[image: oasis]
TOSCA Simple Profile in YAML Version 1.0
Working Draft 02, Revision 04
[bookmark: _GoBack]01 May 2014
Technical Committee:
OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC
Chairs:
Paul Lipton (paul.lipton@ca.com), CA Technologies
Simon Moser (smoser@de.ibm.com), IBM
Editors:
Derek Palma (dpalma@vnomic.com), Vnomic
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Related work:
This specification is related to:
Topology and Orchestration Specification for Cloud Applications Version 1.0. 25 November 2013. OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.
Declared XML namespaces:
http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0
Abstract:
This document defines a simplified profile of the TOSCA version 1.0 specification in a YAML rendering which is intended to simplify the authoring of TOSCA service templates. This profile defines a less verbose and more human-readable YAML rendering, reduced level of indirection between different modeling artifacts as well as the assumption of a base type system.
Status:
This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
URI patterns:
Initial publication URI:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.doc
Permanent “Latest version” URI:
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.doc
Copyright © OASIS Open 2014. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
[bookmark: _Toc373867834]Table of Contents
1	Objective	5
2	Summary of key TOSCA concepts	5
3	A “hello world” template for TOSCA Simple Profile in YAML	6
3.1 Requesting input parameters and providing output	6
4	TOSCA template for a simple software installation	7
5	Overriding behavior of predefined node types	8
6	TOSCA template for database content deployment	9
7	TOSCA template for a two-tier application	10
8	Using a custom script to establish a relationship in a template	13
9	Using custom relationship types in a TOSCA template	14
9.1 Definition of a custom relationship type	15
10	Defining generic dependencies between nodes in a template	15
11	Defining requirements on the hosting infrastructure for a software installation	16
12	Defining requirements on a database for an application	17
13	Grouping node templates	18
Appendix A. TOSCA Simple Profile definitions in YAML	21
A.1 TOSCA namespace and alias	21
A.2 Parameter and property types	21
A.3 TOSCA Entity and element definitions (meta-model)	22
A.4 Service Template	42
A.5 Service Template-level functions	50
Appendix B. TOSCA normative type definitions	52
B.1 Assumptions	52
B.2 Requirement Types	52
B.3 Capabilities Types	52
B.4 Relationship Types	54
B.5 Interfaces	55
B.6 Node Types	57
B.7 Artifact Types	65
Appendix C. Non-normative type definitions	67
C.1 Capability Types	67
C.2 Node Types	67
Appendix D. Use Cases	70
D.1 Application Modeling Use Cases:	70
Appendix E. Notes and Issues	78
E.1 Known Extensions to TOSCA v1.0	78
E.2 Issues to resolve in future drafts	79
Appendix F. References	81
F.1 Terminology	81
F.2 Normative References	81
F.3 Non-Normative References	81
Appendix G. Acknowledgments	82
Appendix H. Revision History	83
Table of Figures
Example 1 - TOSCA Simple "Hello World"	6
Example 2 - Template with input and output parameter sections	6
Example 3 - Simple (MySQL) software installation on a TOSCA Compute node	7
Example 4 - Node Template overriding its Node Type's "configure" interface	8
Example 5 - Template for deploying database content on-top of MySQL DBMS middleware	9
Example 6 - Basic two-tier application (web application and database server tiers)	11
Example 7 – Providing a custom script to establish a connection	13
Example 8 – A web application Node Template requiring a custom database connection type	14
Example 9 - Defining a custom relationship type	15
Example 10 - Simple dependency relationship between two nodes	16
Example 11 - Grouping Node Templates with same scaling policy	18

[bookmark: _Toc373867835][bookmark: _Toc379455001][bookmark: _Toc383073885]Objective
The TOSCA Simple Profile in YAML specifies a rendering of TOSCA which aims to provide a more accessible syntax as well as a more concise and incremental expressiveness of the TOSCA DSL in order to minimize the learning curve and speed the adoption of the use of TOSCA to portably describe cloud applications.
This proposal describes a YAML rendering for TOSCA. YAML is a human friendly data serialization standard (http://yaml.org/) with a syntax much easier to read and edit than XML. As there are a number of DSLs encoded in YAML, a YAML encoding of the TOSCA DSL makes TOSCA more accessible by these communities.
This proposal prescribes an isomorphic rendering in YAML of a subset of the TOSCA v1.0 ensuring that TOSCA semantics are preserved and can be transformed from XML to YAML or from YAML to XML. Additionally, in order to streamline the expression of TOSCA semantics, the YAML rendering is sought to be more concise and compact through the use of the YAML syntax.	Comment by Matt Rutkowski: Once the roadmap is established for v1.1 and the actual v1.1 Simple profile document is created we can reference it here.
[bookmark: _Toc379455002][bookmark: _Toc383073886]Summary of key TOSCA concepts
The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a graph of node templates modeling the components a workload is made up of and as relationship templates modeling the relations between those components. TOSCA further provides a type system of node types to describe the possible building blocks for constructing a service template, was well as relationship type to describe possible kinds of relations. Both node- and relationship types may define lifecycle operations to implement the behavior an orchestration engine can invoke when instantiating a service template. For example, a node type for some software product might provide a ‘create’ operation to handle the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event triggered by an orchestration engine. Those lifecycle operations are backed by implementation artifacts such as scripts or Chef recipes that implement the actual behavior.
An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to instantiate single components at runtime, and it uses the relationship between components to derive the order of component instantiation. For example, during the instantiation of a two-tier application that includes a web application that depends on a database, an orchestration engine would first invoke the ‘create’ operation on the database component to install and configure the database, and it would then invoke the ‘create’ operation of the web application to install and configure the application (which includes configuration of the database connection).
The TOSCA simple profile assumes a number of base types (node types and relationship types) to be supported by each compliant environment such as a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’ node type (see Appendix B). Furthermore, it is envisioned that a large number of additional types for use in service templates will be defined by a community over time. Therefore, template authors in many cases will not have to define types themselves but can simply start writing service templates that use existing types. In addition, the simple profile will provide means for easily customizing existing types, for example by providing a customized ‘create’ script for some software.
[bookmark: _A_“hello_world”][bookmark: _Ref377651701][bookmark: _Toc379455003][bookmark: _Toc383073887]A “hello world” template for TOSCA Simple Profile in YAML
As mentioned before, the TOSCA simple profile assumes the existence of a base set of node types (e.g., a ‘Compute’ node) and other types for creating TOSCA Service Templates. It is envisioned that many additional node types for building service templates will be created by communities. Consequently, a most basic TOSCA template for deploying just a single server would look like the following:
[bookmark: _Ref377651792][bookmark: _Toc383073928][bookmark: _Ref377651807]Example 1 - TOSCA Simple "Hello World"
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0	Comment by Matt Rutkowski: TODO: Now that we have TOSCA version defined, do we want to change this value? or alter this field be a combination of spec. or profile name concatenated with a TOSCA version number?

description: Template for deploying a single server with predefined properties.

node_templates:
 my_server:
 type: tosca.nodes.Compute
 properties:
 # compute properties
 disk_size: 10
 num_cpus: 2
 mem_size: 4
 # host image properties
 os_arch: x86_64
 os_type: linux
 os_distribution: rhel
 os_version: 6.5

The template above contains the definition of one single ‘Compute’ node template with predefined (hardcoded) values for number of CPUs, memory size, etc. When instantiated in a provider environment, the provider would allocate a physical or virtual server that meets those specifications. The set of properties of any node type, as well as their schema definition, is defined by the respective node type definitions, which a TOSCA orchestration engine can resolve to validate the properties provided in a template.
[bookmark: _Ref377651715][bookmark: _Toc379455004][bookmark: _Toc383073888]Requesting input parameters and providing output
Typically, one would want to allow users to customize deployments by providing input parameters instead of using hardcoded values inside a template. In addition, it is useful to pass output that describes the deployed environment (such as the IP address of the deployed server) to the user. A refined service template with corresponding inputs and outputs sections is shown below.
[bookmark: _Toc383073929][bookmark: _Ref377652043]Example 2 - Template with input and output parameter sections
	tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

inputs:	Comment by Matt Rutkowski: FEATURE: Missing in TOSCA v1.0 today. Needs to be formally mapped to TOSCA v1.0 Boundary Definitions.
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]

node_templates:
 my_server:
 type: tosca.nodes.Compute
 properties:
 # Compute properties
 num_cpus: { get_input: cpus }	Comment by Matt Rutkowski: FEATURE: Intrinsic function to navigate model. This is to retrieve input properties from input section (block) and assign them to a node template’s property.
 mem_size: 4
 disk_size: 10
 # host image properties
 os_arch: x86_32
 os_type: linux
 os_distribution: ubuntu
 os_version: 12.04

outputs:	Comment by Matt Rutkowski: FEATURE: Missing in TOSCA v1.0 today.	Comment by Jacques Durand: In v1.0, output parameters are associated with Plans or operations. The semantics of having “outputs” defined here in at the top of a topology, should be clarified: are we saying that these outputs are automatically settled after some initial deployment/provisioning of a new instance? Who is supposed to use these “outputs”? Can a single node define its own outputs, available as soon as this node is deployed? Could these outputs change e.g. after some reconfiguration of the instance?	Comment by Thomas Spatzier: Compared to v1.0 those outpus kind of correspond to the Properties in the BoundaryDefintiions of a ServiceTemplate.
It represents data that you want to expose to the user of the template to avoid him having to scan the internals of the template in order to get information important to him (like a web URL).

This features becomes important also for nested templates (I am working on it).

Single nodes cannot expose outputs. It is a decision of the template author which ones shall be exposed outside of the template.

And yes, the values could change, since they are linked to node properties.
 server_ip:
 description: The IP address of the provisioned server.
 value: { get_property: [my_server, ip_address] }

Note that the inputs section of a TOSCA template allows for defining optional constraints on each input parameter to restrict possible user input. Further note that TOSCA provides for a set of intrinsic functions like get_input or get_property to reference elements within the template or to retrieve runtime values.
[bookmark: _TOSCA_template_for][bookmark: _Ref372875912][bookmark: _Toc379455005][bookmark: _Toc383073889]TOSCA template for a simple software installation
Software installations can be modeled in TOSCA as node templates that get related to the node template for a server on which the software shall be installed. With a number of existing software node types (e.g. either created by the TOSCA work group or a community) template authors can just use those node types for writing service templates as shown below.
[bookmark: _Toc383073930]Example 3 - Simple (MySQL) software installation on a TOSCA Compute node
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for deploying a single server with MySQL software on top.

inputs:
 # omitted here for sake of brevity

node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 dbms_root_password: { get_input: my_mysql_rootpw }
 dbms_port: { get_input: my_mysql_port }
 requirements:	Comment by Matt Rutkowski: TOSCA-137: Need to address “optional” and “best can” requirements (constraints) as we do for properties already.
 - host: db_server	Comment by Matt Rutkowski: TOSCA-136: Need rules to assure non-collision (uniqueness) of requirement (or capability names
TODO: Be clear if we support alternative implementations (e.g. different databases, MySQL or DB2). Need to address in future Working Drafts.
). Related to above… What happens of the same requirement name is used (each pointing to 2 different node impls.)? What would that mean? Uniqueness is CLEARER.

 db_server:
 type: tosca.nodes.Compute
 properties:
 # omitted here for sake of brevity

The example above makes use of a node type tosca.nodes.DBMS.MySQL for the mysql node template to install MySQL on a server. This node type allows for setting a property dbms_root_password to adapt the password of the MySQL root user at deployment. The set of properties and their schema has been defined in the node type definition. By means of the get_input function, a value provided by the user at deployment time is used as value for the dbms_root_password property. The same is true for the dbms_port property.
The mysql node template is related to the db_server node template (of type tosca.nodes.Compute) via the requirements section to indicate where MySQL is to be installed. In the TOSCA metamodel, nodes get related to each other when one node has a requirement against some feature provided by another node. What kinds of requirements exist is defined by the respective node type. In case of MySQL, which is software that needs to be installed or hosted on a compute resource, the node type defines a requirement called host, which needs to be fulfilled by pointing to a node template of type tosca.nodes.Compute. 	Comment by Jacques Durand: This “host” entry has a built-in connection to the “HostedOn” relationship. That is a bit tricky.. It would be cleaner to reuse the name of the relationship, e.g.:
HostedOn: { target: db_server }
Or the like. Aren’t we going to have other constraints on relationships? It is then more intuitive to use the relationship name itself. When doing so It would be safer to wrap-up relationship constraints in a “relationship” qualifier (under “requirements”, in the same way as we have “constraints” wrapper, or “interfaces”)
	Comment by Thomas Spatzier: Not sure if I get the question completely, so guessing.

“host” (i.e. the sole word) does not imply a connection to the HostedOn Relationship Type. It is an arbitrary name, and the semantics are in the requirement definition of the node type.

We are working on a clarification for WD02.
Within the requirements section, all entries contain the name of a requirement as key and the identifier of the fulfilling entity as value, expressing basically a named reference to some other node. In the example above, the host requirement is fulfilled by referencing the db_server node template.
[bookmark: _Toc379455006][bookmark: _Toc383073890]Overriding behavior of predefined node types
Node types in TOSCA have associated implementations that provide the automation (e.g. in the form of scripts or Chef recipes) for lifecycle operations of a node. For example, the node type implementation for MySQL will provide the scripts to configure, start, or stop MySQL at runtime.
If it is desired to use a custom script for one of the operation defined by a node type in the context of a specific template, the default implementation can be easily overridden by providing a reference to the own automation in the template as shown in the following example:
[bookmark: _Toc383073931]Example 4 - Node Template overriding its Node Type's "configure" interface
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for deploying a single server with MySQL software on top.

inputs:
 # omitted here for sake of brevity

node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 dbms_root_password: { get_input: my_mysql_rootpw }
 dbms_port: { get_input: my_mysql_port }
 requirements:
 - host: db_server
 interfaces:
 LifecycleStandard:
 configure: scripts/my_own_configure.sh	Comment by Matt Rutkowski: FEATURE: Simple override of just the named lifecycle operation (i.e. configure). In this case, an alias for “tosca.interfaces.lifecycle.configure” see section 17.

