
Overview of UML Syntax Used For The Models

 1

1. Overview of UML Syntax Used For The Models
The models for the Topic Map standard uses a very restricted subset of the UML
language. The subset used enables the definition of "static data models", that is, data
models that simply define data types and the possible relations between them. A type is
simply a named collection of attributes. (Note that the terms "attribute" and "property" are
used interchangably in static data models.) The model does not define any methods or
actions. Figure 1 shows a simple model that contains all of the graphical elements used
in the Topic Map models.

Types in UML are organized into packages. Each package establishes a distinct name
space of types. Types from one package can be used by reference from other packages.
When types are used from other packages, the names of the used types are qualified in
the diagrams with the package names.

Human Shelter

InventoryOfThings House

PhilosophicalArchetypes.SentientBeing

+home

+Possessions

*

«refinement»

Figure 1 — Sample UML Model

Starting in the middle of the model, the box labeled "Human" represents the type
"Human". The line to the right establishes a relation between the type "Human" and the
type "Shelter". The relation is labeled "home", indicating that the type "Human" has an
attribute (or property) named "home" whose value is a single Shelter object. The arrow
on the line indicates "navigability", meaning that the Human knows about the Shelter but
the Shelter doesn't know about the Human. If there are no arrows, then the relationship
can be navigated in both directions.

The Human type has a "black-diamond" relation to the type "InventoryOfThings". The
black diamond represents strict containment or ownership. For the purposes of the Topic
Map models, containment means that the contained type has no meaningful existence

Overview of UML Syntax Used For The Models

 2

outside the context of the thing that contains it. In this simple model, it means that one
cannot talk about InventoryOfThing objects without talking about the human that owns
the inventory.

The InventoryOfThings type has an "open diamond" relation to the type "House". The
open diamond indicates "aggregation", rather than containment. Aggregation means that
the types aggregated may have a primary location somewhere else. The "*" on the
House end of the relation indicates that zero or more House objects may be aggregated.
Because this relation has no explicit label, it is implicitly labed with the name of the
related type, so this relation can be read as "InventoryOfThings" has an aggregation
attribute "houses" (the plural is implied by the "*").

The House type has a "subtype of" relation to the type "Shelter" (this is also called
"generalization" in UML). A subtype of a type inherits all of its attributes. A type may have
multiple supertypes. The result of having multiple supertypes is that the type is the union
of the attributes provided by all of its supertypes.

Returning to the Human type, the dashed arrow indicates a dependency relationship, in
this case to a type from another package. The label "<<refinement>>" is a "stereotype",
which indicates the specific type of dependency the arrow represents. The notion of
"refinement" means that the type Human is at a lower level of abstraction than the refined
type, "SentientBeing". Thus, the package "PhilosophicalArchetypes" represents a set of
higher-level abstractions. This idea of refinement from higher-level abstraction to lower-
level abstraction is roughly analogous to SGML Architectures, where the architectural
forms are higher-level abstractions and the element types derived from those forms are
lower-level refinements of the architectural forms. Refinement is different from
subclassing in that for subclass/superclass relationships, both types are in the same
package at the same level of abstraction, whereas for refinement relationships, the two
types are always at different levels of abstraction. In short, refinement establishes a
semantic correspondence without necessarily requiring a syntactic or structural
correspondence. For example, a single abstract type might be refined using multiple
concrete types. In SGML terms, you can think of the SGML representation of a topic map
as an implementation-level refinement of the abstract Topic Map model.

