addressed to an application is first
fully downloaded to the device and dispatched to the application afterwards. If this is the
case, the following requirements apply.

A message addressed to an application (using a port number in the SMS case or an
application ID in the MMS case) MUST be saved permanently if at least one of the
following conditions is fulfilled:

• The application is registered in the PushRegistry to receive this type of
messages.

• The application is running and an active Listener is registered to receive
notifications about messages of this type.

When the device has insufficient memory to buffer a new incoming message, the situation
MUST be handled as follows:

Mobile Service Architecture Page 67 (116)

• If some messages are already buffered for the target application and the total size
of these messages is greater than the space needed for the new message, an
appropriate number of these messages MUST be deleted (oldest messages MUST
be deleted first), and the new message MUST be buffered. The number of
messages to be deleted depends on the size of the new message.

• If there are no previously buffered messages for the target application, or if the total
size of the previously buffered messages is less than the needed space for the new
message, the new message MUST be discarded.

A buffered message addressed to an application MUST be deleted in the following cases:

• The application reads the message.

• The application is removed from the device.

• The application removes the connection related to the buffered message from the
PushRegistry.

 Justification/Notes:

This clarification enhances the predictability of the platform.

6.11.3.2 Removal of a Message With an Unrecognized Application ID
Clarification ID: CID.205.2

 Applicable Document, Section, Classes, and Methods

Wireless Messaging API Specification. This clarification addresses ambiguities in Chapters
D2.3 (page 62), B2.0 (page 53) and A2.3 (page 49) of JSR 205.

 Requirement Text

If a device is receiving a message (SMS, MMS, CBS) with an unrecognized application ID
or port number, the device MUST, with the exception of SMS TextMessage, immediately
delete the message without any notification to the user. For an SMS TextMesage with an
unrecognized port number, the device MUST delete the port number of the SMS message
and handle it as an ordinary SMS TextMessage (i.e. the SMS message becomes an SMS
message without a port number).

 Justification/Notes

This clarification prevents flooding a device’s inbox with messages that neither the user nor
the application is expecting.

6.11.3.3 BCC Header
Clarification ID: CID.205.3

Mobile Service Architecture Page 68 (116)

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification. This clarification addresses ambiguities in Chapter
D1.1 of JSR 205 (page 59).

 Requirement Text:

All devices MUST support the bcc field for MultipartMessages.

 Justification/Notes:

Eliminating the optionality of the BCC header availability enhances the platform
consistency.

6.11.3.4 Encoding in MessagePart
Clarification ID: CID.205.4

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification.

Class javax.wireless.messaging.MessagePart

 Requirement Text:

In MessagePart objects, the encoding parameter maps to the character set indicated by
the charset= parameter in the Content-Type header. The encoding parameter in the
MessagePart object does not affect the choice of Content-Transfer-Encoding,
which is chosen automatically by the implementation.

 Justification/Notes:

In the MessagePart class, the object contains an attribute called encoding. It is a bit
unclear how it maps to the MMS transport, because the MMS transport has two concepts
related to encoding: the character set used by the message body and the so-called
Content-Transfer-Encoding.

6.11.3.5 Creation of Message Objects of Different Type than Used by the
MessageConnection Instance

Clarification ID: CID.205.5

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification.

Method javax.wireless.messaging.MessageConnection.newMessage(String)

Mobile Service Architecture Page 69 (116)

 Requirement Text:

When calling the MessageConnection.newMessage method, the method MUST throw
IllegalArgumentException if it is called with a message type parameter that does not
match the message types supported by the transport protocol with which this
MessageConnection instance is associated.

If the MessageConnection was opened with an mms: URI, the newMessage method
only allows the creation of messages of type MULTIPART_MESSAGE and MUST throw
IllegalArgumentException if called with message types TEXT_MESSAGE or
BINARY_MESSAGE.

If the MessageConnection was opened with an sms: URI, the newMessage method
only allows the creation of messages of types TEXT_MESSAGE and BINARY_MESSAGE and
MUST throw IllegalArgumentException if called with message type
MULTIPART_MESSAGE.

 Justification/Notes:

This clarification specifies exact exception behaviour when a new message is created that
doesn’t match the transport protocol (SMS or MMS) specified when the message
connection object was created. It also specifies exception behaviour when an attempt is
made to use an inappropriate type of message for a given transport.

6.11.3.6 Messaging Protocol Support
Clarification ID: CID.205.6

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification. Underlying protocol support for the API.

 Requirement Text:

The MMS protocol MUST be supported by compliant implementations as specified in
Appendix D of the JSR 205 specification.

 Justification/Notes:

JSR 205 does not mandate any particular underlying messaging protocols.

6.11.3.7 System property for Wireless Messaging API version
Clarification ID: CID.205.7

 Applicable Document, Section, Classes, and Methods:

Wireless Messaging API Specification, Chapter 3, “Package javax.wireless.messaging”.

Mobile Service Architecture Page 70 (116)

 Requirement Text:

A Wireless Messaging API implementation MUST support the following system property
(through the CLDC System.getProperty() method):

System Property Explanation

wireless.messaging.version Version of the Wireless Messaging API
supported by the device. For example, 1.0.

 Justification/Notes:

Application developers can use this property to determine if the Wireless Messaging API is
present on the device, and the version of the API.

Mobile Service Architecture Page 71 (116)

6.12 Content Handler API (JSR 211)
The Content Handler API (CHAPI), defined by JSR 211, allows an application to invoke an
appropriate application on the device (the handler application) based on the type of content
being processed. The appropriate handler is launched by the application management
system (AMS) of a device implementation, which selects a registered Java ME application
(or non-Java application) based on the content type (or types) that it can handle. The
content type is specified by the invoking application, or discovered by invoking a specified
Uniform Resource Locator (URL). A content handler is any application that registers itself
to handle a certain type of content. Integration into the AMS gives the user a seamless and
natural transition between applications and content handlers.

6.12.1 Rationale for Inclusion
This API enables the launching of Java ME applications based on content type.

6.12.2 Condition for Inclusion
None.

6.12.3 Clarifications
No Additional Clarifications.

Mobile Service Architecture Page 72 (116)

6.13 Scalable 2D Vector Graphics API for J2ME (JSR 226)
JSR 226 defines an API for rendering scalable 2D vector graphics, including image files in
W3C Scalable Vector Graphics (SVG) format. It also defines a rich subset of the uDOM
API for user interaction and dynamic manipulation of the SVG content.

6.13.1 Rationale for Inclusion
Scalable vector graphics makes it possible to create, manipulate (zoom and resize), and
render graphics content.

6.13.2 Condition for Inclusion
None.

6.13.3 Clarifications

6.13.3.1 System Property for Scalable 2D Vector Graphics API Version
Clarification ID: CID.226.1

 Applicable Document, Section, Classes, and Methods:

Scalable 2D Vector Graphics API for J2ME Specification, Chapter 1 “Overview”.

 Requirement Text:

The following system property MUST be supported to discover the version of Scalable 2D
Vector Graphics API supported by the device:

System Property Explanation

microedition.m2g.version Version of the Scalable 2D Vector Graphics API
supported by the device (for example, 1.0).

 Justification/Notes:

Application developers can use this property to determine if the SVG API is present on the
device, and the version of the API.

Mobile Service Architecture Page 73 (116)

6.13.3.2 System Property for Discovering the Version and Base Profile of
Supported SVG

Clarification ID: CID.226.2

 Applicable Document, Section, Classes, and Methods:

Scalable 2D Vector Graphics API for J2ME.

Method java.lang.System.getProperty(String)

 Requirement Text:

The following system properties MUST be supported to indicate the base profile and
version of SVG supported by the device:

System Property Explanation

microedition.m2g.svg.baseProfile The base profile of SVG that is supported
by the underlying implementation. It is
tiny for JSR 226 v1.0 implementations.

microedition.m2g.svg.version The version of SVG that is supported by
the underlying implementation. For
example, if the underlying SVG engine
conforms to the W3C SVGT 1.1
specification, the returned string is 1.1,
and for SVGT 1.2 it is 1.2, and so on.

 Justification/Notes:

A need exists to define system properties for discovering the base profile and version of
SVG supported by the device. JSR 226 does not define these system properties.

Mobile Service Architecture Page 74 (116)

6.14 Payment API (JSR 229)
JSR 229 defines a generic API to initiate payment transactions. It defines the syntax for the
description of the associated provisioning data, enabling API implementers to support
different payment instruments.

Both the API and the syntax allow third-party developers to build applications with feature
and service controls that are chargeable.

6.14.1 Rationale for Inclusion
This API provides access to various payment mechanisms.

6.14.2 Condition for Inclusion
None. However, support for any payment adapter is NOT REQUIRED.

6.14.3 Clarifications
No Additional Clarifications.

Mobile Service Architecture Page 75 (116)

6.15 Advanced Multimedia Supplements (JSR 234)
JSR 234 defines an API for advanced multimedia functionality to supplement MMAPI (JSR
135). The API provides access to advanced media features such as enhanced camera
support, 3D audio support, audio radio support, image encoding, and image post-
processing capabilities.