Thomas: Simple names (built in) that match the operations already declared in the full lifecycle definition.

Note: Used to have in TOSCA, was complex and removed. But, would have been useful in simplifying the design SAP templates.

 db_server:
 type: tosca.nodes.Compute
 properties:
 # omitted here for sake of brevity

In the example above, an own script for the configure operation of the MySQL node type’s lifecycle interface is provided. The path given in the example above is interpreted relative to the template file, but it would also be possible to provide an absolute URI to the location of the script.	Comment by Thomas Spatzier: In TOSCA v1.0 such relative paths are interpreted relative to the CSAR root directory. Should we keep this? It would be the same if we say that the template file also sits in the CSAR root, but then we might have to change the CSAR structure (have to check).
Just saying this is relative to the template file is easier to understand, though, and does not require to introduce the CSAR concept here.
Operations defined by node types can be thought of as hooks into which automation can be injected. Typically, node type implementations provide the automation for those hooks. However, within a template, custom automation can be injected to run in a hook in the context of the one, specific node template (i.e. without changing the node type).
[bookmark: _Toc383073891][bookmark: _Ref383081796]TOSCA template for database content deployment
In the example shown in section 4 the deployment of the MySQL middleware only, i.e. without actual database content was shown. The following example shows how such a template can be extended to also contain the definition of custom database content on-top of the MySQL DBMS software.
[bookmark: _Toc383073932]Example 5 - Template for deploying database content on-top of MySQL DBMS middleware
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for deploying MySQL and database content.

inputs:
 # omitted here for sake of brevity

node_templates:
 my_db:
 type: tosca.nodes.Database.MySQLDatabase
 properties:
 db_name: { get_input: database_name }
 db_user: { get_input: database_user }
 db_password: { get_input: database_password }
 db_port: { get_input: database_port }
 artifacts:
 - db_content: files/my_db_content.txt	Comment by Thomas Spatzier: TODO: have to refine once we talked about artifacts.
 type: tosca.artifacts.File 	Comment by Matt Rutkowski: TODO: Idea is that specifying this artifact as a basic “file” and invokes no handlers. i.e., not trated as SQL file

 requirements:
 - host: mysql

 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 dbms_root_password: { get_input: mysql_rootpw }
 dbms_port: { get_input: mysql_port }
 requirements:
 - host: db_server

 db_server:
 type: tosca.nodes.Compute
 properties:
 # omitted here for sake of brevity

In the example above, the my_db node template or type tosca.nodes.Database.MySQL represents an actual MySQL database instance managed by a MySQL DBMS installation. In its artifacts section, the node template points to an textSQL file (i.e., my_db_content.txte.g. a dump of a MySQL database with default data)) which can be used to help createfrom which the database content gets during created at deployment time. The requirements section of the my_db node template expresses that the database is hosted on a MySQL DBMS represented by the mysql node.
Note that while it would be possible to define one node type and corresponding node templates that represent both the DBMS middleware and actual database content as one entity, TOSCA distinguishes between middleware node types and application layer node types. This allows at the one hand to have better re-use of generic middleware node types without binding them to content running on top, and on the other hand this allows for better substitutability of, for example, middleware components during the deployment of TOSCA models.
[bookmark: _Toc383073892]TOSCA template for a two-tier application
The definition of multi-tier applications in TOSCA is quite similar to the example shown in section 4, with the only difference that multiple software node stacks (i.e., node templates for middleware and application layer components), typically hosted on different servers, are defined and related to each other. The example below defines a web application stack hosted on the web_server “compute” resource, and a database software stack similar to the one shown earlier in section 6 hosted on the db_server compute resource.
[bookmark: _Toc383073933]Example 6 - Basic two-tier application (web application and database server tiers)
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for deploying a two-tier application servers on two

inputs:	Comment by Matt Rutkowski: TOSCA-144:
THOMAS: Please update this example and use case text to use the latest Node and Relationship grammar and normative types (as best as possible).
 # Admin user name and password to use with the WordPress application
 wp_admin_username:
 type: string
 wp_admin_password:
 type string
 wp_db_name:
 type: string
 wp_db_user:
 type: string
 wp_db_password:
 type: string
 wp_db_port:
 type: integer
 mysql_root_password:
 type string
 mysql_port:
 type integer

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 admin_user: { get_input: wp_admin_username }	Comment by Matt Rutkowski: TBD: Consider adding these to the non-normative WordPress node type defined in the appendix. We do not have to do this for WD01.
 admin_password: { get_input: wp_admin_password }
 db_host: { get_property: [db_server, ip_address] }
 requirements:
 - host: apache
 - database_endpoint: wordpress_db
 interfaces:
 LifecycleStandard:	Comment by Matt Rutkowski: TODO: change interface grammar to allow this. Perhaps allow augmenting APIs at specific operational levels should be discussed.
 inputs:
 db_host: { get_property: [db_server, ip_address] }
 db_port: { get_property: [wordpress_db, db_port] }
 db_name: { get_property: [wordpress_db, db_name] }
 db_user: { get_property: [wordpress_db, db_user] }
 db_password: { get_property: [wordpress_db, db_password] }

 apache:
 type: tosca.nodes.WebServer.Apache
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: web_server

 web_server:
 type: tosca.nodes.Compute	Comment by Matt Rutkowski: TOSCA-144: There should be a web server hosted on a compute node
 properties:
 # omitted here for sake of brevity

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 db_name: { get_input: wp_db_name }
 db_user: { get_input: wp_db_user }
 db_password: { get_input: wp_db_password }
 db_port: { get_input: wp_db_port }
 requirements:
 - host: mysql

 mysql:
 type: tosca.nodes.DBMS.MySQL	Comment by Matt Rutkowski: This should be a Database Node Type.
 properties:
 dbms_root_password: { get_input: mysql_rootpw }
 dbms_port: { get_input: mysql_port }
 requirements:
 - host: db_server

 db_server:
 type: tosca.nodes.Compute
 properties:
 # omitted here for sake of brevity

[bookmark: _Toc379455008]The web application stack consists of the wordpress, the apache and the web_server node templates. The wordpress node template represents a custom web application of type tosca.nodes.WebApplication.WordPress which is hosted on an Apache web server represented by the apache node template. This hosting relationship is expressed via the host entry in the requirements section of the wordpress node template. The apache node template, finally, is hosted on the web_server compute node.	Comment by Jacques Durand: See previous comment on “host”.
The database stack consists of the wordpress_db, the mysql and the db_server node templates. The wordpress_db node represents a custom database of type tosca.nodes.Database.MySQL which is hosted on a MySQL DBMS represented by the mysql node template. This node, in turn, is hosted on the db_server compute node.
The wordpress node requires a connection to the wordpress_db node, since the WordPress application needs a database to store its data in. This relationship is established through the database_endpoint entry in the requirements section of the wordpress node template. For configuring the WordPress web application, information about the database to connect to is required as input to the configure operation. Therefore, the respective input parameters (as defined for the configure operation of node type tosca.nodes.WebApplication.WordPress – see section 6) are mapped to properties of the wordpress_db node via the get_property function.	Comment by Jacques Durand: I see only: database_endpoint in the above example, not “database”.
More generally, does that mean we have a “database” relationship? Shouldn’t it be defined as a relationship type then? (it is not a base normative type. Is it a variant of ConnectsTo?) 	Comment by Jacques Durand: Signature of get_property function is unclear, needs an explicit definition.
Note: besides the preconfigure lifecycle operation (i.e., from the tosca.interfaces.nodes.lifecycle.Standard interface) of the wordpress node template, more operations would be listed in a complete TOSCA template. Those other operations have been omitted for the sake of brevity.	Comment by Matt Rutkowski: revisit text now that we have preconfigure operation
[bookmark: _Toc383073893][bookmark: _Ref383082016]Using a custom script to establish a relationship in a template
In previous examples, the template author did not have to think about explicit relationship types to be used to link a requirement of a node to another node of a model, nor did the template author have to think about special logic to establish those links. For example, the host requirement in previous examples just pointed to another node template and based on metadata in the corresponding node type definition the relationship type to be established is implicitly given.
In some cases it might be necessary to provide special processing logic to be executed when establishing relationships between nodes at runtime. For example, when connecting the WordPress application from previous examples to the MySQL database, it might be desired to apply custom configuration logic in addition to that already implemented in the application node type. In such a case, it is possible for the template author to provide a custom script as implementation for an operation to be executed at runtime as shown in the following example.	Comment by Thomas Spatzier: Added this text to make clear this configuration is distinct from that done in the configure operation of the previous example (see also my next comment).
[bookmark: _Toc383073934]Example 7 – Providing a custom script to establish a connection
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0	Comment by Matt Rutkowski: TOSCA-145:
Thomas please update this use case and example to the latest grammar and normative type definitions.

description: Template for deploying a two-tier application on two servers.

inputs:
 # omitted here for sake of brevity

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: apache
 - database: wordpress_db
 interfaces:	Comment by Thomas Spatzier: This could conflict with the configure operation in the previous example (the previous example is actually how most everybody would do it instead of having a relationship script).
Should we still leave the previous configuration and this operation here? Or take the configure operation out of the previous example? Or think of a better example here? …???
 tosca.interfaces.relationships.Configure:
 pre_configure_source: scripts/wp_db_configure.sh

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 # omitted here for the sake of brevity
 requirements:
 - host: mysql

 # other resources not shown for this example ...

From metadata in the node type definitions of WordPress and MySQL it is clear that a ConnectsTo relationship will be used to establish the link between the wordpress node and the wordpress_db node at runtime. The ConnectsTo relationship type (see B.4.4) defines an interface with operations that get executed when establishing the relationship. For one of those operations – pre_configure_source – a custom script wp_db_configure.sh is provided. In this example, it is assumed that this script is located at a location relative to the referencing service template, perhaps provided in some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format).	Comment by Jacques Durand: Not quite clear: where in metadata does this come from? Is there a built-in semantics for “database” requirement that it translates into a ConnectsTo relationship? 	Comment by Thomas Spatzier: See my earlier comment. We are working on making this more clear, and less ambiguous.
This approach allows for conveniently hooking in custom behavior without having to define a completely new derived relationship type.
[bookmark: _Toc383073894]Using custom relationship types in a TOSCA template
In the previous section it was shown how custom behavior can be injected by specifying scripts inline in the requirements section of node templates. When the same custom behavior is required in many templates, it does make sense to define a new relationship type that encapsulates the custom behavior in a re-usable way instead of repeating the same reference to a script (or even references to multiple scripts) in many places.
Such a custom relationship type can then be used in templates as shown in the following example.
[bookmark: _Toc383073935]Example 8 – A web application Node Template requiring a custom database connection type
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for deploying a two-tier application on two servers.

inputs:
 # omitted here for sake of brevity

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: apache
 - database: wordpress_db
 relationship_type: my.types.WordpressDbConnection	Comment by Matt Rutkowski: TOSCA-145:
Thomas please reference the WordpressDbConnection definition in appendix and connect to a Database type not a DBMS type. and if possible, also please show the new example of just overriding a single operations (inline).

 wordpress_db:
 type: tosca.nodes.Database.MySQL
 properties:
 # omitted here for the sake of brevity
 requirements:
 - host: mysql

 # other resources not shown here ...

In the example above, a special relationship type my.types.WordpressDbConnection is specified for establishing the link between the wordpress node and the wordpress_db node through the use of the relationship_type (keyword) attribute in the database reference. It is assumed, that this special relationship type provides some extra behavior (e.g., an operation with a script) in addition to what a generic “connects to” relationship would provide. The definition of this custom relationship type is shown in the following section.
[bookmark: _Toc383073895]Definition of a custom relationship type
The following YAML snippet shows the definition of the custom relationship type used in the previous section. This type derives from the base “ConnectsTo” and overrides one operation defined by that base relationship type. For the pre_configure_source operation defined in the Configure interface of the ConnectsTo relationship type, a script implementation is provided. It is again assumed that the custom configure script is located at a location relative to the referencing service template, perhaps provided in some application packaging format (e.g., the TOSCA Cloud Service Archive (CSAR) format).
[bookmark: _Toc383073936]Example 9 - Defining a custom relationship type
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Definition of custom WordpressDbConnection relationship type

relationship_types:
 my.types.WordpressDbConnection:
 derived_from: tosca.relations.ConnectsTo
 interfaces:
 Configure:	Comment by Matt Rutkowski: tosca.interfaces.relationship.Configure
 pre_configure_source: scripts/wp_db_configure.sh

[bookmark: _Toc379455009]In the above example, the Configure interface is the specified alias or shorthand name for the TOSCA interface type with the full name of tosca.interfaces.relationship.Configure which is defined in the appendix.
[bookmark: _Toc383073896]Defining generic dependencies between nodes in a template
In some cases it can be necessary to define a generic dependency between two nodes in a template to influence orchestration behavior, i.e. to first have one node processed before another dependent node gets processed. This can be done by using the generic dependency requirement which is defined by the TOSCA Root Node Type and thus gets inherited by all other node types in TOSCA (see section B.6.1).	Comment by Matt Rutkowski: TBD: should this not be an alias of the tosca.relationships.dependsOn type???