6.15.1 Rationale for Inclusion
This API enables the creation of advanced multimedia applications.

6.15.2 Condition for Inclusion
JSR 234 MUST be implemented by compliant implementations. It consists of a single
Optional Package, which means that all the classes and interfaces MUST be present in all
compliant devices.

However, some of the underlying capabilities, called Media Capabilities in the JSR 234
specification, are optional or conditionally mandatory, as defined below:

• All compliant implementations MUST support Image Encoding and Image Post-
Processing Capabilities.

• If the device has one or more cameras, the Camera Media Capability MUST be
supported. If the device has more than one camera, the requirements stated in JSR
234 specification in “Camera Capability” description SHOULD be fulfilled for all the
cameras of the device, not just for the default camera (the one created with
Manager.createPlayer("capture://video");).

• If the device has an audio radio, the Tuner Capability MUST be supported. If the
device audio radio has RDS (Radio Data System for VHF/FM Sound Broadcasting,
BS EN 50067:1998) or RBDS (Radio Broadcast Data System, U.S. RBDS Standard –
April 1998) support, RDSControl MUST also be supported for the audio radio tuner
Player.

• If the device contains hardware or software support for positional three-dimensional
(3D) audio, 3D Audio Capability MUST be supported.

6.15.3 Clarifications

6.15.3.1 MediaProcessor.abort() is Synchronous
Clarification ID: CID.234.1

Mobile Service Architecture Page 76 (116)

 Applicable Document, Section, Classes, and Methods:

Advanced Multimedia Supplements Specification.

Interface MediaProcessor

Method public void abort()

 Requirement Text:

The abort method is synchronous and returns only once the processing is aborted and
moved back to the UNREALIZED state unless the MediaProcessor was in the REALIZED
state, in which case the request is ignored as specified in JSR 234.

 Justification/Notes:

The JSR 234 v1.0 Specification does not clearly define whether the abort method is
synchronous or asynchronous.

6.15.3.2 MediaProcessor.abort() Does Not Throw MediaException
Clarification ID: CID.234.2

 Applicable Document, Section, Classes, and Methods:

Advanced Multimedia Supplements Specification.

Interface MediaProcessor

 Requirement Text:

The class description of MediaProcessor in JSR 234 v1.0 contains a table describing the
states and the effects of methods. This table contains the following statement for the
abort method in the STARTED and STOPPED states:

“On failure: Throws MediaException”

This statement is incorrect because the abort method does not declare any exceptions.
The abort method does not throw MediaException.

 Justification/Notes:

This clarification corrects an incorrect statement in JSR 234 of exceptions thrown by the
abort method (of the MediaProcessor class) in the STARTED and STOPPED states.

6.15.3.3 SoundSource3D.getControl Does Not Throw IllegalStateException
Clarification ID: CID.234.3

Mobile Service Architecture Page 77 (116)

 Applicable Document, Section, Classes, and Methods:

Advanced Multimedia Supplements Specification.

Interface SoundSource3D

Method public Control getControl(java.lang.String controlType)
Method public Control getControls()

 Requirement Text:

The SoundSource3D interface methods getControl(java.lang.String
controlType) and getControls() MUST NOT ever throw
IllegalStateException.

 Justification/Notes:

This clarification removes ambiguity regarding the exact exceptions that might be thrown by
SoundSource3D interface methods.

6.15.3.4 SnapShotControl and Burst Mode Shooting
Clarification ID: CID.234.4

 Applicable Document, Section, Classes, and Methods:

Advanced Multimedia Supplements Specification.

Interface javax.microedition.amms.control.camera.SnapshotControl

Method public void setDirectory(java.lang.String directory)
Method public void setFilePrefix(java.lang.String prefix)
Method public void setFileSuffix(java.lang.String suffix)
Method public java.lang.String getDirectory()
Method public java.lang.String getFilePrefix()
Method public java.lang.String getFileSuffix()

 Requirement Text:

The implementation of SnapshotControl.start() MUST not change the storing
directory, file name prefix, or filename suffix during a burst shooting session even if
setDirectory(), setFilePrefix(), or setFileSuffix() are called during that
burst shooting session. Settings caused by calls to methods setDirectory(),
setFilePrefix(), or setFileSuffix() MUST become effective when the next burst
shooting session is started with a call to start the method, but not yet during the ongoing
burst session. However, getDirectory(), getFilePrefix(), and
getFileSuffix() MUST return the new values right after the call of the
setDirectory(), setFilePrefix(), or setFileSuffix() methods, respectively.

Mobile Service Architecture Page 78 (116)

 Justification/Notes:

This clarification removes ambiguity about how setDirectory(), setFilePrefix(),
or setFileSuffix() behave if they are called during an ongoing burst shooting session.

6.15.3.5 FocusControl Next and Previous Methods During Autofocus
Clarification ID: CID.234.5

 Applicable Document, Section, Classes, and Methods:

Advanced Multimedia Supplements Specification.

Interface javax.microedition.amms.control.camera.FocusControl

Method public int setFocus(int distance)

 Requirement Text:

If a camera is in auto focus mode and setFocus is called with parameter NEXT or
PREVIOUS and manual focus is supported, the camera MUST switch to the manual
focusing mode and move one step from the current (auto-focused) distance in a given
direction. However, if the focusing distance is already the minimum returned by
getMinFocus while calling setFocus(PREVIOUS) or Integer.MAX_VALUE while calling
setFocus(NEXT), only the switch to manual focusing mode MUST happen and the
focusing distance MUST NOT change.

 Justification/Notes:

This clarification removes ambiguity about the behaviour of setFocus(NEXT) or
setFocus(PREVIOUS) while in auto focus mode.

Mobile Service Architecture Page 79 (116)

6.16 Mobile Internationalization API (JSR 238)
JSR 238 defines a common API for the internationalization of Java ME applications. The
API provides the means to isolate localizable application resources from the program
source code, and to access those resources at run time. This API supports accessing the
correct resources for a user-selected or device-selected locale. The API also supports
recognising cultural conventions in applications; for example, for formatting dates, times,
numbers, and currencies, and sorting text strings correctly for the selected locale.

6.16.1 Rationale for Inclusion
This small but beneficial feature allows truly global application development.

6.16.2 Condition for Inclusion
None.

6.16.3 Clarifications
No Additional Clarifications.

Mobile Service Architecture Page 80 (116)

7. Additional Requirements (normative)
The following sections contain additional requirements for MSA compliancy.

7.1 Requirements Inherited from JTWI 1.0 (JSR 185)
The MSA specification is based on the Java Technology for the Wireless Industry
Specification, version 1.0 (JTWI Specification, JSR 185).

To ensure maximum backwards compatibility, the JTWI requirements are included in the
MSA Specification, and a compliant implementation MUST provide support for those
requirements.

7.1.1 Omitted Clarifications
This section covers only a subset of the original JTWI clarifications. Those clarifications
that are explicitly overridden, superseded, revised, or otherwise rendered unnecessary by
MSA are omitted. A summary of the omitted JTWI clarifications is at the end of this section.

7.1.2 CLDC-Related JTWI Clarifications
A compliant implementation MUST support the CLDC-related clarifications defined in this
subsection.

7.1.2.1 Minimum Clock Resolution
Clarification ID: CID.185.1

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 3.3

CLDC 1.1 Specification
Class java.lang.System:
 public long currentTimeMillis()

 Requirement Text:

In a compliant device, the method java.lang.System.currentTimeMillis() MUST
record the elapsed time in increments not to exceed 40 milliseconds. Various factors, such
as garbage collection, affect the ability to achieve this requirement. Because of this, at least
80% of test attempts MUST meet the time elapsed requirement to achieve acceptable
conformance.

Mobile Service Architecture Page 81 (116)

 Justification/Notes:

A compliant implementation MAY support a smaller increment.

7.1.2.2 Custom Time Zone IDs
Clarification ID: CID.185.2

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 3.4

CLDC 1.1 Specification
Class java.util.TimeZone:
 public String getID()
 public static TimeZone getTimeZone(String ID)

 Requirement Text:

A compliant implementation MUST permit the use of custom time zones adhere to the
following time zone format:

• General time zone: For time zones representing a GMT offset value, the following
syntax is used:

CustomID:

GMT Sign Hours : Minutes

GMT Sign Hours Minutes

GMT Sign Hours

Sign: one of:

+ -

Hours:

Digit

Digit Digit

Minutes:

Digit Digit

Digit: one of:

0 1 2 3 4 5 6 7 8 9

Mobile Service Architecture Page 82 (116)

Hours MUST be between 0 and 23. Minutes MUST be between 00 and 59. For
example, GMT+10 and GMT+0010 mean ten hours and ten minutes ahead of GMT,
respectively. The format is locale independent, and digits MUST be taken from the
Basic Latin block of the Unicode standard. No daylight saving time transition
schedule can be specified with a custom time zone ID. If the specified string does not
match the syntax, GMT is used.