If so we could do the same for “ConnectsTo” and “HostedOn”
[bookmark: _Toc383073937]Example 10 - Simple dependency relationship between two nodes
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template with a generic dependency between two nodes.

inputs:
 # omitted here for sake of brevity

node_templates:
 my_app:
 type: my.types.MyApplication
 properties:
 # omitted here for sake of brevity
 requirements:
 - dependency: some_service	Comment by Matt Rutkowski: Generic dependency

All node types will have this generic depends requirement (relationship)	Comment by Matt Rutkowski: Derek: where do we handle “modal constraints” (on the environment.

Thomas: can require something

 some_service:
 type: some.type.SomeService
 properties:
 # omitted here for sake of brevity

As in previous examples, the relation that one node depends on another node is expressed in the requirements section using the built-in requirement named dependency requirement that exists for all node types in TOSCA. Even if the creator of the MyApplication node type did not define a specific requirement for SomeService (similar to the database requirement in the example in section 8), the template author who knows that there is a timing dependency and can use the generic dependency requirement to express that constraint using the very same syntax as used for all other references.	Comment by Jacques Durand: Can we be more explicit what that means in terms of lifecycle: are we saying that the Service /Node that is “depended on” must always be deployed before the dependent Node is deployed? There has to be a general semantics defined, if we consider that such a generic requirement makes sense.	Comment by Thomas Spatzier: I guess this will be made clearer with the lifecycle states work that we are doing for WD02.
[bookmark: _Ref372888477][bookmark: _Toc379455010][bookmark: _Toc383073897]Defining requirements on the hosting infrastructure for a software installation
Instead of defining software installations and the hosting infrastructure (the servers) in the same template, it is also possible to define only the software components of an application in a template and just express constrained requirements against the hosting infrastructure. At deployment time, the provider can then do a late binding and dynamically allocate or assign the required hosting infrastructure and place software components on top.
The following example shows how such generic hosting requirements can be expressed in the requirements section of node templates.
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template with requirements against hosting infrastructure.

inputs:
 # omitted here for sake of brevity

node_templates:
 mysql:
 type: tosca.nodes.DBMS.MySQL
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: tosca.nodes.Compute
 constraints:
 - num_cpus: { in_range: { 1, 4 } }	Comment by Jacques Durand: Need to settle between
{ min: 1, max: 4 } (as in A.3.18.3) and { in_range: { 1, 4 }}
 - mem_size: { greater_or_equal: 2 }
 - os_arch: x86_64
 - os_type: linux
 - os_distribution: ubuntu

In the example above, it is expressed that the mysql component requires a host of type Compute. In contrast to previous examples, there is no reference to any node template but just a specification of the type of required node. At deployment time, the provider will thus have to allocate or assign a resource of the given type.
In the constraints section, the characteristics of the required compute node can be narrowed down by defining boundaries for the memory size, number of CPUs, etc. Those constraints can either be expressed by means of concrete values (e.g. for the os_arch attribute) which will require a perfect match, or by means of qualifier functions such as greater_or_equal.
[bookmark: _Toc379455011][bookmark: _Toc383073898]Defining requirements on a database for an application
In the same way requirements can be defined on the hosting infrastructure for an application, it is possible to express requirements against application or middleware components such as a database that is not defined in the same template. The provider may then allocate a database by any means, e.g. using a database-as-a-service solution.
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template with a database requirement.

inputs:
 # omitted here for sake of brevity

node_templates:
 my_app:
 type: my.types.MyApplication
 properties:
 admin_user: { get_input: admin_username }
 admin_password: { get_input: admin_password }
 db_endpoint_url: { get_ref_property: [database, db_endpoint_url] }	Comment by Jacques Durand: In the same way as we have an “inputs” section, shouldn’t we have a “references” section for the service template, that lists all the external references that need be resolved? This would also allow to define simple local names for such refs (such as “database”) while mapping them to a more precise reference externally unique.	Comment by Thomas Spatzier: Not sure I get the issue. database is not an external reference, but it gets bound via the named slot below.
Maybe we can clarify the example.
 requirements:
 - database: tosca.nodes.DBMS.MySQL	Comment by Matt Rutkowski: Important feature: describing the type of node we are requiring with some constraints. Abstract node type reference which allows orchestrator to provide at runtime.
 constraints:
 - mysql_version: { greater_or_equal: 5.5 }

In the example above, the application my_app needs a MySQL database, where the version of MySQL must be 5.5 or higher. The example shows an additional feature of referencing a property of the database to get the database connection endpoint URL at runtime via the get_ref_property intrinsic function. In contrast to the get_property function used in earlier examples, which assumes that a node template in the same service template is referenced, the get_ref_property function allows for getting a property via a reference expressed in the requirements section. The first argument is the name of a reference – database in the example above – and the second argument is the name of the property of the referenced node, which must be defined by the respective node type tosca.types.nodes.MySQLDatabase.	Comment by Matt Rutkowski: TOSCA-169: why does ths need to be said?
[bookmark: _Toc379455012][bookmark: _Toc383073899]Grouping node templates	Comment by Matt Rutkowski: Derek: Needs more work. Will look to reword to make clearer. Weirdness is you have to spec. container and containee. Proposal forthcoming.
In designing applications composed of several interdependent software components (or nodes) it is often desirable to manage these components as a named group. This can provide an effective way of associating policies (e.g., scaling, placement, security or other) that orchestration tools can apply to all the components of group during deployment or during other lifecycle stages.
In many realistic scenarios it is desirable to include scaling capabilities into an application to be able to react on load variations at runtime. The example below shows the definition of a scaling web server stack, where a variable number of servers with apache installed on them can exist, depending on the load on the servers.
[bookmark: _Toc383073938]Example 11 - Grouping Node Templates with same scaling policy
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: Template for a scaling web server.

inputs:
 # omitted here for sake of brevity

node_templates:
 apache:
 type: tosca.types.nodes.ApacheWebserver
 properties:
 http_port: 8080
 https_port: 8443
 requirements:
 - host: server

 server:
 type: tosca.nodes.Compute
 properties:
 # omitted here for sake of brevity

group:
 webserver_group:	Comment by Jacques Durand: We probably need to have “inputs” that are specific to a group? E.g. account data, trust info, etc.

 members: [apache, server]
 policies:
 - my_scaling_policy:
 # Specific policy definitions are considered domain specific and	Comment by Jacques Durand: I understand that a basic TOSCA interpreter does not know how to process policies, as “policies” is just a placeholder for now. Can we go a bit further by assuming that “policies” always have “interfaces” (e.g. here one of them will be “autoscaling” set-up.) So we would have something like:
Policies:
 Interfaces:
 Autoscaling:
 implementation: set_autoscale.sh
Now, we could also decide that ANY policy should show up as an Interface. In this case I am not sure we even need a special “policies” element & keyword. What we seem to need, is the possibility to associate inputs, properties, and interfaces to a group like we do to a single node. Aren’t all policies always translatable as operations in an interface (to be triggered automatically, sometimes) + some shared properties or inputs + some constraint? So essentially, no different from what we can define for a single node.
 # are not included here

The example first of all uses the concept of grouping to express which components (node templates) need to be scaled as a unit – i.e. the compute nodes and the software on-top of each compute node. This is done by defining the webserver_group in the groups section of the template and by adding both the apache node template and the server node template as a member to the group.
Furthermore, a scaling policy is defined for the group to express that the group as a whole (i.e. pairs of server node and the apache component installed on top) should scale up or down under certain conditions.
In cases where no explicit binding between software components and their hosting compute resources is defined in a template, but only requirements are defined as has been shown in section 11, a provider could decide to place software components on the same host if their hosting requirements match, or to place them onto different hosts.
It is often desired, though, to influence placement at deployment time to make sure components get collocation or anti-collocated. This can be expressed via grouping and policies as shown in the example below.
	tosca_definitions_version: tosca_simple_yaml_1_0_0

description: Template hosting requirements and placement policy.

inputs:
 # omitted here for sake of brevity

node_templates:
 wordpress:
 type: tosca.types.nodes.Wordpress
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: tosca.nodes.Compute
 constraints:
 mem_size: { greater_or_equal: 2 }
 os_arch: x86_64
 os_type: linux

 mysql:
 type: tosca.types.nodes.MySQL
 properties:
 # omitted here for sake of brevity
 requirements:
 - host: tosca.nodes.Compute
 constraints:
 disk_size: { greater_or_equal: 10 }
 arch: x86_64
 os_type: linux

groups:
 my_collocation_group:
 members: [wordpress, mysql]
 policies:
 - my_anti_collocation_policy:
 # Specific policy definitions are considered domain specific and
 # are not included here

In the example above, both software components wordpress and mysql have identical hosting requirements. Therefore, a provider could decide to put both on the same server. By defining a group of the two components and attaching an anti-collocation policy to the group it can be made sure, though, that both components are put onto different hosts at deployment time.
[bookmark: _Normative_Type_System][bookmark: _Toc373867848][bookmark: _Toc379455013][bookmark: _Toc383073900]TOSCA Simple Profile definitions in YAML
This section describes all of the YAML block structure for all keys and mappings that are defined for the TOSCA Version 1.0 Simple Profile specification that are needed to describe a TOSCA Service Template (in YAML).
[bookmark: _Toc373867864][bookmark: _Toc379455014][bookmark: _Ref382937560][bookmark: _Toc383073901][bookmark: DEFN_TOSCA_NAMESPACE_AND_ALIAS][bookmark: _Ref372881863][bookmark: _Toc373867849]TOSCA namespace and alias
The following table defines the namespace alias and (target) namespace values that SHALL be used when referencing the TOSCA Simple Profile version 1.0 specification.
	Alias
	Target Namespace
	Specification Description

	tosca_simple_yaml_1_0_0	Comment by Matt Rutkowski: Change globally
	http://docs.oasis-open.org/tosca/ns/simple/yaml/1.0.0
	The TOSCA Simple Profile v1.0.0 (YAML) target namespace and namespace alias.

[bookmark: _Toc373867861][bookmark: _Toc379455070][bookmark: _Toc383073902][bookmark: _Toc379455015]Parameter and property types
This clause describes the primitive types that are used for declaring normative properties, parameters and grammar elements throughout this specification.
[bookmark: _Toc373867862][bookmark: _Toc379455071]Referenced YAML Types
Many of the types we use in this profile are built-in types from the YAML 1.2 specification (i.e., tag:yaml.org,2002).
The following table declares the valid YAML type URIs and aliases that SHALL be used when possible when defining parameters or properties within TOSCA Service Templates using this specification:
	Valid aliases
	Type URI

	[bookmark: TYPE_YAML_STRING]string
	tag:yaml.org,2002:str (default)

	[bookmark: TYPE_YAML_INTEGER]integer
	tag:yaml.org,2002:int

	[bookmark: TYPE_YAML_FLOAT]float
	tag:yaml.org,2002:float

	[bookmark: TYPE_YAML_BOOLEAN]boolean
	tag:yaml.org,2002:bool

	[bookmark: TYPE_YAML_TIMESTAMP]timestamp
	tag:yaml.org,2002:timestamp

	[bookmark: TYPE_YAML_NULL][bookmark: _Toc373867863]null
	tag:yaml.org,2002:null

[bookmark: _Toc379455072]Notes
· The “string” type is the default type when not specified on a parameter or property declaration.
· While YAML supports further type aliases, such as “str” for “string”, the TOSCA Simple Profile specification promotes the fully expressed alias name for clarity.
[bookmark: _Toc379455073]TOSCA types
This specification defines the following types that may be used when defining properties or parameters.
[bookmark: _Toc379455074][bookmark: TYPE_TOSCA_VERSION]TOSCA version	Comment by Matt Rutkowski: TOSCA-134: Maven versioning is proposed.

For info on Maven see:
http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
TOSCA supports the concept of “reuse” of type definitions, as well as template definitions which could be version and change over time. It is important to provide a reliable, normative means to represent a version string which enables the comparison and management of types and templates over time. Therefore, the TOSCA TC intends to provide a normative version type (string) for this purpose in future Working Drafts of this specification.
[bookmark: _Toc383073903]Grammar
TOSCA version strings have the following grammar:
	<major_version>.<minor_version>.<fix_version>[.<qualifier>[-<build_version]]

In the above definitions, the pseudo values that appear in angle brackets have the following meaning:
· major_version: is a required integer value greater than or equal to 0 (zero)
· minor_version: is a required integer value greater than or equal to 0 (zero).
· fix_version: is a required integer value greater than or equal to 0 (zero).
· qualifier: is an optional string that indicates a named, pre-release version of the associated code that has been derived from the version of the code identified by the combination major_version, minor_version and fix_version numbers.
· build_version: is an optional integer value greater than or equal to 0 (zero) that can be used to further qualify different build versions of the code that has the same qualifer_string.
Version Comparison
· When comparing TOSCA versions, all component versions (i.e., major, minor and fix) are compared in sequence from left to right.
· TOSCA versions that include the optional qualifier are considered older than those without a qualifier.
· TOSCA versions with the same major, minor, and fix versions and have the same qualifier string, but with different build versions can be compared based upon the build version.
· Qualifier strings are considered domain-specific. Therefore, this specification makes no recommendation on how to compare TOSCA versions with the same major, minor and fix versions, but with different qualifiers strings and simply considers them different named branches derived from the same code.
Examples
Example of a version with
	# basic version string
2.0.1

version string with optional qualifier
3.1.0.beta

version string with optional qualifier and build version
1.0.0.alpha-10

Normative values
Node States
As components (i.e., nodes) of TOSCA applications are deployed, instantiated and orchestrated over their lifecycle using normative lifecycle operations (see B.5.2 tosca.interfaces.node.lifecycle.Standard) it is important define normative values for communicating the states of these components normatively between orchestration and workflow engines and any managers of these applications.