• When creating a TimeZone, the specified custom time zone ID is normalized
in the following syntax:

NormalizedCustomID:

 GMT Sign TwoDigitHours : Minutes

 Sign: one of

 + -

 TwoDigitHours:

 Digit Digit

 Minutes:

 Digit Digit

 Digit: one of

 0 1 2 3 4 5 6 7 8 9

For example, TimeZone.getTimeZone("GMT-8").getID() returns GMT-08:00.

 Justification/Notes:

Mandating support for the custom time zone format provides consistent time zone ID
support across implementations.

7.1.2.3 Names for Encodings
Clarification ID: CID.185.3

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 3.5

CLDC 1.1 Specification, Section 6.2.9
Class java.io.InputStreamReader
Class java.io.OutputStreamWriter
Class java.lang.String:

Mobile Service Architecture Page 83 (116)

 public String(byte[] bytes, int off, int len, String enc)
 public String(byte[] bytes, String enc)
 public byte[] getBytes(String enc)

 Requirement Text:

Implementations MUST support at least the preferred MIME name as defined by IANA
(http://www.iana.org/assignments/character-sets) for the supported character encodings.
For example, for ISO 646, the name US-ASCII MUST be supported. If no preferred name
has been defined, then the registered name MUST be used, for example, UTF-16.

 Justification/Notes:

Application developers are encouraged to use the preferred names to ensure portability.
Although devices are permitted to use the other names, this is intended only for backwards
compatibility.

7.1.2.4 Character Properties
Clarification ID: CID.185.4

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 3.6

CLDC 1.1 Specification, Section 6.2.1
Class java.lang.String:
 public int compareTo(String s)
 public boolean regionMatches(boolean ignoreCase, int toffset,
 String other, int ooffset,
 int len)
Class java.lang.Character:
 public boolean equals(Object o)
 public static boolean isLowerCase(char ch)
 public static boolean isUpperCase(char ch)
 public static boolean isDigit(char ch)
 public static char toLowerCase(char ch)
 public static char toUpperCase(char ch)
 public static int digit(char ch, int radix)

 Requirement Text:

Compliant implementations MUST provide support for character properties and case
conversions for characters in the Basic Latin and Latin-1 Supplement blocks of Unicode
3.0. Other Unicode character blocks MAY be supported as necessary.

 Justification/Notes:

The CLDC 1.0 specification permits more relaxed case conversion. However, applications
which target many international markets will be less satisfactory for their users if case
conversion is incomplete.

Mobile Service Architecture Page 84 (116)

7.1.3 MIDP-Related JTWI Clarifications
The MIDP-related clarifications defined in this subsection MUST be supported.

Note: This subsection provides only a subset of the original JTWI clarifications.
Clarifications that are explicitly overridden, replaced or moved to other specifications are
omitted. A summary of the omitted clarifications is at the end of this section.

7.1.3.1 Timer Resolution
Clarification ID: CID.185.5

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 4.5

MIDP 2.1 Specification, Chapter 6 “Package java.util”, pages 48-52.
Class java.util.Timer:
 public void schedule(TimerTask task, Date time)
 public void schedule(TimerTask task, Date firstTime,
 long period)
 public void schedule(TimerTask task, long delay)
 public void schedule(TimerTask task, long delay, long period)

 Requirement Text:

A compliant implementation MUST permit an application to specify the values for the
firstTime, delay, and period parameters of java.util.timer.schedule()
methods, with a distinguishable resolution of no more than 40 ms. Various factors, such as
garbage collection, affect the ability to achieve this requirement. Because of this, at least
80% of test attempts MUST meet the schedule resolution requirement to achieve
acceptable conformance.

 Justification/Notes:

Predictability is crucial to application interoperability. This mandate is provided also to set
expectations for application developers.

7.1.3.2 Minimum Number of Timers
Clarification ID: CID.185.6

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 4.6

Mobile Service Architecture Page 85 (116)

MIDP 2.1 Specification, Chapter 6 “Package java.util”, pages 48-52.
Class java.util.Timer:
 public void schedule(TimerTask task, Date time)
 public void schedule(TimerTask task, Date firstTime,
 long period)
 public void schedule(TimerTask task, long delay)
 public void schedule(TimerTask task, long delay, long period)

 Requirement Text:

A compliant implementation MUST allow a MIDlet suite to create a minimum of 5
simultaneously running Timers. This requirement is independent of the minimum
application thread count requirements.

 Justification/Notes:

Predictability is crucial to application interoperability. This mandate is also provided to set
expectations for application developers. This requirement is not intended to require
implementations to guarantee at all times that 5 timers be possible, but to require that
implementations not artificially limit timer creation to less than 5 timers. Application
developers MUST still manage resource usage within the physical constraints of the
device.

7.1.3.3 Bitmap Minimums
Clarification ID: CID.185.7

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 4.7

MIDP 2.1 Specification, Chapter 8 “Package javax.microedition.lcdui”, , pages 271-281.
Class javax.microedition.lcdui.Image:
 public static Image createImage(byte[] imageData,
 int imageOffset,
 int imageLength)
 public static Image createImage(Image source)
 public static Image createImage(Image image, int x, int y,
 int width, int height,
 int transform)
 public static Image createImage(java.io.InputStream stream)
 public static Image createImage(String name)

 Requirement Text:

A compliant device MUST support the loading of PNG images with pixel color depths of 1,
2, 4, 8, 16, 24, and 32 bits per pixel, per the PNG image format specification. For each of
these color depths, as well as for JPEG image formats, a compliant implementation MUST
support images of up to 32768 total pixels.

Mobile Service Architecture Page 86 (116)

 Justification/Notes:

Devices MUST be able to process color images even if they do not actually have a color
display.

7.1.3.4 TextField, TextBox and Phone Book Coupling
Clarification ID: CID.185.8

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 4.8

MIDP 2.1 Specification, Chapter 8 “Package javax.microedition.lcdui”, pages 321-342.
Class javax.microedition.lcdui.TextField
Class javax.microedition.lcdui.TextBox

 Requirement Text:

Compliant devices MUST implement a mechanism for selecting a phone number from the
device phone book when the user is editing a TextBox or TextField, and the constraint
of the TextBox or TextField is TextField.PHONENUMBER, This requirement is voided
if the phone book is not accessible.

 Justification/Notes:

Applications that use wireless messaging are more usable if the user is provided with a
simple means of copying data from the phone book. Other applications may also benefit
from this mechanism. Note that at no time SHOULD the MIDlet be given direct access to
the contents of the device phone book itself. This is intended as a convenience for the user
to select a number from the stored phone book and insert it into the text field.

7.1.3.5 PushRegistry Alarm Events
Clarification ID: CID.185.9

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 4.11

MIDP 2.1 Specification, Chapter 7 “Package javax.microedition.io”, pages 98-108.
Class javax.microedition.io.PushRegistry

 Requirement Text:

A compliant implementation MUST implement alarm-based push registry entries. If no
other security mechanism is present, the PushRegistry Alarm function MUST NOT be
allowed without explicit user permission.

Mobile Service Architecture Page 87 (116)

 Justification/Notes:

This provides a practical means for alarm and calendar-based applications.

7.1.4 WMA-Related JTWI Clarifications
A compliant implementation MUST support the WMA-related clarifications defined in this
subsection.

7.1.4.1 Support for SMS in GSM Devices
Clarification ID: CID.185.10

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 5.2

WMA 1.1 Specification, Appendix A

 Requirement Text:

GSM/WCDMA (UMTS) phones MUST support the GSM SMS service by using this API as
specified in Appendix A of the Wireless Messaging API (WMA) Specification.

 Justification/Notes:

Device-to-device communication is a critical element of a broad range of mobile
applications. The JTWI Specification requires this service to enable these new application
classes.

7.1.4.2 Cell Broadcast in GSM Devices
Clarification ID: CID.185.11

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 5.3

WMA 1.1 Specification, Appendix B

 Requirement Text:

If the implementation supports access to GSM Cell Broadcast via Java APIs, it MUST
follow the specification found in Appendix B of the Wireless Messaging API (WMA)
Specification.

Mobile Service Architecture Page 88 (116)

 Justification/Notes:

Although not every device or network supports Cell Broadcast, uniform access on the
devices that do support it is important to improving application portability.

7.1.4.3 SMS Push
Clarification ID: CID.185.12

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 5.4

WMA 1.1 Specification, Appendix A
MIDP 2.1 Specification, Chapter 7 “Package javax.microedition.io”, pages 98-108.
Class javax.microedition.io.PushRegistry

 Requirement Text:

GSM/WCDMA (UMTS) phones MUST support MIDP 2.1 Push handling for the SMS
protocol as specified in Appendix D of the Wireless Messaging API (WMA) Specification. If
no other security mechanism is present, the PushRegistry SMS Push function MUST NOT
be allowed without explicit user permission.

 Justification/Notes:

SMS Push provides a mechanism for sophisticated server-driven applications. Role-
playing and other games, as well as various types of notification, and event-driven
applications, such as travel reservation systems, can benefit from this capability. However,
there are security ramifications which devices MUST consider when implementing this
service.

7.1.5 MMAPI-Related JTWI Clarifications
A compliant implementation MUST support the MMAPI-related clarifications defined in this
subsection.

Note: This subsection provides only a subset of the original JTWI clarifications.
Clarifications that are explicitly overridden or revised by MSA are omitted. A summary of
the omitted clarifications is at the end of this section.

7.1.5.1 HTTP 1.1 Protocol
Clarification ID: CID.185.13

Mobile Service Architecture Page 89 (116)

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 6.2

MMAPI 1.1 Specification, Section “Overview of MMAPI”
Class javax.microedition.media.Manager:
 public static String getSupportedProtocols()
 public static Player createPlayer()
 public static String getSupportedContentTypes()

 Requirement Text:

HTTP 1.1 MUST be supported for media file download for all supported media formats.

 Justification/Notes:

MMAPI does not specify any mandatory protocols. It specifically states that protocols
MUST be defined in profiles. In keeping with the general-purpose nature of MMAPI, it
leaves the supported set of protocols and content formats up to the implementation. It also
does not make any requirements on which content types should work over which protocol.

7.1.5.2 JPEG Encoding in Video Snapshots
Clarification ID: CID.185.14

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 6.5

MMAPI 1.1 Specification, Section javax.microedition.media

Class javax.microedition.media.Player:
 public Control getControl(String controlType)
 public Control[] getControls()

 Requirement Text:

A compliant implementation that supports the video feature set and video image capture
MUST support JPEG encoding in Video Snapshots, with the same detailed defitions
regarding the JPEG image format as specified in the JSR 118 MIDP 2.1 specification for
JPEG usage in LCDUI.

 Justification/Notes:

The PNG image format is not always suitable for photographic applications; JPEG is
generally more compact and appropriate when storing photographic images.

7.1.5.3 Tone Sequence File Format
Clarification ID: CID.185.15

Mobile Service Architecture Page 90 (116)

 Applicable Document, Section, Classes, and Methods:
JTWI 1.0 Specification, Section 6.6

MMAPI 1.1 Specification, Section javax.microedition.media

Class javax.microedition.media.Manager:

 public static String[] getSupportedContentTypes(
 String protocol)

 public static Player createPlayer(DataSource source)
 public static Player createPlayer(InputStream stream,
 String type)
 public static Player createPlayer(String locator)

 Requirement Text:

Tone sequence file format MUST be supported.

 Justification/Notes:

Tone sequences provide an additional simple format for supporting the audio needs of
many types of games and other applications.

7.1.6 Summary of Omitted JTWI Clarifications
A number of JTWI clarifications are omitted from this specification because those
clarifications were explicitly overridden, superseded, replaced, or otherwise rendered
unnecessary by the MSA Specification. The following list summarises the omitted JTWI
clarifications:

• JTWI 1.0 Specification, Section 3.2,”Minimum Application Thread Count”

• JTWI 1.0 Specification, Section 3.7, “Unicode Version”

• JTWI 1.0 Specification, Section 4.2, “Record Store Minimum”

• JTWI 1.0 Specification, Section 4.3, “HTTP Support for Media Content”

• JTWI 1.0 Specification, Section 4.4, “JPEG for Image Objects”

• JTWI 1.0 Specification, Section 4.9, “Supported Characters in TextField and TextBox”

• JTWI 1.0 Specification, Section 4.10, “Supported Characters in EMAILADDR and
URL Fields”

• JTWI 1.0 Specification, Section 4.12, “Identification of JTWI via System Property”

• JTWI 1.0 Specification, Section 6.3, “MIDI Feature Set”

• JTWI 1.0 Specification, Section 6.4, “Controls for MIDI Feature Set”

Mobile Service Architecture Page 91 (116)

• JTWI 1.0 Specification, Section 7, “Security Policy for GSM/UMTS Compliant
Devices”

Mobile Service Architecture Page 92 (116)

7.2 Hardware Requirements
This chapter contains hardware requirements and recommendations for compliant devices.
These requirements and recommendations are provided for implementers of this
specification, and to set application developers’ expectations regarding minimum values of
certain hardware parameters across all compliant devices.

7.2.1 Screen Size
Clarification ID: CID.248.1

Minimum screen resolution available to a Java application on a compliant device SHOULD
be no less than 128x128 pixels. The screen resolution is returned by
Canvas.getHeight() and Canvas.getWidth() in full-screen mode.

7.2.2 Colour Depth
Clarification ID: CID.248.2

Minimum colour depth (as returned by Display.numColors()) available to a Java
application on a compliant device SHOULD be no less than 65536 colours (16 bits).

7.2.3 Java Heap Size Available to MIDlet
Clarification ID: CID.248.3

Under normal conditions (see the definition below), a compliant implementation MUST
ensure that Java heap size available to a MIDlet is at least 1024 kB. Further, under normal
conditions, a compliant implementation SHOULD ensure that Java heap size available to a
MIDlet is at least 2048 kB.

Normal conditions are defined as follows:

 A new, “out of the box” device is switched on, and a MIDlet suite is installed. There
is only one MIDlet in a MIDlet suite.

 The device is switched off and then switched back on. The MIDlet is started.

One reference method to test the Java heap size requirement is defined as follows:

 A MIDlet started under normal conditions is able to successfully allocate fifteen (15)
byte arrays, of size 64 kB each. (Note: The number of byte arrays is intentionally 15
rather than 16, because it is assumed that the remaining 64 kB are used to store
the MIDlet’s class files in their runtime form, and to store the MIDlet’s internal
runtime data structures.)

Mobile Service Architecture Page 93 (116)

Here is sample code that illustrates this test method:
 byte[][] container = new byte[15][];

 for (int i = 0; i < 15; i++) {
 byte[] barray = new byte[65536];
 container[i] = barray;
 }

Mobile Service Architecture Page 94 (116)

7.3 Security Requirements
This section contains API mappings to Function Groups along with related security
requirements for all component JSRs of MSA. The section also defines a recommended
security policy (Table 1).

The security requirements are normative, and therefore all compliant devices MUST
adhere to the requirements in this section.

This section supersedes the Recommended Security Policy in MIDP 2.1 and JTWI (JSR
185). It requires the Recommended Security Policy of MIDP 2.1. This means that
compliant devices MUST support all of the MIDP 2.1 specification requirements that are
labelled MUST. Any MIDP 2.1 specification items that are labelled MAY RECOMMENDED
or SHOULD are to be interpreted as MAY, RECOMMENDED or SHOULD requirements for
compliant devices as well.

MIDP 2.1 defines the framework for authenticating the source of a MIDlet suite. It
authorizes the MIDlet suite to perform protected functions by granting permissions the
MIDlet suite has requested based on the security policy on the device. It also identifies
functions that are deemed sensitive, and defines permissions for those protected functions.
Additionally, MIDP 2.1 specifies common rules for APIs that can be used together with
MIDP, but are specified outside MIDP. The MIDP 2.1 specification does not mandate a
single trust model, but allows the model to follow the trust policy of a device.

7.3.1 General
Compliant devices implementing this Recommended Security Policy MUST follow the
security framework specified in the MIDP 2.1 Specification. Additionally, devices MUST
support the Identified Third Party Protection Domain and, to accomplish this, MUST follow
the PKI-based authentication scheme as defined in the MIDP 2.1 specification.

7.3.2 Permissions for Downloaded MIDlet Suites
Certain APIs are considered security sensitive because their abuse by an application can
be damaging (financially or otherwise) to the user. Examples of such APIs include APIs
that cause consumption of network resources resulting in charges to the user and APIs that
allow access to user’s private data, thus creating privacy concerns. In order to protect the
user and the integrity of the network security sensitive APIs are controlled by user
permissions. To make this control more manageable these permissions are grouped
logically together by functional area. The following sections define a recommended security
policy (Table 1) comprising of the Function Group definitions, the associated API mappings
and the default and other user settings.

Mobile Service Architecture Page 95 (116)

7.3.2.1 Mapping Permissions to Function Groups in Protected Domains
The display on a device might not be large enough to present all permissions to the user in
a user-friendly manner. Therefore, the device is NOT REQUIRED to present all individual
permissions for user confirmation. Rather, a certain higher-level action triggered by the
protected function SHOULD be brought to the user for acceptance. The high-level functions
presented to the user essentially capture and reflect the actions and consequences of the
underlying individual permissions. These so-called function groups are as follows:

Network cost-related groups:

• Phone Call – Represents permissions to any function that results in a voice call.

• Call Control – Represents permissions to any function that results in a call setup or
teardown of a restricted network connection.

• Net Access – Represents permissions to any function that results in an active
network data connection (for example, GSM, GPRS, UMTS). Such functions MUST
be mapped to this group.

• Low-Level Net Access – Represents permissions to any function that results in an
active low-level network data connection (for example, Sockets). Such functions
MUST be mapped to this group.

• Messaging – Represents permissions to any function that allows sending or
receiving messages (for example, SMS, MMS).

• Restricted Messaging – Represents permissions to any function that allows sending
or receiving messages to restricted messaging service (for example, Cell Broadcast).

• Application Auto Invocation – Represents permissions to any function that allows a
MIDlet suite to be invoked automatically (for example, push, timed MIDlets).