The following table provides the list of recognized Node States for TOSCA Simple Profile that would be set by the orchestrator to describe a node instance’s state:

	Value
	Description

	initial
	Node is not yet created. Node only exists as a template definition

	created
	Node software has been installed

	preconfigured
	Node has been configured prior to being started

	started
	Node is started and ready for post-configuration

	postconfigured
	Node has been configured after being started

	active
	Node is running and available for general use

	stopped
	Node is stopped (powered off), state is not saved

	deleted
	Node installables are deleted

	error
	Node is in an error state

Additional requirements
TBD
TOSCA Entity and element definitions (meta-model)
This section defines all modelable entities that comprise the TOSCA Version 1.0 Simple Profile specification along with their key names, grammar and requirements.
[bookmark: _Toc379455051][bookmark: DEFN_ELEMENT_DESCRIPTION][bookmark: _Toc379455016]Description element
This optional element provides a means include single or multiline descriptions within a TOSCA Simple Profile template as a scalar string value.
Keyname
The following keyname is used to provide a description within the TOSCA Simple Profile specification:
	description

Grammar
The description element is a YAML string.
	description: <string>

Examples
Simple descriptions are treated as a single literal that includes the entire contents of the line that immediately follows the description key:
	description: This is an example of a single line description (no folding).

The YAML “folded” style may also be used for multi-line descriptions which “folds” line breaks as space characters.
	description: >
 This is an example of a multi-line description using YAML. It permits for line
 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space
 character when processed into a single string value.

Notes
· Use of “folded” style is discouraged for the YAML string type apart from when used with the description keyname.
[bookmark: DEFN_ELEMENT_CONSTRAINTS_CLAUSE]Constraint clause
A constraint clause defines an operation along with one or more compatible values that can be used to define a constraint on a property or parameter’s allowed values when it is defined in a TOSCA Service Template or one of its entities.
[bookmark: _Toc379455018][bookmark: _Ref381873581][bookmark: DEFN_ELEMENT_CONSTRAINTS_OPERATORS]Operator keynames
The following is the list of recognized operators (keynames) when defining constraint clauses:
	Operator	Comment by Matt Rutkowski: Note: Constraint “types” were proposed by Travis as part of JIRA issue TOSCA-117:
https://tools.oasis-open.org/issues/browse/TOSCA-117
	Type
	Value Type
	Description

	equal
	scalar
	any
	Constrains a property or parameter to a value equal to (‘=’) the value declared.

	greater_than
	scalar
	comparable
	Constrains a property or parameter to a value greater than (‘>’) the value declared.

	greater_or_equal
	scalar
	comparable
	Constrains a property or parameter to a value greater than or equal to (‘>=’) the value declared.

	less_than
	scalar
	comparable
	Constrains a property or parameter to a value less than (‘<’) the value declared.

	less_or_equal
	scalar
	comparable
	Constrains a property or parameter to a value less than or equal to (‘<=’) the value declared.

	in_range
	dual scalar
	comparable
	Constrains a property or parameter to a value in range of (inclusive) the two values declared.

	valid_values
	list
	any
	Constrains a property or parameter to a value that is in the list of declared values.

	length
	scalar
	string
	Constrains the property or parameter to a value of a given length.

	min_length
	scalar
	string
	Constrains the property or parameter to a value to a minimum length.

	max_length
	scalar
	string
	Constrains the property or parameter to a value to a maximum length.

	pattern
	regex	Comment by Matt Rutkowski: TOSCA-135: Need to define/reference a normative regular expression grammar for pattern-based matching. It should be relatively simple and standardized.
	string
	Constrains the property or parameter to a value that is allowed by the provided regular expression.

Note: Future drafts of this specification will detail the use of regular expressions and reference an appropriate standardized grammar.

[bookmark: _Toc379455019]In the Value Type column above, an entry of “comparable” includes integer, float, timestamp, string and version types, while an entry of “any” refers to any type allowed in the TOSCA simple profile in YAML.
Grammar
Constraint clauses take one of the following forms:	Comment by Jacques Durand: There may be a need to have a property constrained by another property, not just by a [set of] values.
Look into CIMI for some advanced constraints – e.g. the maximum “memory” value may depend on the virtualized CPU architecture value.
Also, possible values for “memory” may range over an interval, but only with some discrete increments
"memory": {"minimum": 2000000, "maximum": 10000000, "units": “KbB”, “increment”: 2000000 },	Comment by Thomas Spatzier: Interesting thought. Have to think about it and see if we can add this in a later WD.
	# Scalar grammar
<operator>: <scalar_value>

Dual scalar grammar
<operator>: { <scalar_value_1>, <scalar_value_2> }

# List grammar	Comment by Matt Rutkowski: Could allow variants of List to such as Enum and Sequence.
<operator> [<value_1>, <value_2>, ..., <value_n>]

Regular expression (regex) grammar
pattern: <regular_expression_value>

[bookmark: _Toc379455020]In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· operator: represents a required operator from the specified list shown above (see section A.3.2.1 “Operator keynames”).
· scalar_value, scalar_value_x: represents a required scalar (or atomic quantity) that can hold only one value at a time. This will be a value of a primitive type, such as an integer or string that is allowed by this specification.
· value_x: represents a required value of the operator that is not limited to scalars.
· reqular_expression_value: represents a regular expression (string) value.
Examples
Constraint clauses used on parameter or property definitions:
	# equal
equal: 2

greater_than
greater_than: 1

greater_or_equal
greater_or_equal: 2

less_than
less_than: 5

less_or_equal
less_or_equal: 4

in_range
in_range: { 1, 4 }

valid_values
valid_values: [1, 2, 4]

specific length (in characters)
length: 32

min_length (in characters)
min_length: 8

max_length (in characters)
max_length: 64

[bookmark: _Toc379455021]Notes
· Values provided by the operands (i.e., values and scalar values) SHALL be type-compatible with their associated operations.
· Future drafts of this specification will detail the use of regular expressions and reference an appropriate standardized grammar.
[bookmark: DEFN_ELEMENT_CONSTRAINTS][bookmark: DEFN_ELEMENT_PROPERTY_DEFN]Constraints element
The Constraints element specifies a sequenced list of constraints on one or more of the Service Template’s properties, parameters or other typed elements of the TOSCA Simple Profile. A constraints element is represented as a YAML block collection that contains a sequenced list of nested constraint clauses.
[bookmark: _Toc379455017]Keyname
The following keyname is used to provide a list of constraints within the TOSCA Simple Profile specification:
	constraints

Grammar
The constraints element is described as a YAML block collection that contains a sequence of constraint clauses:
	<some_typed_property>:
 constraints:
 - <constraint_clause_1>
 - ...
 - <constraint_clause_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· some_typed_property: represents the name of a typed property definition, as a string, which can be associated to a TOSCA entity.
· For example, a property (definition) can be declared as part of a Node Type or Node Template definition or it can be used to define an input or output property (parameter) for a Service Template’s.
· constraint_clause_x: represents constraint clauses for the associated property or parameter.
Examples
Constraint on an integer-typed parameter definition:
	# An example input parameter that represents a number of CPUs
and constrains its value to a specific range.
inputs:
 num_cpus:
 type: integer
 constraints:
 - in_range: { 2, 4 }

Constraints on a string-typed parameter definition:
	# An example input parameter that represents a user ID and constrains its length.
inputs:
 user_id:
 type: string
 constraints:
 - min_length: 8
 - max_length: 16

Notes
· Constraints of properties or parameters SHOULD be type-compatible with the type defined for that property or parameter.
· In the TOSCA v1.0 specification constraints are expressed in the XML Schema definitions of Node Type properties referenced in the PropertiesDefinition element of NodeType definitions.
[bookmark: DEFN_ELEMENT_OPERATION_DEFN][bookmark: _Toc379455025][bookmark: DEFN_ELEMENT_REQUIREMENTS]Operation definition
An operation definition defines a named function or procedure that can be bound to an implementation artifact (e.g., a script).
Keynames
The following is the list of recognized keynames recognized for a TOSCA operation definition:
	Keyname
	Type
	Description

	description
	description
	The optional description string for the associated named operation.

	implementation
	string
	The optional implementation artifact name (e.g., a script file name within a TOSCA CSAR file).

Grammar
The full grammar for expressing an operation is as follows:
	<operation_name>:
 description: <operation_description>
 implementation: <implementation_artifact_name>

In addition, the following simplified grammar may also be used (where a full definition is not necessary):
	<operation_name>: <implementation_artifact_name>

In the above definitions, the pseudo values that appear in angle brackets have the following meaning:
· operation_name: represents the required name of the operation as a string.
· operation_description: represents the optional description string for the corresponding operation_name.
· implementation_artifact_name: represents the name (string) of artifact definition (defined elsewhere), or the direct name of an implementation artifact’s relative filename (e.g., a service template-relative, path-inclusive filename or absolute file location using a URL).	Comment by Matt Rutkowski: Review
Notes
· Implementation artifact file names (e.g., script filenames) may include file directory path names that are relative to the TOSCA service template file itself when packaged within a TOSCA Cloud Service ARchive (CSAR) file.
[bookmark: DEFN_ELEMENT_ARTIFACT_DEFN][bookmark: DEFN_ELEMENT_INTERFACE_DEFN]Artifact definition
An artifact definition defines a named, typed file that can be associated with Node Type or Node Template and used by orchestration engine to facilitate deployment and implementation of interface operations.
Keynames
The following is the list of recognized keynames recognized for a TOSCA property definition:
	Keyname
	Type
	Description

	type
	string
	The optional data type for the artifact definition.

	description
	description
	The optional description for the artifact definition.

	mime_type
	string
	The optional Mime type for finding the correct artifact definition when it is not clear from the file extension.

Grammar
Named artifact definitions have the following grammar:
	# Simple form
<artifact_name>: <artifact_file_URI>

Full form
<artifact_name>: <artifact_file_URI>
type: <artifact_type_name>	Comment by Matt Rutkowski: Discuss if redundant if we have mime_type property as the primary key/trigger.
description: <artifact_description>
mime_type: <artifact_mime_type_name>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· artifact_name: represents the required name of the artifact definition as a string.
· artifact_file_URI: represents the required URI string (relative or absolute) which can be used to locate the artifact’s file.
· artifact_type_name: represents the required artifact type the artifact definition is based upon.
· artifact_description: represents the optional description string for the corresponding artifact_name.
· artifact_mime_type_name: represents the optional, explicit Mime Type (as a string) for the associated artifact definition when it is not clear from the file description.
Example
The following represents an artifact definition:
	my_file_artifact: ../my_apps_files/operation_artifact.txt

[bookmark: DEFN_ELEMENT_ARTIFACTS]Artifacts element
The Artifacts element is used to associate one or more typed artifact definitions with a TOSCA Node Type or Node Template.
Keynames
The following keyname is used to declare a list of requirements within the TOSCA Simple Profile specification:
	artifacts

Grammar
The requirements element is described by a YAML block collection that contains a sequenced list of artifact definitions:
	<some_typed_entity_name>:
 artifacts:
 - <artifact_definition_1>
 - ...
 - <artifact_definition_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· some_typed_entity_name: represents the name (string) of a typed TOSCA entity (e.g., a Node Type, Node Template) that has, as part of its definition, a list of artifacts.
· artifact_definition_x: represents one or more Artifact definitions for the associated entity.
Examples
The following examples show capability definitions in both simple and full forms being associated to Node Types:
	my_node_type_1:
 # Other keys omitted here for sake of brevity
 capabilities:
 app_container: mytypes.mycapabilities.AppContainer
 app_endpoint:
 type: mytypes.mycapabilities.AppEndpoint
 properties:
 timeout: 300

Interface definition
An interface definition defines a named interface that can be associated with a Node or Relationship Type
Keynames
The following is the list of recognized keynames recognized for a TOSCA interface definition:
	Keyname
	Type
	Description

	None	Comment by Matt Rutkowski: Interfaces seem to be more of a type that can be versioned (i.e., have their own change) apart from a Node or Relationship Type?
	N/A
	N/A

Grammar
The following keyname is used to provide a list of properties within the TOSCA Simple Profile specification:
	<interface_definition_name>:
 version: <interface_definition_version>
 <operation_definition_1>
 ...
 <operation_definition_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· interface_definition_name: represents the required name of the interface definition as a string.
· interface_definition_version: represents the version (major, minor and fix) of the Interface definition.
· operation_definition_x: represents the required name of one or more operation definitions.
Examples
	mycompany.mytypes.myinterfaces.MyConfigure:
 configure_service_A:
 description: My application’s custom configuration interface for service A.
 configure_service_B:
 description: My application’s custom configuration interface for service B.

[bookmark: DEFN_ELEMENT_PROPERTIES]Interfaces element
The Interfaces element describes a list of one or more interface definitions for a modelable entity (e.g., a Node or Relationship Type) as defined within the TOSCA Simple Profile specification. Each interface definition contains one or more interfaces for operations that can be invoked on the associated entity.
Keyname
The following keyname is used to declare a list of interfaces definitions within the TOSCA Simple Profile specification:
	interfaces

Grammar
	interfaces: [<interface_defn_name_1>, ..., <interface_defn_name_n>]

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· interface_defn_name_x: represents one or more names of valid TOSCA interface definitions.
Example
	interfaces: [mytypes.myinterfaces.myLifecycleOperationsDefn]

Property definition
A property definition defines a named, typed value and related data that can be associated with an entity defined in this specification. It is used to associate a transparent property or characteristic of that entity which can either be set on or retrieved from it.
Keynames
The following is the list of recognized keynames recognized for a TOSCA property definition:
	Keyname
	Type
	Description

	type
	string
	The required data type for the property.

	description
	description
	The optional description for the property.

	required
	boolean
	An optional key that declares a property as required (true) or not (false).

If this key is not declared for property definition, then the property SHALL be considered required by default.

	default
	Any
	An optional key that may provide a value to be used as a default if not provided by another means.

This value SHALL be type compatible with the type declared by the property definition’s type keyname.

	constraints
	constraints
	The optional list of sequenced constraints for the property.

Grammar
Named property definitions have the following grammar:
	[bookmark: _Toc379455023]<property_name>:	Comment by Matt Rutkowski: TOSCA-157: How do make a property “final” or ‘Read only”?
 type: <property_type>
 required: <property_required>
 default: <default_value>
 description: <property_description>
 constraints:
 <property_constraints>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· property_name: represents the required name of the property as a string.
· property_type: represents the required data type of the property.
· property_required: represents an optional boolean value (true or false) indicating whether or not the property is required. If this keyname is not present on a property definition, then the property SHALL be considered required (i.e., true) by default.
· default_value: contains a type-compatible value that may be used as a default if not provided by another means.
· property_description: represents the optional description of the property
· property_constraints: represents the optional sequenced list of one or more constraint clauses (as shown in the constraints element) on the property definition.
Example
The following represents a required property definition:
	num_cpus:
 type: integer
 description: Number of CPUs for a Compute (server) instance.
 default: 1
 constraints:
 - valid_values: [1, 2, 4, 8]

[bookmark: _Toc379455024]Notes
· This element directly maps to the PropertiesDefinition element defined as part of the schema for most type and entities defined in the TOSCA v1.0 specification.
Properties element
The Properties element describes one or more typed properties that can be associated with a modelable TOSCA entity (e.g., Node Types, Node Templates, Artifact Types, etc.).
Keyname
The following keyname is used to declare a list of properties within the TOSCA Simple Profile specification:
	properties

Grammar
The properties element is described as a YAML block collection that contains a list of property definitions:
	<some_typed_entity_name>:
 properties:	Comment by Matt Rutkowski: TODO: In YAML, how do we declare that “empty” blocks are allowed AND how do we declare that properties blocks can be left off completely from types that use it? See WebServer which has no properties, so we remove the entire properties Keyname.?
 <property_defn_1>
 ...
 <property_defn_n>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, Node Template, Relationship Type, etc.) that has, as part of its definition, a list of properties.
· property_defn_x: represents one or more property definitions for the associated entity.
Examples
The following example shows property definitions being associated to a Node Type:
	my_app_node_type:
 derived_from: tosca.nodes.Root
 properties:
 stylesheet: elegant.css
 type: string
 default: basic.css
 max_connections: 100
 type: integer
 required: no

[bookmark: DEFN_ELEMENT_CAPABILITY_DEFN][bookmark: _Toc379455029][bookmark: DEFN_ELEMENT_CAPABILITIES]Capability definition
A capability definition defines a named, typed set of data that can be associated with Node Type or Node Template to describe a transparent capability or feature of the software component the node describes.
Keynames
The following is the list of recognized keynames recognized for a TOSCA capability definition:
	Keyname
	Type
	Description

	type
	string
	The required name of the Capability Type the capability definition is based upon.

	properties
	properties
	An optional list of property definitions for the capability definition.

Grammar
Named capability definitions have one of the following grammars:
	# Simple definition is as follows:
<capability_defn_name>: <capability_type>	Comment by Matt Rutkowski: TBD: Will we extend capabilities to other entities such as artifacts?

The full definition is as follows:
<capability_defn_name>:
 type: <capability_type>
 description: <capability_defn_description>
 properties:
 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· capability_defn_name: represents the name of a capability definition as a string.
· capability_type: represents the required capability type the capability definition is based upon.
· property_definitions: represents the optional list of property definitions for the capability definition.
Example
The following examples show capability definitions in both simple and full forms:
	# Simple form, no properties defined or augmented
appsome_capability_container: mytypes.mycapabilities.MyCapabilityTypeNameAppContainer

Full form, augmenting properties of the referenced capability type
some_capabilityapp_container:
 type: mytypes.mycapabilities.MyCapabilityTypeNameAppContainer
 properties:
 _types: [mytypes.mynodes.myAppType]limit: 100

[bookmark: _Toc379455032]Notes
· The Capability Type, in this example MyCapabilityTypeName, would be defined elsewhere and have an integer property named limit.
· This definition directly maps to the CapabilitiesDefinition of the Node Type entity as defined in the TOSCA v1.0 specification.
Capabilities element
The Capabilities element is used to associate one or more typed capabilities definitions with a TOSCA Node Type or Node Template.
Keyname
The following keyname is used to declare a list of capabilities within the TOSCA Simple Profile specification:
	capabilities

[bookmark: _Toc379455030]Grammar	Comment by Jacques Durand: Can’t a capability also express the ability to accommodate a range of value or enum? (as opposed to fixed property values) I.e. can be expressed using a “constraint” clause as well – or the like. E.g. a node type for a virtual resource could provide a range of memory capacities, on demand. Or emulate a set of CPU types.
The capabilities element is described by a YAML block collection that contains a list of capability definitions:
	<some_typed_entity_name>:
 capabilities:
 <capability_definition_1>
 ...
 <capability_definition_n>

[bookmark: _Toc379455031]In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· some_typed_entity_name: represents the name of a typed TOSCA entity (e.g., a Node Type, Node Template) that has, as part of its definition, a list of capabilities.
· capability_definition_x: represents one or more Capability definitions for the associated entity.
Examples
The following examples show capability definitions in both simple and full forms being associated to Node Types:
	my_node_type_1:
 # Other keys omitted here for sake of brevity
 capabilities:
 app_container: mytypes.mycapabilities.AppContainer
 app_endpoint:
 type: mytypes.mycapabilities.AppEndpoint
 properties:
 timeout: 300

Notes
· This element directly maps to the Capabilities element defined as part of the schema for the Node Template entity as defined in the TOSCA v1.0 specification.
· The TOSCA Root node type provides a generic named Feature capability (i.e., tosca.capabilities.Feature) called “feature” that nodes that derive from it may readily extend to export a significant capability the node supplies.
[bookmark: DEFN_ELEMENT_INTERFACES][bookmark: DEFN_ENTITY_ARTIFACT_TYPE][bookmark: _Toc379455033][bookmark: DEFN_ENTITY_NODE_TYPE]Requirements element
The Requirements element describes one or more typed requirements (dependencies) of a modelable entity (e.g., Node Types, Node Templates, Artifact Types, etc.) defined within the TOSCA Simple Profile specification. A requirements element is represented as a YAML block collection that contains a sequenced list of nested requirement definitions.
Keynames
The following keyname is used to declare a list of requirements within the TOSCA Simple Profile specification:
	requirements

[bookmark: _Toc379455026]The following is the list of recognized keynames recognized for a TOSCA requirement definition:	Comment by Matt Rutkowski: TOSCA-148: Derek indicates we need a means to express cardinality (i.e. how do we support 20 connections?).
	Keyname
	Type
	Description

	relationship_type
	string
	The optional reserved keyname used to provide a named relationship to use when fulfilling the associated named requirement.	Comment by Matt Rutkowski: TOSCA-147: Need to define grammar for Relationship Template definitions and to show examples.

Grammar
The requirements element is described by a YAML block collection that contains a sequenced list of requirement definitions:
	<some_typed_entity_name>:
 requirements:
 - <requirement_definition_1>
 - ...
 - <requirement_definition_n>

Where each named requirement definition has one of the following forms:	Comment by Matt Rutkowski: TOSCA-149:: Create a Requirement Definition the Requirements element can reference.	Comment by Matt Rutkowski: TOSCA-150: Work towards common Requirement defn. grammar and show expanded property constraints in grammar.
	# Requirement for a specific named entity (e.g., a Node Type or Node Template)
- <requirement_name>: <entity_name>

Requirement clause for a specific named Capability Type
- <requirement_name>: <capability_type_name>

Requirement for a node type with an optional, explicit Relationship type
- <requirement_name>: <node_name>
 relationship_type: <relationship_name>

[bookmark: _Toc379455027]In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· some_typed_entity_name: represents the name (a string) of a typed TOSCA entity (e.g., a Node Type, Node Template) that has, as part of its definition, a sequenced list of requirements.	Comment by Matt Rutkowski: Could this be an artifact? or anything else than a Node Type/Template?
· requirement_name: represents the name of a requirement definition as a string.	Comment by Matt Rutkowski: TOSCA-151: Dale asks how we resolve name collisions (JIRA issue opened).
· capability_type_name: represents the name of a capability type (exported by a Node Type or Template) that the requirement would be fulfilled by.
· node_name: represents the name of a Node Type or Node Template as a string.
· relationship_name: represents the name of an explicit, relationship type or definition to be used when relating the node the requirement appears in to another node.
Example
A web application requires hosting (with the named relationship of ‘host’) on a web server that is defined elsewhere within the Service Template as a node template with the name ‘my_web_server’. Similarly, the web application requires a connection to a database (using the named relationship ‘database’) to another node template named ‘my_database’. However, the connection between the web application and the database further requires a custom relationship designated by the keyword ‘relationship_type’ and having the custom relationship type definition name of ‘my.types.CustomDbConnection’.	Comment by Matt Rutkowski: TOSCA-149: Split out into separate examples.
	# Example of a requirement that can be fulfilled by any web server node type
my_webapp_node_template:
 requirements:
 - host: tosca.nodes.WebServer

# Example of a requirement that is fulfilled by a feature (exported by a Node Type)	Comment by Matt Rutkowski: TOSCA-152:
HOW DOES THIS LOOK if you require a Database with some feature (that is NOT a named type?

In other words, how do you do this with DECORATORS?!?!? Without defining a brand new database type? i.e. give me a database with these named features (not a new type).

Derek: may have an example in a past posted JIRA issue.

These decorators would include required/optional/best can.semantics.
my_webapp_node_template:
 requirements:
 - database: tosca.capabilities.DatabaseEndpoint

Example of a (database) requirement that is fulfilled by a node template named
“my_database”, but also requires a custom database connection relationship
my_webapp_node_template:
 requirements:
 - database: my_database
 relationship_type: my.types.CustomDbConnection

[bookmark: _Toc379455028]Notes
· This element directly maps to the Requirements element defined as part of the schema for the Node Templates entity (as part of a Service Template’s Topology Template), as well as the matching RequirementsDefinition of the Node Type entity as defined in the TOSCA v1.0 specification.	Comment by Matt Rutkowski: and how does relationship type factor into this statement?
Artifact Type
An Artifact Type is a reusable entity that defines the type of one or more files which Node Types or Node Templates can have dependent relationships and used during operations such as during installation or deployment.
Keynames
The following is the list of recognized keynames recognized for a TOSCA Artifact Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Artifact Type name the Artifact Type derives from.

	version
	version
	A required version for the Artifact Type.

	description
	description
	An optional description for the Artifact Type.

	mime_type
	string
	The required mime type property for the Artifact Type.

	file_ext
	string[]
	The required file extension property for the Artifact Type.

	properties
	properties
	An optional list of property definitions for the Artifact Type.

Grammar
	<artifact_type_name>:
 derived_from: <parent_artifact_type_name>
 version: <artifact_type_version>
 description: <artifact_description>
 mime_type: <mime_type_string>
 file_ext: [<file_extension_1>, ..., <file_extension_n>]	Comment by Matt Rutkowski: How do we declare the type for a list? e.g. list of strings? list of integers?
 properties:
 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· artifact_type_name: represents the name of the Artifact Type being declared as a string.
· parent_artifact_type_name: represents the name of the Artifact Type this Artifact Type definition derives from (i.e., its “parent” type).
· artifact_type_version: represents the version (major, minor and fix) of the Artifact Type definition.
· artifact_description: represents the optional description string for the corresponding artifact_type_name.
· mime_type_string: represents the Multipurpose Internet Mail Extensions (MIME) standard string value that describes the file contents for this type of artifact as a string.
· file_extension_x: represents one or more recognized file extensions for this type of artifact as strings.
· property_definitions: represents the optional list of property definitions for the artifact type.
Examples
	my_artifact_type:
 description: Java Archive artifact type
 derived_from: tosca.artifact.Root
 mime_type: application/java-archive	Comment by Matt Rutkowski: Apache mime types: http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
 file_ext: [jar]

[bookmark: DEFN_ENTITY_CAPABILITY_TYPE]Capability Type
A Capability Type is a reusable entity that describes a kind of capability that a Node Type can declare to expose. Requirements (implicit or explicit) that are declared as part of one node can be matched to (i.e., fulfilled by) the Capabilities declared by other node.
The following is the list of recognized keynames recognized for a TOSCA Capability Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent capability type name this new capability type derives from.

	version
	version
	A required version for the Capability Type.

	description
	description
	An optional description for the capability type.

	properties
	properties
	An optional list of property definitions for the capability type.