• Local Connectivity – Represents permissions to any function that activates a local
port for further connection (for example, COMM port, IrDa, Bluetooth).

• Authentication - Represents permissions to any function that gives a MIDlet suite
access to authentication functionality.

User privacy-related groups:

• Multimedia Recording – Represents permissions to any function that gives a MIDlet
suite the ability to do any kind of multimedia recording (for example, capture still
images, record video or audio clips).

• Read User Data Access – Represents permissions to any function that gives a
MIDlet suite the ability to read a user's phone book or any other data in a file or
directory.

• Write User Data Access – Represents permissions to any function that gives a
MIDlet suite the ability to add or modify a user's phone book or any other data in a file
or directory.

Mobile Service Architecture Page 96 (116)

• Smart Card Communication – Represents permissions to any function that gives a
MIDlet suite the ability to communicate with the smart card.

• Location – Represents permissions to any function that gives a MIDlet suite access
to Location information.

• Landmark - Represents permissions to any function that gives a MIDlet suite access
to Landmark information.

Whenever new features are added to any of the component JSRs of the MSA
Specification, they SHOULD be assigned to the appropriate function group. In addition,
APIs that are specified elsewhere (that is, in other JSRs), but rely on the MIDP security
framework, SHOULD also be assigned to an appropriate function group. If none of the
function groups defined in this section are able to capture the new feature and reflect it to
the user adequately, a new function group MUST be defined in this document by
requesting an update to this document from MSA.

If a new function group is to be added, the following SHOULD be taken into consideration:
the group to be added MUST NOT introduce any redundancy to the existing groups and
the new group MUST be capable of protecting a wide range of similar features. The latter
requirement is to prevent introducing narrowly scoped groups. The new function group
SHOULD be sufficiently future-proof to contain new features added by future APIs and
SHOULD NOT only concern the features being initially included in it.

It is the function groups and not the individual permissions that SHOULD be presented
when the user is prompted. In addition, the function groups SHOULD be presented to the
user while configuring the settings for a given MIDlet suite.

Tables 1 and 2 are duplicated from the Recommended Security Policy Addendum in MIDP
2.1. These tables are included here so that all relevant MSA Security Policy information is
in one document.

Table 1 presents the policy that is RECOMMENDED by the MSA specification. This policy
relies on the security framework defined in MIDP 2.1. The table specifies the available
permission settings for each function group defined. Settings that are effective at the time
the MIDlet suite is invoked for the first time, and remain effective until the user changes
them in the MIDlet suite's configuration menu, are called "default settings." Settings
available to the user in the configuration menu, to which the user can change from a default
setting, are called "other settings." Together, default and other settings form a pool of
available configuration settings for the MIDlet suite. Default and other settings are
presented for each function group and both Third Party Protection Domains. The naming of
the function groups is implementation specific, but MUST follow the guidelines of the
function group names defined in this document, as well as the definitions of these groups.

Tables 2 through 12 present individual permissions defined in the MIDP 2.1 specification
(and other MSA and MSA Subset component JSRs) and map to the function groups
specified in this section. An individual permission MUST occur in only one function group.

A compliant device SHOULD adhere to Table 1 in this specification. A compliant device
MUST adhere to tables 2 through 12 and all associated text accompanying these tables.

Mobile Service Architecture Page 97 (116)

It is RECOMMENDED that MIDlet suites in the Manufacturer and Operator Protection
Domains adhere to the permission guidelines provided in the tables, and that they present
appropriate prompts to the user for the functions identified as security protected.

Table 1: Function Groups and User Settings for Third-Party Protection Domains.

Function Group Identified Third Party Protection
Domain

Unidentified Third Party Protection
Domain

default setting Oneshot default setting Oneshot Phone Call

other settings Blanket, Session, No other settings No
default setting Oneshot default setting Oneshot Call Control
other settings Blanket, Session, No other settings No
default setting Session default setting Oneshot Net Access
other settings Blanket, Oneshot, No other settings Session, No
default setting Session default setting Oneshot Low Level Net

Access other settings Blanket, Oneshot, No other settings Session, No
default setting Oneshot default setting Oneshot Messaging
other settings Blanket, Session, No other settings No
default setting Oneshot default setting Oneshot Restricted

Messaging other settings Blanket, Session, No other settings No
default setting Oneshot default setting Oneshot Application Auto

Invocation other settings Blanket, Session, No other settings Session, No
default setting Session default setting Oneshot Local

Connectivity other settings Blanket, Oneshot, No other settings Blanket, Session, No
default setting Session default setting Oneshot Multimedia

recording other settings Blanket, Oneshot No other settings Session, No

default setting Oneshot default setting Oneshot Read User Data
Access other settings Blanket, Session, No other settings No

default setting Oneshot default setting Oneshot Write User Data
Access other settings Blanket, Session, No other settings No

default setting Session default setting Oneshot Location
other settings Blanket, Oneshot, No other settings Session, No
default setting Session default setting Oneshot Landmark
other settings Blanket, Oneshot, No other settings Session, No
default setting Session default setting No Smart Card

Communication other settings Blanket, Oneshot, No other settings No
default setting Session default setting No Authentication
other settings Blanket, Oneshot, No other settings No

The device MAY enhance and simplify the user experience by applying a single set of
configuration settings (default or other), to not just a single MIDlet suite, but to all MIDlet
suites for a given signer. This option MUST NOT compromise the function groups and

Mobile Service Architecture Page 98 (116)

available settings defined in Table 1. If such an option exists, the user MUST be prompted
to save the settings and reuse them in the future for MIDlet suites from the same signer.
Such a feature MAY also inform the user that a given source has already been accepted
and has an alias to the saved configuration settings. For each application, the
implementation MAY read requested permissions from the MIDlet-Permissions and
MIDlet-PermissionsOpt attributes, notify the user which capability the application
requires, and prompt the user to accept or reject installation of the application.
Implementations that support this feature MUST inform the user during application
installation that the security settings for the given signer have previously been saved on the
device and will be applied for the newly downloaded application.

Blanket permission given for some combinations of Function groups can lead to higher
risks for the user. For MIDlet suites in the Identified Third Party Protection Domain, the user
MUST be notified of the higher risk involved, and must acknowledge that this risk is
accepted, to permit such combinations to be set. The combination of Blanket permission in
Function groups where this applies is any of:

• Net Access

• Low Level Net Access

• Messaging

• Restricted Messaging

• Call Control

• Local Connectivity

set to Blanket, in combination with any of

• Multimedia recording

• Read User Data Access

set to Blanket.

This restriction does not apply to the Unidentified Third Party Protection Domain, because
these combinations are forbidden in this domain according to Table 1.

Additionally, the Blanket setting for Application Auto Invocation and the Blanket setting for
any of:

• Net Access

• Low Level Net Access

are mutually exclusive. This constraint prevents a MIDlet suite from auto-invoking itself,
then accessing a chargeable network without the user’s knowledge. If the user attempts to
set either the Application Auto Invocation or the Net Access (or Low Level Net Access)
group to Blanket when the other Function group is already in Blanket mode, the user MUST
be prompted as to which of the two Function groups shall be granted Blanket and which
Function group shall be granted Session.

Mobile Service Architecture Page 99 (116)

For each Phone Call and Messaging prompt, the implementation MUST present the user
with the destination phone number or a corresponding name before the user approves the
action. For the Messaging group, if the implementation maps a single API call to more than
one message (that is, the implementation supports disassembly and reassembly), the
implementation MUST present the user with the number of messages that will actually be
sent. This requirement ensures that the user always understands the network costs
associated with running the program no matter what API calls are involved.

When No is selected for the function group permission, the implementation MUST behave
as follows:

• During application installation, the function group permission is treated as a user
permission. In particular, the application installation MUST NOT fail due to this
setting being used.

• During application execution, the implementation MUST NOT present user prompts
when the application tries to access the protected APIs from the function group, and
such an API call MUST result in a SecurityException.

With user prompts in Blanket and Session interaction modes, the implementation MUST
give the user a choice to deny the permission. If the user denies the permission, the
implementation MUST remember this answer and MUST NOT present further user prompts
until the application is uninstalled (in Blanket mode) or terminated (in Session mode).

Table 2: Assigning Permissions Specified in MIDP 2.1 to Function Groups. This table is
applicable to MSA and the MSA Subset.

Permission Protocol Function group

javax.microedition.io.
Connector.http

HTTP Net Access

javax.microedition.io.
Connector.https

HTTPs Net Access

javax.microedition.io.
Connector.datagram

Datagram Low Level Net Access

javax.microedition.io.
Connector.datagramreceiver

Datagram server (without host) Low Level Net Access

javax.microedition.io.
Connector.socket

Socket Low Level Net Access

javax.microedition.io.
Connector.serversocket

server socket (without host) Low Level Net Access

javax.microedition.io.
Connector.ssl

SSL Low LevelNet Access

javax.microedition.io.
Connector.comm

comm Local Connectivity

javax.microedition.io.
PushRegistry

All Application Auto
Invocation

Mobile Service Architecture Page 100 (116)

Network Access Requirements
Unidentified third-party applications MUST use the normal HttpConnection and
HttpsConnection APIs to access web and secure web services. No restrictions apply to
web server port numbers through these interfaces. The implementations augment the
protocol so that web servers can identify unidentified third-party applications. The Product-
Token UNTRUSTED refers to the Unidentified Third Party Protection Domain and is retained
to maintain backward compatibility with JTWI. The following MUST be implemented:

• HttpConnection and HttpsConnection MUST include in the User-Agent
header with the Product-Token “UNTRUSTED/1.0”. User-Agent headers supplied by
the application MUST NOT be deleted.