Grammar	Comment by Matt Rutkowski: <CapabilityDefinitions>
 <CapabilityDefinition
 capabilityType="tns:SoftwareContainerCapability" lowerBound="0"
 name="software" upperBound="unbounded"/>
 </CapabilityDefinitions>

	<capability_type_name>:
 derived_from: <parent_capability_type_name>
 version: <capability_type_version>
 description: <capability_description>
 properties:
 <property_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· capability_type_name: represents the name of the Capability Type being declared as a string.
· parent_capability_type_name: represents the name of the Capability Type this Capability Type definition derives from (i.e., its “parent” type).
· capability_type_version: represents the version (major, minor and fix) of the Capability Type definition.
· capability_description: represents the optional description string for the corresponding capability_type_name.
· property_definitions: represents an optional list of property definitions that the capability type exports.
Example
	mycompany.mytypes.myapplication.MyFeature:
 derived_from: tosca.capabilities.Feature
 description: a custom feature of my company’s application
 properties:
 my_feature_setting:
 type: string
 my_feature_value:
 type: integer

Requirement Type 	Comment by Matt Rutkowski: TBD: Could remove this section if we have no use cases or need to define independent Requirement Types. Although if we indeed intend to provide mapping/guidance to those familiar with the 1.0 XML spec. having prose here may be very helpful.
A Requirement Type is a reusable entity that describes a kind of requirement that a Node Type can declare to expose. The TOSCA Simple Profile seeks to simplify the need for declaring specific Requirement Types from nodes and instead rely upon nodes declaring their features sets using TOSCA Capability Types along with a named Feature notation.
Currently, there are no use cases in this TOSCA Simple Profile in YAML specification that utilize an independently defined Requirement Type. This is a desired effect as part of the simplification of the TOSCA v1.0 specification.
[bookmark: DEFN_ENTITY_RELATIONSHIP_TYPE]Relationship Type
A Relationship Type is a reusable entity that defines the type of one or more relationships between Node Types or Node Templates.
Keynames
The following is the list of recognized keynames recognized for a TOSCA Relationship Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Relationship Type name the Relationship Type derives from.

	version
	version
	A required version for the Relationship Type.

	description
	description
	An optional description for the Relationship Type.

	properties
	properties
	An optional list of property definitions for the Relationship Type.

	interfaces
	interfaces
	An optional list of named interfaces for the Relationship Type.

	valid_targets
	string[]
	A required list of one or more valid target entities or entity types (i.e., a Node Types or Capability Types)	Comment by Matt Rutkowski: WD01: Verify the entities and types we wish to allow here.

Grammar
	<relationship_type_name>:
 derived_from: <parent_relationship_type_name>
 version: <relationship_type_version>
 description: <relationship_description>
 properties:
 <property_definitions>
 interfaces: <interface_definitions>
 valid_targets: [<entity_name_or_type_1>, ..., <entity_name_or_type_n>]

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· relationship_type_name: represents the name of the Relationship Type being declared as a string.
· parent_relationship_type_name: represents the name (string) of the Relationship Type this Relationship Type definition derives from (i.e., its “parent” type).
· relationship_type_version: represents the version (major, minor and fix) of the Relationship Type definition.
· relationship_description: represents the optional description string for the corresponding relationship_type_name.
· property_definitions: represents the optional list of property definitions for the Relationship Type.
· interface_definitions: represents the optional list of one or more named interface definitions supported by the Relationship Type.
· entity_name_or_type_x: represents one or more valid target (types) for the relationship (e.g., Node Types, Capability Types, etc.).	Comment by Matt Rutkowski: Relationship Types?, Capability Types?
Best Practices
· The TOSCA Root relationship type (tosca.relationships.Root) provides a standard configuration interface (tosca.interfaces.relationship.Configure) that SHOULD be used where possible when defining new relationships types.
Examples
	mycompanytypes.myrelationships.AppDependency:
 derived_from: tosca.relationships.DependsOn
 valid_targets: [mycompanytypes.mycapabilities.SomeAppCapability]

Node Type	Comment by Matt Rutkowski: Should be noted that the requirements clause not only references requirements definitions but also implies relationships
A Node Type is a reusable entity that defines the type of one or more Node Templates. As such, a Node Type defines the structure of observable properties via a Properties Definition, the Requirements and Capabilities of the node as well as its supported interfaces.
The following is the list of recognized keynames recognized for a TOSCA Node Type definition:
	Keyname
	Definition/Type
	Description

	derived_from
	string
	An optional parent Node Type name this new Node Type derives from.

	version
	version
	A required version for the Node Type.

	description
	description
	An optional description for the Node Type.

	properties
	properties
	An optional list of property definitions for the Node Type.

	requirements
	requirements
	An optional sequenced list of requirement definitions for the Node Type.

	capabilities
	capabilities
	An optional list of capability definitions for the Node Type.

	interfaces
	interfaces
	An optional list of named interfaces for the Node Type.

	artifacts
	artifacts
	An optional sequenced list of named artifact definitions for the Node Type/

[bookmark: _Toc379455034]Grammar
	<node_type_name>:
 derived_from: <parent_node_type_name>
 version: <node_type_version>
 description: <node_type_description>
 properties:
 <property_definitions>
 requirements:
 <requirement_definitions>	Comment by Matt Rutkowski: Adjust link when Req. Defn. is split out from Requirements element.
 capabilities:
 <capability_definitions>
 interfaces: <interface_definitions>
 artifacts:
 <artifact_definitions>

[bookmark: _Toc379455035]In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· node_type_name: represents the name of the Node Type being declared.
· parent_node_type_name: represents the name (string) of the Node Type this Node Type definition derives from (i.e., its “parent” type).
· node_type_version: represents the version (major, minor and fix) of the Node Type definition.
· node_type_description: represents the optional description string for the corresponding node_type_name.
· property_definitions: represents the optional list of property definitions for the Node Type.
· requirement_definitions: represents the optional sequenced list of requirement definitions for the Node Type.
· capability_definitions: represents the optional list of capability definitions for the Node Type.
· interface_definitions: represents the optional list of one or more named interface definitions supported by the Node Type.
· artifact_definitions: represents the optional list of artifact definitions for the Node Template that augment those provided by its declared Node Type.
Best Practices
It is recommended that all Node Types SHOULD derive directly (as a parent) or indirectly (as an ancestor) of the TOSCA “Root” Node Type (i.e., tosca.nodes.Root) to promote compatibility and portability. However, it is permitted to author Node Types that do not do so.
[bookmark: _Toc379455036]Example
	my_company.my_types.my_app_node_type:
 derived_from: tosca.nodes.SoftwareComponent
 description: My company’s custom applicaton
 properties:
 my_app_password:
 type: string
 description: application password
 constraints:
 - length: { min: 6, max: 10 }
 my_app_port:
 type: number
 description: application port number
 requirements:
 host: tosca.nodes.Compute
 interfaces: [Lifecycle Standard]

[bookmark: _Toc380995742][bookmark: _Toc381084630][bookmark: _Toc381177772][bookmark: _Toc381365537][bookmark: _Toc381365952][bookmark: _Toc381369709][bookmark: _Toc381613959][bookmark: _Toc381614007][bookmark: _Toc381697225][bookmark: _Toc381801239][bookmark: _Toc381866549][bookmark: _Toc381867862][bookmark: _Toc381882197][bookmark: _Toc380995744][bookmark: _Toc381084632][bookmark: _Toc381177774][bookmark: _Toc381365539][bookmark: _Toc381365954][bookmark: _Toc381369711][bookmark: _Toc381613961][bookmark: _Toc381614009][bookmark: _Toc381697227][bookmark: _Toc381801241][bookmark: _Toc381866551][bookmark: _Toc381867864][bookmark: _Toc381882199][bookmark: DEFN_ENTITY_NODE_TEMPLATE][bookmark: _Toc379455043][bookmark: DEFN_ENTITY_SERVICE_TEMPLATE][bookmark: _Toc373867851][bookmark: _Toc373867850][bookmark: _Toc373867852]Node Template definition	Comment by Matt Rutkowski: Is there a way we can just reference the node type grammar (and perhaps example)?
A Node Template specifies the occurrence of a manageable software component as part of an application’s topology model which is defined in a TOSCA Service Template. Node template is an instance of a specified Node Type and can provide customized properties, constraints or operations which override the defaults provided by its Node Type and its implementations.
The following is the list of recognized keynames recognized for a TOSCA Node Template definition:
	Keyname
	Definition/Type
	Description

	type
	string
	The required name of the Node Type the Node Template is based upon.

	description
	description
	An optional description for the Node Template.

	properties
	properties
	An optional list of property definitions for the Node Template.

	requirements
	requirements
	An optional sequenced list of requirement definitions for the Node Template.

	capabilities
	capabilities
	An optional list of capability definitions for the Node Template.

	interfaces
	interfaces
	An optional list of named interfaces for the Node Template.

	artifacts
	artifacts
	An optional sequenced list of named artifact definitions for the Node Template.

Grammar
	<node_template_name>:
 type: <node_type_name>
 description: <node_template_description>
 properties:
 <property_definitions>
 requirements:
 <requirement_definitions>
 capabilities:
 <capability_definitions>
 interfaces:
 <interface_definitions>
 artifacts:
 <artifact_definitions>

In the above definition, the pseudo values that appear in angle brackets have the following meaning:
· node_template_name: represents the name of the Node Template being declared.
· node_type_name: represents the name of the Node Type this Node Template is based upon.
· node_template_description: represents the optional description string for the corresponding node_template_name.
· property_definitons: represents the optional list of property definitions for the Node Template that augment those provided by its declared Node Type.
· requirement_definitions: represents the optional sequenced list of requirement definitions for the Node Template that augment those provided by its declared Node Type.
· capability_definitions: represents the optional list of capability definitions for the Node Template that augment those provided by its declared Node Type.
· interface_definitions: represents the optional list of interface definitions for the Node Template that augment those provided by its declared Node Type.
· artifact_definitions: represents the optional list of artifact definitions for the Node Template that augment those provided by its declared Node Type.
Example
	mysql:	Comment by Matt Rutkowski: WD02: Need complete example for that shows more of the optional keynames being used such as Capabilities or Artifacts.
 type: tosca.nodes.DBMS.MySQL
 properties:
 dbms_password: { get_input: my_mysql_rootpw }
 dbms_port: { get_input: my_mysql_port }
 requirements:
 - host: db_server
 interfaces:
 StandardLifecycle:
 configure: scripts/my_own_configure.sh

[bookmark: _Toc383073904]Service Template
A TOSCA Definitions YAML document contains element definitions of building blocks for cloud application, or complete models of cloud applications.
This section describes the top-level structural elements (i.e., YAML keys) which are allowed to appear in a TOSCA Definitions YAML document.
[bookmark: _Toc379455044]Keynames
A TOSCA Definitions file contains the following element keynames:
	Keyname
	Required
	Description

	tosca_definitions_version
	yes	Comment by Matt Rutkowski: TOSCA-153: Should have an additional req. that a valid defn. file MUST contain at least one valid type definition or node template

Also,
Implies several file are imported or referenced (including the schema for grammar validation and also the normative type defns/.
	Defines the version of the TOSCA Simple Profile specification the template (grammar) complies with.

	tosca_default_namespace
	no	Comment by Matt Rutkowski: TOSCA-153: Discuss for WD02
	Defines the namespace of the TOSCA schema to use for validation.

	template_name
	no
	Declares the name of the template.

	template_author
	no
	Declares the author(s) of the template.

	template_version
	no
	Declares the version string for the template.

	description
	no
	Declares a description for this Service Template and its contents.

	imports
	no
	Declares import statements external TOSCA Definitions documents (files).

	inputs
	no
	Defines a set of global input parameters passed to the template when its instantiated. This provides a means for template authors to provide points of variability to users of the template in order to customize each instance within certain constraints.

	node_templates
	no
	Defines a list of Node Templates that model the components of an application or service.

	node_types
	no
	This section contains a set of node type definitions for use in service templates. Such type definitions may be used within the node_templates section of the same file, or a TOSCA Definitions file may also just contain node type definitions for use in other files.	Comment by Matt Rutkowski: WD02: Find a better way to phrase this and put it in a Notes section. then have each of node, rel., capability and artifact types reference that Note.

	relationship_types
	no
	This section contains a set of relationship type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain relationship type definitions for use in other files.

	capability_types
	no
	This section contains an optional list of capability type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain capability type definitions for use in other files.

	artifact_types
	no
	This section contains an optional list of artifact type definitions for use in service templates. Such type definitions may be used within the same file, or a TOSCA Definitions file may also just contain capability type definitions for use in other files.

	outputs
	no
	This optional section allows for defining a set of output parameters provided to users of the template. For example, this can be used for exposing the URL for logging into a web application that has been set up during the instantiation of a template.

	groups
	no
	This is an optional section that contains grouping definition for node templates.

[bookmark: _Toc379455045]Grammar
The overall structure of a TOSCA Service Template and its top-level key collations using the TOSCA Simple Profile is shown below:
	tosca_definitions_version: # Required TOSCA Definitions version string	Comment by Matt Rutkowski: Rename grammar_version?
tosca_default_namespace: # Optional. default namespace (schema, types version)	Comment by Matt Rutkowski: TOSCA-153: Need a way to declare the “schema” namespace apart from the version of the TOSCA (grammar) that the service template is declared to be composed with.

e.g. tosca_simple_1_0

Can we use this key (implied) to also bring in the matchin TOSCA normative definitions (that was defined with the same schema version)?

<or> <and> could override with explicit import in service template import section.

template_name: # Optional name of this service template
template_author: # Optional author of this service template
template_version: # Optional version of this service template

description: A short description of the definitions inside the file.

imports:
 # list of import statements for importing other definitions files

inputs:
 # list of global input parameters

node_templates:
 # list of node templates

node_types:
 # list of node type definitions

capability_types:
 # list of capability type definitions

relationship_types:
 # list of relationship type definitions

artifact_types:
 # list of artifact type definitions

groups:	Comment by Matt Rutkowski: There is a diff. from orig. TOSCA proposal, removed because it was superseded by substitution of node templates.

Observation: Never had a grouping by reference (value) Enables overlapping groups.

Observation: does this revisit N-ary relationships? (Richard).

Frank and Thomas have a proposal prepare for TC.
 # list of groups defined in service template

outputs:
 # list of output parameters

[bookmark: _Toc379455046]Top-level key definitions
[bookmark: _Toc379455047]tosca_definitions_version	Comment by Matt Rutkowski: TBD: Add requirement so that this SHALL be the first line of every template?
This required element provides a means include a reference to the TOSCA Simple Profile specification within the TOSCA Definitions YAML file. It is an indicator for the version of the TOSCA grammar that should be used to parse the remainder of the document.	Comment by Matt Rutkowski: Require to be the first line. Add requirements section for each type.
Keyword
	tosca_definitions_version

Grammar
Single-line form:
	tosca_definitions_version: <tosca_simple_profile_version>

Examples:
TOSCA Simple Profile version 1.0 specification using the defined namespace alias (see Section A.1):
	tosca_definitions_version: tosca_simple_yaml_1_0_0

TOSCA Simple Profile version 1.0 specification using the fully defined (target) namespace (see Section A.1):
	tosca_definitions_version: http://docs.oasis-open.org/tosca/simple/1.0

[bookmark: _Toc379455048][bookmark: _Toc373867853]template_name
This optional element declares the optional name of service template as a single-line string value.
Keyword
	template_name

Grammar
	template_name: <name string>

Example
	template_name: My service template

Notes
· Some service templates are designed to be referenced and reused by other service templates. Therefore, in these cases, the template_name value SHOULD be designed to be used as a unique identifier through the use of namespacing techniques.
[bookmark: _Toc379455049]template_author
This optional element declares the optional author(s) of the service template as a single-line string value.
Keyword
	template_author

Grammar
	template_author: <author string>

Example
	template_name: My service template

[bookmark: _Toc379455050]template_version
This element declares the optional version of the service template as a single-line string value.
Keyword
	template_version

Grammar
	template_version: <version>

Example
	template_version: 2.0.17

Notes:
· Some service templates are designed to be referenced and reused by other service templates and have a lifecycle of their own. Therefore, in these cases, a template_version value SHOULD be included and used in conjunction with a unique template_name value to enable lifecycle management of the service template and its contents.
[bookmark: _Toc379455052][bookmark: _Toc373867854]Description
This optional element provides a means include single or multiline descriptions within a TOSCA Simple Profile template as a scalar string value.
Keyword
	description

imports
This optional element provides a way to import a block sequence of one or more TOSCA Definitions documents. TOSCA Definitions documents can contain reusable TOSCA type definitions (e.g., Node Types, Relationship Types, Artifact Types, etc.) defined by other authors. This mechanism provides an effective way for companies and organizations to define normative types and/or describe their software applications for reuse in other TOSCA Service Templates.
Keyword
	imports

Grammar
	imports:
 - <tosca_definitions_file_1>
 - ...
 - <tosca_definitions_file_n>

Example
	# An example import of definitions files from a location relative to the
file location of the service template declaring the import.

imports:
 - relative_path/my_defns/my_typesdefs_1.yaml
 - ...
 - relative_path/my_defns/my_typesdefs_n.yaml

[bookmark: _Toc379455053]inputs	Comment by Matt Rutkowski: Derek: Problem in scoping. Currently, as written they are written globally (to all components). Naming collisions could occur (Need to address by convention in text of proposal)

Thomas: Benefits (as is), use defaults (from globals) just a subset you want to expose at the boundary

Frank: similar to input msg of a build plan (to the build plan) used to spread them over operations of the node templates (and vice-versa the output message).

Derek: if taken as what Frank says it makes sense, constraints on values should be with properties (in node type), not defined in the input section

Thomas: on node type defs we have …; additional constraints on parms for what node type can consume?

Travis: constraints are very important for validity checking

Derek: constraints may also span more than one param (operand)
This optional element provides a means to define parameters, their allowed values via constraints and default values within a TOSCA Simple Profile template.

This section defines template-level input parameter section.
· This would require a change to template schema for v1.1Inputs here would ideally be mapped to BoundaryDefintions in TOSCA v1.0.
· Treat input parameters as fixed global variables (not settable within template)
· If not in input take default (nodes use default)
Grammar
	inputs:
 <property_definition_1>
 ...
 <property_definition_n>

Examples
Simple example without any constraints:
	inputs:
 fooName:
 type: string
 description: Simple string typed property definition with no constraints.
 default: bar

Example with constraints:
	inputs:
 SiteName:
 type: string
 description: string typed property definition with constraints
 default: My Site
 constraints:
 - min_length: 9

Notes
· The parameters (properties) that are listed as part of the inputs block could be mapped to PropertyMappings provided as part of BoundaryDefinitions as described by the TOSCA v1.0 specification.
[bookmark: _Toc373867857][bookmark: _Toc379455054]node_templates
This element lists the Node Templates that describe the (software) components that are used to compose cloud applications.
Keyword
	node_templates

Grammar
	node_templates:
 <node_template_defn_1>
 ...
 <node_template_defn_n>

Example
	node_templates:

 my_webapp_node_template:
 type: WebApplication

 my_database_node_template:
 type: Database

[bookmark: _Toc379455055][bookmark: _Toc373867883][bookmark: _Toc373867859]Notes
· The node templates listed as part of the node_templates block can be mapped to the list of NodeTemplate definitions provided as part of TopologyTemplate of a ServiceTemplate as described by the TOSCA v1.0 specification.
node_types
This element lists the Node Types that provide the reusable type definitions for software components that Node Templates can be based upon.
Keyword
	node_types

Grammar
	node_types:
 <node_types_defn_1>
 ...
 <node_type_defn_n>

Example
	node_types:
 my_webapp_node_type:
 derived_from: WebApplication
 properties:
 my_port:
 type: integer

 my_database_node_type:
 derived_from: Database
 capabilities:
 mytypes.myfeatures.transactSQL

[bookmark: _Toc379455057]Notes
· The node types listed as part of the node_types block can be mapped to the list of NodeType definitions as described by the TOSCA v1.0 specification.
relationship_types
This element lists the Relationship Types that provide the reusable type definitions that can be used to describe dependent relationships between Node Templates or Node Types.
Keyword
	relationship_types

Grammar
	relationship_types:
 <relationship_type_defn_1>
 ...
 <relationship type_defn_n>

Example
	relationship_types:
 mycompany.mytypes.myCustomClientServerType:
 derived_from: tosca.relationships.HostedOn
 properties:
 # more details ...

 mycompany.mytypes.myCustomConnectionType:
 derived_from: tosca.relationships.ConnectsTo
 properties:
 # more details ...

[bookmark: _Toc379455059]capability_types
This element lists the Capability Types that provide the reusable type definitions that can be used to describe features Node Templates or Node Types can declare they support.
Keyword
	capability_types

Grammar
	capability_types:
 <capability_type_defn_1>
 ...
 <capability type_defn_n>

Example
	capability_types:
 mycompany.mytypes.myCustomEndpoint
 derived_from: tosca.capabilities.Endpoint
 properties:
 # more details ...

 mycompany.mytypes.myCustomFeature
 derived_from: tosca.capabilites.Feature
 properties:
 # more details ...

groups
The group construct is a composition element used to group one or more node templates within a TOSCA Service Template.
Keyword
	groups

Grammar
	groups:
 <group_name_A>:
 <node_template_defn_A_1>
 ...
 <node_template_defn_A_n>

 <group_name_B>
 <node_template_defn_B_1>
 ...
 <node_template_defn_B_n>

Example
	node_templates:
 server1:
 type: tosca.nodes.Compute
 # more details ...

 server2:
 type: tosca.nodes.Compute
 # more details ...

 server3:
 type: tosca.nodes.Compute
 # more details ...

groups:
 server_group_1:
 members: [server1, server2]
 policies:
 - anti_collocation_policy:
 # specific policy declarations omitted, as this is not yet specified

[bookmark: _Toc379455060]outputs
This optional element provides a means to define the output parameters that are available from a TOSCA Simple Profile service template.
Keyword
	outputs

Grammar
	outputs:
 <property_definitions>

Example
	outputs:
 server_ip:
 description: The IP address of the provisioned server.
 value: { get_property: [my_server, ip_address] }

[bookmark: _Toc379455061][bookmark: _Toc383073905][bookmark: DEFN_ELEMENT_SERVICE_TEMPLATE_FUNCTIONS][bookmark: _Toc373867885]Service Template-level functions
This section includes functions that are supported for use within a TOSCA Service Template.
[bookmark: _Toc373867884][bookmark: _Toc379455063]Property functions	Comment by Matt Rutkowski: TOSCA-146: WD02: Need to include grammar and examples for each function.
[bookmark: _Toc379455064]get_input
· get_input is used to retrieve the values of properties declared within the inputs section of the a service template.
[bookmark: _Toc379455065]get_property
· get_property is used to retrieve property values between entities defined in the same service template.
[bookmark: _Toc379455066]get_ref_property
· get_ref_property is used by an entity defined in one service template to obtain a property value from another entity defined in a second service template. The first entity can by using a named reference to he name of the other entity as declared in its requirements section (which may be bound at runtime) as declared in its requirements section.	Comment by Matt Rutkowski: TOSCA-169: is this always a separate service template? Can have local refs?	Comment by Matt Rutkowski: TBD: need Grammar
[bookmark: _Toc379455067]Navigation functions
· This version of the TOSCA Simple Profile does not define any model navigation functions.
[bookmark: _Toc379455068][bookmark: _Ref381176017][bookmark: _Toc383073906]TOSCA normative type definitions
The declarative approach is heavily dependent of the definition of basic types that a declarative container must understand. The definition of these types must be very clear such that the operational semantics can be precisely followed by a declarative container to achieve the effects intended by the modeler of a topology in an interoperable manner.
[bookmark: _Toc373867860][bookmark: _Toc379455069][bookmark: _Toc383073907]Assumptions
· Assumes alignment with/dependence on XML normative types proposal for TOSCA v1.1
· Assumes that the normative types will be versioned and the TOSCA TC will preserve backwards compatibility.
· Assumes that security and access control will be addressed in future revisions or versions of this specification.	Comment by Matt Rutkowski: TOSCA-154:

The most important thing is to decide how security affects the set of properties for base types.

Derek: This seems to assume an SSH connection (simple access within same environment)

Thomas: assumptions each orchestrator has ability to connect to VMS (SSH keys etc needs to be decided and are underspecified at the moment). In heat they have concept of key pairs (an additional resource type in the template).

Derek: sometimes you want to deploy a network container, sometimes you want to define the network ports/switches etc. Basically, we need to support the idea of having to stand up a set of services with some network definitions (labs and environments). How can I deploy a set of servers with some connectivity to the outside world?

Thomas: OS has a “resource group” with security settings. Would be good if someone could write some snippet in YAML to discuss.

[bookmark: _Toc383073908][bookmark: _Toc373867869][bookmark: _Ref379375235][bookmark: _Ref379375243][bookmark: _Toc379455075][bookmark: DEFN_TYPE_NODES_BASE]Requirement Types
There are no normative Requirement Types currently defined in this working draft.
[bookmark: _Toc383073909]Capabilities Types
tosca.capabilities.Root
This is the default (root) TOSCA Capability Type definition that all other TOSCA Capability Types derive from.
Definition
	tosca.capabilities.Root:

tosca.capabilities.Feature
This is the default TOSCA type that should be extended to define any named feature of a node. 	Comment by Jacques Durand: Define “feature”
	Shorthand Name
	Feature

	Type Qualified Name
	tosca:Feature

	Type URI
	tosca.capabilities.Feature

Definition
	tosca.capabilities.Feature:
 derived_from: tosca.capabilities.Root

tosca.capabilities.Container
The Container capability, when included on a Node Type or Template definition, indicates that the node can act as a container for (or a host for) one or more other declared Node Types.	Comment by Jacques Durand: Couldn’t the container semantics be expressed as constraints on Relationships (from the containee to the container node?)

	Shorthand Name
	Container

	Type Qualified Name
	tosca:Container

	Type URI
	tosca.capabilities.Container

PropertiesKeynames
	Name
	RequiredType
	Constraints
	Description

	containeevalid_node_types
	NodeType[]yes
	None
	A list of one or more names of Node Types that are supported as containees that declare the Container type as a Capability.

Definition
	tosca.capabilities.Container:
 derived_from: tosca.capabilities.Feature
 properties:
 containeevalid_node_types: [<node_type_1>,..., <node_type_n>] 	Comment by Matt Rutkowski: TODO: Should we make containee_types a property of some sort?

tosca.capabilities.Endpoint
This is the default TOSCA type that should be used or extended to define a network endpoint capability.
	Shorthand Name
	Endpoint

	Type Qualified Name
	tosca:Endpoint

	Type URI
	tosca.capabilities.Endpoint

Properties	Comment by Jacques Durand: Wouldn’t this also include “timeout”?
	Name
	Required
	Type
	Constraints
	Description

	protocol
	yes
	string
	None
	The name of the protocol (i.e., the protocol prefix) that the endpoint accepts.

Examples: http, https, tcp, udp, etc.

	port
	yes
	integer
	greater_or_equal: 1
less_or_equal: 65535
	The port of the endpoint.

	secure
	no
	boolean
	default = false
	Indicates if the endpoint is a secure endpoint.