• SocketConnection() using TCP sockets MUST throw
java.lang.SecurityException when a MIDlet suite belonging to the
Unidentified Third Party Protection Domain attempts to connect on ports 80,8080
(http), and 443 (https).

• SecureConnection() using TCP sockets MUST throw
java.lang.SecurityException when a MIDlet suite belonging to the
Unidentified Third Party Protection Domain attempts to connect on port 443 (https).

• DatagramConnection.send() MUST throw java.lang.SecurityException
when a MIDlet suite belonging to the Unidentified Third Party Protection Domain
attempts to send datagrams to any of the ports 9200 through 9203 (WAP Gateway).

• These requirements SHOULD be applied regardless of the API used to access the
network. For example, the javax.microedition.io.Connector.open() and
javax.microedition.media.Manager.createPlayer() methods SHOULD
throw java.lang.SecurityException if access is attempted to these port
numbers through a means other than the normal HttpConnection and
HttpsConnection APIs.

Table 3: Assigning Permissions and API Calls Specified in the Personal Information
Management Package (of the PDA Profile to Function Groups. This table is
applicable to MSA and the MSA Subset.

Permission Permitted Java API Calls Function
Group

javax.
microedition.
pim.ContactList.
read

openPIMList(PIM.CONTACT_LIST,PIM.READ_ONLY)
openPIMList(PIM.CONTACT_LIST,PIM.READ_WRITE)
openPIMList(PIM.CONTACT_LIST, PIM.READ_ONLY,
 java.lang.String)
openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE,
 java.lang.String)
listPIMLists(PIM.CONTACT_LIST)

Read User
Data
Access

Mobile Service Architecture Page 101 (116)

Permission Permitted Java API Calls Function
Group

javax.
microedition.
pim.
ContactList.
write

openPIMList(PIM.CONTACT_LIST,PIM.WRITE_ONLY)
openPIMList(PIM.CONTACT_LIST,PIM.READ_WRITE)
openPIMList(PIM.CONTACT_LIST,PIM.WRITE_ONLY,
 java.lang.String)
openPIMList(PIM.CONTACT_LIST,PIM.READ_WRITE,
 java.lang.String)

Write User
Data
Access

javax.
microedition.
pim.
EventList.read

openPIMList(PIM.EVENT_LIST, PIM.READ_ONLY)
openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE)
openPIMList(PIM.EVENT_LIST, PIM.READ_ONLY,
 java.lang.String)
openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE,
 java.lang.String)
listPIMLists(PIM.EVENT_LIST)

Read User
Data
Access

javax.
microedition.
pim.
EventList.write

openPIMList(PIM.EVENT_LIST, PIM.WRITE_ONLY)
openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE)
openPIMList(PIM.EVENT_LIST, PIM.WRITE_ONLY,
 java.lang.String)
openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE,
 java.lang.String)

Write User
Data
Access

javax.
microedition.
pim.
ToDoList.read

openPIMList(PIM.TODO_LIST, PIM.READ_ONLY)
openPIMList(PIM.TODO_LIST, PIM.READ_WRITE)
openPIMList(PIM.TODO_LIST, PIM.READ_ONLY,
 java.lang.String)
openPIMList(PIM.TODO_LIST, PIM.READ_WRITE,
 java.lang.String)
listPIMLists(PIM.TODO_LIST)

Read User
Data
Access

javax.
microedition.
pim.ToDoList.
write

openPIMList(PIM.TODO_LIST, PIM.WRITE_ONLY)
openPIMList(PIM.TODO_LIST, PIM.READ_WRITE)
openPIMList(PIM.TODO_LIST, PIM.WRITE_ONLY,
 java.lang.String)
openPIMList(PIM.TODO_LIST, PIM.READ_WRITE,
 java.lang.String)

Write User
Data
Access

Mobile Service Architecture Page 102 (116)

Permission Permitted Java API Calls Function
Group

javax.
microedition.io.
Connector.
file.read

javax.microedition.io.Connector
 open("file://...")
 open("file://...", Connector.READ)
 open("file://...", Connector.READ_WRITE)
 openDataInputStream("file://...")
 openInputStream("file://...")

javax.microedition.io.file.FileConnection
 setFileConnection, when instance opened
 with READ
 setFileConnection, when instance opened
 with READ_WRITE

javax.microedition.io.file.FileSystemRegistry
 addFileSystemListener
 listRoots

Read User
Data
Access

javax.
microedition.
io.Connector.
file.write

javax.microedition.io.Connector
 open("file://...")
 open("file://...", Connector.WRITE)
 open("file://...", Connector.READ_WRITE)
 openDataOutputStream("file://...")
 openOutputStream("file://...")

javax.microedition.io.file.FileConnection
 setFileConnection, when instance opened
 with WRITE
 setFileConnection, when instance opened
 with READ_WRITE

Write User
Data
Access

The implementation MUST ensure that the user is informed of the nature of the user data
to which an application has access (for example, events or to-do lists) before allowing the
application access to these functions. Whenever a MIDlet adds, deletes, or updates a PIM
entry under the Oneshot permission type, the implementation MUST display the PIM entry
to the user for acknowledgement.

Table 4: Assigning Proposed Permissions and API Calls Specified in the Bluetooth API to
Function Groups. This table is applicable to MSA and the MSA Subset.

Permission Permitted API Calls Function Group

javax.microedition.
io.Connector.
bluetooth.client

Connector.open(“btspp://<server
 BD_ADDR>…”)

Connector.open(“btl2cap://<server
 BD_ADDR>…”)

Local
Connectivity

Mobile Service Architecture Page 103 (116)

Permission Permitted API Calls Function Group

javax.microedition.
io.Connector.
obex.client

Connector.open(“btgoep://<server
 BD_ADDR>…”)

Connector.open(“irdaobex://discover…”)

Local
Connectivity

javax.microedition.
io.Connector.
obex.client.tcp

Connector.open(“tcpobex://<server
 IP_ADDR>…”)

Net Access

javax.microedition.
io.Connector.
bluetooth.server

Connector.open(“btspp://localhost:…”)

Connector.open(“btl2cap://localhost:…”)

Local
Connectivity

javax.microedition.
io.Connector.
obex.server

Connector.open(“btgoep://localhost:…”)

Connector.open(“irdaobex://localhost:…”)

Local
Connectivity

javax.microedition.
io.Connector.
obex.server.tcp

Connector.open(“tcpobex://:<PORT>”)

Connector.open(“tcpobex://”)

Net Access

Table 5: Assigning Permissions and API Calls Specified in the Mobile Media API to
Function Groups. This table is applicable to MSA and the MSA Subset.

Permission Permitted API Calls Function Group

javax.microedition.media.
control.RecordControl

RecordControl.setRecordLocation()

RecordControl.setRecordStream()

Multimedia
recording

javax.microedition.media.
control.VideoControl.
getSnapshot

VideoControl.getSnapshot() Multimedia
recording

Table 6: Assigning Permissions and API Calls Specified in the Security and Trust Services
API to Function Groups. This table is applicable only to MSA.

Permission Permitted API Calls Function Group

javax.microedition.
apdu.sat

Connector.open("apdu:"[<slot>]";
 target=SAT");

javax.microedition.
apdu.aid

Connector.open("apdu:"[<slot>]";
 target="<AID>);

Smart Card
Communication

javax.microedition.jcrmi Connector.open("jcrmi:"[<slot>]";
 aid="<AID>);

Smart Card
Communication

javax.microedition.
securityservice.
CMSMessageSignatureService

CMSMessageSignatureService.
authenticate (byte[]
byteArrayToAuthenticate, ...)

Authentication

Mobile Service Architecture Page 104 (116)

Permission Permitted API Calls Function Group

javax.microedition.apdu.sat permission is not assigned to any function group.
Access is Allowed for manufacturer and operator domain, and Denied for other domains.

Table 7: Assigning Permissions and API calls Specified in the Location API to Function
Groups. This table is applicable only to MSA.

Permission Permitted API calls Function
Group

javax.microedition.
location.
Location

LocationProvider.getLocation()

LocationProvider.setLocationListener()

Location

javax.microedition.
location.
Orientation

Orientation.getOrientation() Location

javax.microedition.
location.
ProximityListener

LocationProvider.addProximityListener() Location

javax.microedition.
location.
LandmarkStore.read

LandmarkStore.getInstance()

LandmarkStore.listLandmarkStores()

Landmark

javax.microedition.
location.
LandmarkStore.write

LandmarkStore.addLandmark()

LandmarkStore.deleteLandmark()

LandmarkStore.removeLandmarkFromCategory()

LandmarkStore.updateLandmark()

Landmark

javax.microedition.
location.
LandmarkStore.category

LandmarkStore.addCategory()

LandmarkStore.deleteCategory()

Landmark

javax.microedition.
location.
LandmarkStore.management

LandmarkStore.createLandmarkStore()

LandmarkStore.deleteLandmarkStore()

Landmark

Table 8: Assigning Permissions and API Calls Specified in the SIP API to Function
Groups. This table is applicable only to MSA.

Permission Permitted API Calls Function Group

javax.microedition.io.
Connector.sip

Connector.open(<SIP URI>) Call Control

javax.microedition.io.
Connector.sips

Connector.open(<SIPS URI>) Call Control

Mobile Service Architecture Page 105 (116)

Table 9: Assigning permissions and API calls specified in the Wireless Messaging API
(JSR 205) to function groups (applicable to both MSA and MSA Subset). This
table is applicable to MSA and the MSA Subset.

Permission Protocol Function group

javax.wireless.messaging.sms.send SMS Messaging

javax.wireless.messaging.sms.receive SMS Messaging

javax.microedition.io.Connector.sms SMS Messaging

javax.microedition.io.Connector.cbs CBS Restricted Messaging

javax.microedition.io.Connector.mms MMS Messaging

javax.wireless.messaging.cbs.receive CBS Restricted Messaging

javax.wireless.messaging.mms.send MMS Messaging

javax.wireless.messaging.mms.receive MMS Messaging

Interaction Modes
If the interaction mode is Oneshot for the Messaging or Restricted Messaging function
group, the connections are assigned the Blanket mode as shown in TABLE 9-A.

Table 9-A: Interaction Modes for Connections.

Permission Function Group
Interaction Mode

Permission
Interaction Mode

javax.microedition.io.Connector.sms Oneshot Blanket

javax.microedition.io.Connector.cbs Oneshot Blanket

javax.microedition.io.Connector.mms Oneshot Blanket

If the interaction mode is Oneshot for the Messaging or Restricted Messaging function
group, the mode for the permissions for receiving messages is Blanket, as shown in
TABLE 9-B. Also, the permissions for sending messages are the same as shown in TABLE
9-B. Thus, the interaction mode is Oneshot for each message sent by the MIDlet suite.
When the interaction mode is No, it applies to all the individual permissions within these
Messaging function groups. These requirements apply regardless of the intended recipient,
whether it is a user or another application.

Table 9-B: Interaction Modes for Connections.

Permission Function Group
Interaction Mode

Permission
Interaction Mode

javax.wireless.messaging.sms.send Oneshot Oneshot

Mobile Service Architecture Page 106 (116)

Permission Function Group
Interaction Mode

Permission
Interaction Mode

javax.wireless.messaging.sms.receive Oneshot Blanket

javax.wireless.messaging.cbs.receive Oneshot Blanket

javax.wireless.messaging.mms.send Oneshot Oneshot

javax.wireless.messaging.mms.receive Oneshot Blanket

Table 10: Assigning Permissions and API Calls Specified in the Content Handler API to
Function Groups This table is applicable only to MSA.

Permission Permitted API Calls Function Group

javax.microedition.content.
ContentHandler

Registry.register() Application Auto
Invocation

Table 11: Assigning Permissions and API Calls Specified in the Payment API to Function
Groups. This table is applicable only to MSA.

Permission Permitted API Calls Function
Group

javax.microedition.payment.process TransactionModule.process()

This permission is not assigned to any function group. Access is Denied under Unidentified
Third Party Domain and Allowed under Manufacturer, Operator, and Identified Third Party
domains.

Table 12: Assigning Permissions and API Calls Specified in the Advanced Multimedia
Supplements API to Function Groups. This table is applicable only to MSA.

Permission Permitted API Calls Function
Group

javax.microedition.
amms.control.camera.
enableShutterFeedback

CameraControl.enableShutterFeedback()

Multimedia
Recording

javax.microedition.
amms.control.tuner.
setPreset

Tuner.setPreset(int preset)

Tuner.setPreset(int preset, int freq,
 java.lang.String mod,
 int stereomode)

Write User
Data
Access

Mobile Service Architecture Page 107 (116)

8. Recommendations and Guidelines (informative)
The following section(s) provide recommendations and guidelines for various users
(developers, implementers, etc.) of this specification.

8.1 Guideline for Applications Referring Non-Mandatory APIs
The MSA Specification includes some conditionally mandatory APIs that do not need to be
present, provided a defined condition is not met. When an application is targeted to all MSA
devices, it needs to be authored carefully when using APIs that might not be present on
some devices. Similar application design recommendations apply when using other APIs
that are not part of the current MSA Specification, if the intention is to target a range of
devices wider than MSA devices.

Because of implementation options allowed by the Java Virtual Machine Specification and
the CLDC Specification, no guaranteed way exists to construct MIDlets in a way that they
could execute in the absence of some APIs referenced from the MIDlet. However, the
following guideline gives a good probability that the MIDlet can be accepted and executed
successfully in a majority of devices.

The main concept in the guideline is to isolate the references to APIs that might not always
be present from the main body of the application. Figure 1 illustrates an application and it’s
internal dependencies and dependencies to parts of the Java platform in the device. The
isolation is provided using a Java interface defined in the application (interface A in the
figure) and a class implementing this interface (class C in the figure). The main body of the
application references only the defined interface. The class implementing the interface
(class C in the figure) and possible other application classes referenced from it (the module
depicted on the right side of the MIDlet JAR box in the figure) contain the references to the
API that might not necessarily be present. This class is instantiated in the main body of the
application using Class.forName() and Class.newInstance(), only after the code of
the main body tests the system properties to determine if the API used is present in the
device. When the MIDlet executes on a device that does not support the Conditionally
Mandatory API, the class implementing the interface is not instantiated or loaded into the
virtual machine.

Mobile Service Architecture Page 108 (116)

Figure 1. Dependencies between the classes of the MIDlet and the platform

This guidleline is illustrated in the following code example:

/* Part of the main body of the application */

public class Foo {

 public void sendViaBluetooth() {

 // Testing if JSR 82 exists on the device

 String btProp =
 java.lang.System.getProperty("bluetooth.api.version");

 if (btProp == null)
 return;

 // JSR 82 exists

 Class c = Class.forName("BluetoothManager");

 BluetoothUsage btu = (BluetoothUsage)c.newInstance();

Mobile Service Architecture Page 109 (116)

 btu.send(".....");

 // ...
 }
}

/* Interface between the main body and the part using JSR 82 */

public interface BluetoothUsage {

 public void send(Object o);

}

/* The class containing the references to JSR 82 */

public class BluetoothManager implements BluetoothUsage {

 public BluetoothManager() {
 return;
 }

 public void send(Object o) {

 // References to JSR-82 only inside this class

 javax.bluetooth.LocalDevice ld =
 javax.bluetooth.LocalDevice.getLocalDevice();

 javax.bluetooth.DiscoveryAgent = ld.getDiscoveryAgent();

 // ...

 }
}

Mobile Service Architecture Page 110 (116)

9. Roadmap (informative)
The Mobile Service Architecture standardization efforts are intended to be ongoing
activities. The goal of both MSA and MSA Advanced is to produce well defined, evolving
Java platforms that meet the latest market requirements and the anticipated speed of
technology evolution.

The timing of the future MSA and MSA Advanced releases will be determined by the
following factors:

• Time required for mass-market deployment. The MSA Specification release cycles
should be long enough to allow each successive generation of compliant
implementations to establish adequate market presence and to ensure the
widespread adoption of the specified functionality. However, the release cycles
should not be too long so that the latest technologies and features can be introduced
in a timely fashion.

• Availability of relevant Java standards. The MSA Expert Group itself does not
define any new technologies. Rather, the MSA Expert Group relies on the ability of
other Java Community Process (JCP) efforts to produce relevant standards that can
be adopted by the mobile industry. Therefore, MSA is dependent on the schedules of
those JCP efforts that are under development as well as on technology
standardization in other relevant standardization organizations.

Any future release of MSA will strive to maintain backwards compatibility with existing MSA
releases. Each future release will also fulfill the key design goals set for MSA, such as the
focus on high-volume devices with limited capabilities, and the requirement to be able to
run the specified functionality on the Java ME CDC platform as well.

MSA Specification Leads together with the MSA Expert Group will periodically provide
updates on the progress of the MSA specification work and the future plans for MSA.

Mobile Service Architecture Page 111 (116)

Appendix A. Summary Tables (informative)
The following sections contain summary information from different parts of this specification
to make the specification more readable.

A.1 System Properties
The different JSRs and their clarifications in this specification mention several system
properties that can be queried with the method System.getProperty(String key).

A.1.1 API Availability and Version
The following table provides an overview of the properties indicating the presence of a
particular API (and its version):

Property Name Defined in JSR Present in
microedition.io.file.
FileConnection.version

75 MSA and MSA Subset

microedition.pim.version 75 MSA and MSA Subset
bluetooth.api.version 82 MSA and MSA Subset
obex.api.version 82 MSA and MSA Subset
microedition.profiles 118, 139 and 248 MSA and MSA Subset
microedition.media.version 135 MSA and MSA Subset
microedition.configuration 139 MSA and MSA Subset
microedition.m3g.version 184 MSA and MSA Subset
wireless.messaging.version 205 and 248 MSA and MSA Subset
microedition.m2g.version 226 and 248 MSA and MSA Subset
microedition.msa.version 248 MSA and MSA Subset
xml.jaxp.subset.version 172 and 248 MSA
xml.rpc.subset.version 172 and 248 MSA
microedition.satsa.apdu.version 177 and 248 MSA
microedition.satsa.crypto.version 177 and 248 MSA
microedition.satsa.pki.version 177 and 248 MSA
microedition.location.version 179 MSA
microedition.sip.version 180 MSA
microedition.chapi.version 211 MSA
microedition.payment.version 229 and 248 MSA
microedition.amms.version 234 MSA
microedition.global.version 238 MSA

Mobile Service Architecture Page 112 (116)

A.1.2 Other System Properties
The following table summarizes all other properties specified in the MSA component JSRs
or in the additional clarifications:

Property Name Defined in JSR Present in
file.separator 75 MSA and MSA Subset
fileconn.dir.photos 248 MSA and MSA Subset
fileconn.dir.videos 248 MSA and MSA Subset
fileconn.dir.graphics 248 MSA and MSA Subset
fileconn.dir.tones 248 MSA and MSA Subset
fileconn.dir.music 248 MSA and MSA Subset
fileconn.dir.recordings 248 MSA and MSA Subset
fileconn.dir.private 248 MSA and MSA Subset
fileconn.dir.photos.name 248 MSA and MSA Subset
fileconn.dir.videos.name 248 MSA and MSA Subset
fileconn.dir.graphics.name 248 MSA and MSA Subset
fileconn.dir.tones.name 248 MSA and MSA Subset
fileconn.dir.music.name 248 MSA and MSA Subset
fileconn.dir.recordings.name 248 MSA and MSA Subset
fileconn.dir.roots.name 248 MSA and MSA Subset
fileconn.dir.private.name 248 MSA and MSA Subset
bluetooth.l2cap.receiveMTU.max 82 MSA and MSA Subset
bluetooth.connected.devices.max 82 MSA and MSA Subset
bluetooth.connected.inquiry 82 MSA and MSA Subset
bluetooth.connected.page 82 MSA and MSA Subset
bluetooth.connected.inquiry.scan 82 MSA and MSA Subset
bluetooth.connected.page.scan 82 MSA and MSA Subset
bluetooth.master.switch 82 MSA and MSA Subset
bluetooth.sd.trans.max 82 MSA and MSA Subset
bluetooth.sd.attr.retrievable.max 82 MSA and MSA Subset
microedition.locale 118 MSA and MSA Subset
microedition.commports 118 and 248 MSA and MSA Subset
microedition.hostname 118 MSA and MSA Subset
supports.mixing 135 MSA and MSA Subset
supports.audio.capture 135 MSA and MSA Subset
supports.video.capture 135 MSA and MSA Subset
supports.recording 135 MSA and MSA Subset
audio.encodings 135 MSA and MSA Subset
video.encodings 135 MSA and MSA Subset
video.snapshot.encodings 135 MSA and MSA Subset
streamable.contents 135 MSA and MSA Subset

Mobile Service Architecture Page 113 (116)

Property Name Defined in JSR Present in
microedition.platform 139 and 248 MSA and MSA Subset
microedition.encoding 139 MSA and MSA Subset
wireless.messaging.sms.smsc 205 MSA and MSA Subset
wireless.messaging.mms.mmsc 205 MSA and MSA Subset
microedition.m2g.svg.baseProfile 226 and 248 MSA and MSA Subset
microedition.m2g.svg.version 226 and 248 MSA and MSA Subset
microedition.smartcardslots 177 MSA
supports.mediacapabilities 234 MSA
tuner.modulations 234 MSA
audio.samplerates 234 MSA
audio3d.simultaneouslocations 234 MSA
camera.orientations 234 MSA
camera.resolutions 234 MSA

Mobile Service Architecture Page 114 (116)

A.2 Network Protocols and Content Formats
This section contains summary tables of network protocols and content formats. The tables
indicate whether the network protocol or content format is mandatory or optional for MSA
compliant implementations. The tables distinguish between items that might be mandatory
for full MSA or for the MSA Subset.

Note: These tables do not list all network protocols and content formats that might be
supported by implementations, but only those optional network protocols and formats that
are explicitly mentioned in this specification.

A.2.1 Network Protocols
The following table lists network protocols that can be used for communication in MSA
compliant devices, and whether the protocol is mandatory or optional. Refer to the legend
below the table.

Protocol Java ME API JSR MSA MSA
Subset

HTTP client javax.microedition.io.
HttpConnection

118 M M

HTTP over SSLv3.0 (HTTPS)
client

javax.microedition.io.
HttpsConnection

118 M* M*

HTTP over TLS v1.0 (HTTPS)
client

javax.microedition.io.
HttpsConnection

118 O O

TCP socket client javax.microedition.io.
SocketConnection

118 M M

TCP socket server javax.microedition.io.
ServerSocketConnection

118 O O

TLS v1.0 client javax.microedition.io.
SecureConnection

118 O O

SSL v3.0 client javax.microedition.io.
SecureConnection

118 M* M*

UDP javax.microedition.io.
UDPDatagramConnection

118 O O

SIP javax.microedition.sip.
SIPConnection

180 M -

SMS javax.wireless.messaging.
MessageConnection

120/
205

M M

* An implementation that supports TLS v1.0 and supports section E of RFC 2246 (to provide backwards
compatibility with SSL v3.0 servers) is compliant with this requirement.

Mobile Service Architecture Page 115 (116)

Protocol Java ME API JSR MSA MSA
Subset

MMS javax.wireless.messaging.
MessageConnection

205 M M

CBS javax.wireless.messaging.
MessageConnection

120/
205

O O

Bluetooth L2CAP client javax.bluetooth.
L2CAPConnection

82 C C

Bluetooth L2CAP server javax.bluetooth.
L2CAPConnectionNotifier

82 C C

Bluetooth RFCOMM client javax.microedition.io.
StreamConnection

82 C C

Bluetooth RFCOMM server javax.microedition.io.
StreamConnectionNotifier

82 C C

Bluetooth OBEX client javax.obex.ClientSession 82 C C
Bluetooth OBEX server javax.obex.SessionNotifier 82 C C
IrDA OBEX client javax.obex.ClientSession 82 C C
IrDA OBEX server javax.obex.SessionNotifier 82 C C

Notation: M – Mandatory O – Optional C – Conditionally Mandatory

A.2.2 Content Formats
The following table lists content formats that are used for presentation in MSA compliant
devices and whether the format is mandatory or optional. Refer to the legend below the
table.

Content format Java API JSR MSA MSA Subset
PNG javax.microedition.lcdui.Image 118 M M
PNG javax.microedition.m3g.Image2D 184 M M
JPEG (JFIF) javax.microedition.lcdui.Image 118 M M
JPEG (JFIF) javax.microedition.m3g.Image2D 184 M M
M3G javax.microedition.m3g.Object3D 184 M M
SVG Tiny 1.1 javax.microedition.m2g.SVGImage 226 M M
8 kHz, 8-bit linear
PCM audio in WAV

javax.microedition.media.Player 135 M M

AMR-NB* javax.microedition.media.Player 135 M M
MIDI javax.microedition.media.Player 135 M M
SP-MIDI javax.microedition.media.Player 135 M M

Notation: M – Mandatory

* AMR-NB support is NOT REQUIRED for compliant development tools, device emulators, or a reference
implementation running on a device emulator.

Mobile Service Architecture Page 116 (116)

A.3 Hardware Requirements and Recommendations
The following table summarizes the hardware-related requirements and recommendations
defined in this specification:

Feature Requirement Recommendation
Minimum supported screen size None 128 by 128
Minimum supported number of colours None 65536 16 bits
Pixel aspect ratio None 1:1
Minimum heap size available to MIDlet 1024 kB 2048 kB
Minimum supported clock resolution None 40 ms
Minimum supported number of
application-created threads per MIDlet

10

None

Minimum supported MIDlet JAR file
download size

300kB None

Minimum supported MIDlet JAR file install
size

300kB None

Minimum supported MIDlet suite JAD size 10 kB None
Minimum supported size of attribute
values in JAD manifest

2048 bytes None

Minimum supported size of attribute name 70 bytes None
Minimum supported number of attributes
in JAD manifest

512 None

Minimum supported number of MIDlets in
a MIDlet suite

5 None

Minimum supported RMS data size per
MIDlet suite

64 kB None

Minimum supported number of
independent record stores per MIDlet suite

10 None

Minimum supported image object size Size of full screen
full depth image

but at least 32 kB

None

Minimum supported PNG colour depth 32 bit per pixel None
Minimum supported timer resolution None 40 ms

Minimum supported number of timers per
MIDlet suite

None 5

These requirements and recommendations apply to implementations of MSA and MSA
Subset.