Definition
	tosca.capabilities.Endpoint:
 derived_from: tosca.capabilities.Feature
 properties:
 protocol:
 type: string
 default: http
 port:
 type: integer
 constraints:
 - greater_or_equal: 1
 - less_or_equal: 65535
 secure:
 type: boolean
 default: false

tosca.capabilities.DatabaseEndpoint
This is the default TOSCA type that should be used or extended to define a specialized database endpoint capability.
	Shorthand Name
	DatabaseEndpoint

	Type Qualified Name
	tosca:DatabaseEndpoint

	Type URI
	tosca.capabilities.DatabaseEndpoint

Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.capabilities.DatabaseEndpoint:
 derived_from: tosca.capabilities.Endpoint

[bookmark: _Toc383073910]Relationship Types
tosca.relationships.Root
This is the default (root) TOSCA Relationship Type definition that all other TOSCA Relationship Types derive from.
Definition
	tosca.relationships.Root:
 # The TOSCA root relationship type has no property mappings
 interfaces: [tosca.interfaces.relationship.Configure]

tosca.relationships.DependsOn
This type represents a general dependency relationship between two nodes.
	Shorthand Name
	DependsOn

	Type Qualified Name
	tosca:DependsOn

	Type URI
	tosca.relationships.DependsOn

Definition
	tosca.relationships.DependsOn:
 derived_from: tosca.relationships.Root
 valid_targets: [tosca.capabilities.Feature]

tosca.relationships.HostedOn
This type represents a hosting relationship between two nodes.
	Shorthand Name
	HostedOn

	Type Qualified Name
	tosca:HostedOn

	Type URI
	tosca.relationships.HostedOn

Definition
	 tosca.relationships.HostedOn:
 derived_from: tosca.relationships.DependsOn
 valid_targets: [tosca.capabilities.Container]

[bookmark: _Ref382834724]tosca.relationships.ConnectsTo
This type represents a network connection relationship between two nodes.
	Shorthand Name
	ConnectsTo

	Type Qualified Name
	tosca:ConnectsTo

	Type URI
	tosca.relationships.ConnectsTo

Definition
	tosca.relations.ConnectsTo:
 derived_from: tosca.relationships.DependsOn
 valid_targets: [tosca.capabilities.Endpoint]

[bookmark: _Toc383073911]Interfaces
Interfaces are reusable entities that define a set of operations that that can be included as part of a Node type or Relationship Type definition. Each named operations may have code or scripts associated with them that orchestrators can execute for when transitioning an application to a given state.
Notes
· Designers of Node or Relationship types are not required to actually provide/associate code or scripts with every operation for a given interface it supports. In these cases, orchestrators SHALL consider that a “No Operation” or “no-op”.
· Template designers MAY provide or override code or scripts provided by a type for a specified interface defined for the type (even if the type itself does not provide a script for that operation).
[bookmark: _Ref384391055]tosca.interfaces.node.lifecycle.Standard
This lifecycle interface defines the essential, normative operations that TOSCA nodes may support.
	Shorthand Name
	 Standard

	Type Qualified Name
	tosca: Standard

	Type URI
	tosca.relationships.node.lifecycle. Standard

Definition
	tosca.interfaces.node.lifecycle.Standard:
 create:
 description: Standard lifecycle create operation.
 preconfigure:
 description: Standard lifecycle pre-configure operation.
 start:
 description: Standard lifecycle start operation.
 postconfigure:
 description: Standard lifecycle post-configure operation
 stop:
 description: Standard lifecycle stop operation.
 delete:
 description: Standard lifecycle delete operation.

tosca.interfaces.node.lifecycle.Simple
This interface defines the simplest, normative lifecycle operations that TOSCA nodes may support. It can be used when nodes are able to perform create, preconfigure, start and postconfigure operations as defined in the Standard lifecycle as a single deploy operation.
	Shorthand Name
	Simple

	Type Qualified Name
	tosca:Simple

	Type URI
	tosca.relationships.node.lifecycle.Simple

Definition
	tosca.interfaces.node.lifecycle.Simple:
 deploy:
 description: Simple lifecycle deploy operation. This single operation would be used to implement the Standard lifecycle operations of create, preconfigure, start and postconfigure.
 start:
 description: Simple lifecycle start operation.
 stop:
 description: Simple lifecycle stop operation.
 delete:
 description: Simple lifecycle delete operation.

Requirements
· Following the execution of the deploy operation, the node MUST be in an active node instance state.
· Implementers of the Simple lifecycle interfaces SHALL code valid start and stop operation implementations.
tosca.interfaces.relationship.Configure
The lifecycle interfaces define the essential, normative operations that each TOSCA Relationship Types may support.
	Shorthand Name
	Configure

	Type Qualified Name
	tosca:Configure

	Type URI
	tosca.interfaces.relationship.lifecycle.Configure

Definition
	tosca.interfaces.relationship.Configure:
 pre_configure_source:
 description: Operation to pre-configure the source endpoint.
 pre_configure_target:
 description: Operation to pre-configure the target endpoint.
 post_configure_source:
 description: Operation to post-configure the source endpoint.
 post_configure_target:
 description: Operation to post-configure the target endpoint.
 add_target:	Comment by Matt Rutkowski: TOSCA-160: Need example (perhaps include picture we have shown elsewhere) of how this is invoked.
 description: Operation to add a target node.
 remove_target:
 description: Operation to remove a target node.

[bookmark: _Toc383073912][bookmark: _Toc373867870]Node Types
[bookmark: _Toc379455076][bookmark: _Ref379544964][bookmark: DEFN_TYPE_NODES_ROOT]tosca.nodes.Root
The TOSCA Root Node Type is the default type that all other TOSCA base Node Types derive from. This allows for all TOSCA nodes to have a consistent set of features for modeling and management (e.g., consistent definitions for requirements, capabilities and lifecycle interfaces).
[bookmark: _Toc379455077]Properties
	Name
	Required
	Type
	Constraints
	Description

	N/A
	N/A
	N/A
	N/A
	The TOSCA Root Node type has no specified properties.

[bookmark: _Toc379455078]Definition
	tosca.nodes.Root:
 description: The TOSCA Node Type all other TOSCA base Node Types derive from
 requirements:
 - dependency:	Comment by Matt Rutkowski: TOSCA-161:

TODO: This allows for generic dependencies to be declared from any node type and we DO have an use case/example for it.

TODO: We need to show a good use case for this generic “feature” capability or remove it. Currently, it is simply the logical analog of the “dependency” requirement of this Root type

TODO: Link to examples elsewhere in document if they exist elsewhere.
 type: tosca.capabilities.Feature
 lower_bound: 0
 upper_bound: unbounded
 capabilities:
 feature: tosca.capabilities.Feature
 interfaces: [tosca.interfaces.node.lLifecycle.Standard] 	Comment by Matt Rutkowski: TODO: Need a rule to say Nodes MUST implement either Standard or Simple lifecycle, but not both.

[bookmark: _Toc379455079]Additional Requirements
All Node Type definitions that wish to adhere to the TOSCA Simple Profile SHOULD extend from the TOSCA Root Node Type to be assured of compatibility and portability across implementations.
Valid Nodes Types or Node Templates MUST implement either the Standard or Simple lifecycle interfaces, but not both.
[bookmark: _Toc378686027][bookmark: _Toc378688769][bookmark: _Toc373867871][bookmark: _Toc379455080][bookmark: DEFN_TYPE_NODES_COMPUTE]tosca.nodes.Compute
The TOSCA Compute node represents one or more real or virtual processors of software applications or services along with other essential local resources. Collectively, the resources the compute node represents can logically be viewed as a (real or virtual) “server”.
	Shorthand Name
	Compute

	Type Qualified Name
	tosca:Compute

	Type URI
	tosca.nodes.Compute

[bookmark: _Toc379455081]Properties
	Name
	Required
	Type
	Constraints
	Description

	num_cpus
	No
	integer
	>= 1
	Number of (actual or virtual) CPUs associated with the Compute node.

	disk_size
	No
	integer
	>=0
	Size of the local disk, in Gigabytes (GB), available to applications running on the Compute node.

	mem_size
	No
	integer
	>= 0
	Size of memory, in Megabytes (MB), available to applications running on the Compute node.

	os_arch
	Yes
	string
	None
	The host Operating System (OS) architecture.

Examples of valid values include:	Comment by Matt Rutkowski: TOSCA-162
TODO: we should declare what normative values we have or may use for interop. Portability is not guaranteed unless normative values exist.

Determine what other values we wish to make normative; suggested values include:

power, s_390, z_arch, arm_32, arm_64
IBM Z archs list:

Note: RHEL supports: x86, x86-64; Power Architecture; S/390; z/Architecture

IBM Z Archihtecture infor:
http://en.wikipedia.org/wiki/Z/Architecture

Power architecture info:
http://en.wikipedia.org/wiki/Power_Architecture
x86_32, x86_64, etc.

	os_type
	Yes
	string
	None
	The host Operating System (OS) type.

Examples of valid values include:
linux, aix, mac, windows, etc.

	os_distribution
	No
	string
	None
	The host Operating System (OS) distribution.

Examples of valid values for an “os_type” of “Linux” would include: debian, fedora, rhel and ubuntu.

	os_version
	No
	string
	None
	The host Operating System version.

	ip_address
	No
	string
	None
	The primary IP address assigned by the cloud provider that applications may use to access the Compute node.	Comment by Matt Rutkowski: TOSCA-156: reference this as being IPv6 format.string? perhaps IPv4 and IPv6. IPv6 handling needs to be addressed.

It’s the platforms mechanism for giving access to the container (the default way)	Comment by Matt Rutkowski: Note: Some implementations (like OpenStack) provide a list of addresses qualified by a purpose (e.g. private, public, admin., etc.)
· Note: This is used by the platform provider to convey the primary address used to access the compute node. Future working drafts will address implementations that support floating or multiple IP addresses.

[bookmark: _Toc379455082]Definition
	type: tosca.nodes.Compute
 derived_from: tosca.nodes.Root
 properties:
 # compute properties
 num_cpus:
 type: integer
 constraints:
 - greater_or_equal: 1
 disk_size:
 type: integer
 constraints:
 - greater_or_equal: 0
 mem_size:
 type: integer
 constraints:
 - greater_or_equal: 0

 # host image properties
 os_arch:
 type: string
 os_type:
 type: string
 os_distribution:
 type: string
 os_version:
 type: string	Comment by Matt Rutkowski: TOSCA-134:: change once we define the new version type.

 # Compute node’s primary IP address
 ip_address:
 type: string
 capabilities:
 host:
 type: Container
 properties:

 valid_nodecontainee_types: [tosca.nodes.SoftwareComponent]

[bookmark: _Toc379455083][bookmark: _Toc373867872]Additional Requirements
· Please note that the string values for the properties “os_arch”, “os_type” and “os_distribution” SHALL be normalized to lowercase by processors of the service template for matching purposes. For example, if an “os_type” value is set to either “Linux”, “LINUX” or “linux” in a service template, the processor would normalize all three values to “linux” for matching purposes.
[bookmark: _Toc373867875][bookmark: _Toc379455096][bookmark: DEFN_TYPE_NODES_DATABASE]tosca.nodes.SoftwareComponent
The TOSCA SoftwareComponent node represents a generic software component that can be managed and run by a TOSCA Compute Node Type.
	Shorthand Name
	SoftwareComponent

	Type Qualified Name
	tosca:SoftwareComponent

	Type URI
	tosca.nodes.SoftwareComponent

Properties
	Name
	Required
	Type
	Constraints
	Description

	version
	no
	version
	None
	The software component’s version.

Definition
	tosca.nodes.SoftwareComponent:
 derived_from: tosca.nodes.Root
 properties:
 # domain-specific software component version	Comment by Matt Rutkowski: TODO: JIRA issue, its important to make this normative. Otherwise its not useful.
 component_version:
 type: version
 required: false	Comment by Matt Rutkowski: Required?
 requirements:
 - host: tosca.nodes.Compute

Additional Requirements
· Nodes that can directly be managed and run by a TOSCA Compute Node Type SHOULD extend from this type.
tosca.nodes.WebServer
This TOSA WebServer Node Type represents an abstract software component or service that is capable of hosting and providing management operations for one or more WebApplication nodes.
	Shorthand Name
	WebServer

	Type Qualified Name
	tosca:WebServer

	Type URI
	tosca.nodes.WebServer

Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.nodes.WebServer
 derived_from: tosca.nodes.SoftwareComponent
 capabilities:
 http_endpoint: tosca.capabilites.Endpoint
 https_endpoint: tosca.capabilities.Endpoint
 host:
 type: Container
 properties:
 valid_node_types: containee_types: [tosca.nodes.WebApplication]

Notes and Additional Requirements
· This node exports both a secure endpoint capability (i.e., https_endpoint), typically for administration, as well as a regular endpoint (i.e., http_endpoint)None
tosca.nodes.WebApplication
The TOSCA WebApplication node represents a software application that can be managed and run by a TOSCA WebServer node. Specific types of web applications such as Java, etc. could be derived from this type.
	Shorthand Name
	WebApplication

	Type Qualified Name
	tosca: WebApplication

	Type URI
	tosca.nodes.WebApplication

Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.nodes.WebApplication:
 derived_from: tosca.nodes.Root
 requirements:
 - host: tosca.nodes.WebServer

Additional Requirements
· None
[bookmark: _Toc379455084][bookmark: DEFN_TYPE_NODES_OBJECT_STORAGE]tosca.nodes.DBMS
The TOSCA DBMS node represents a typical relational, SQL Database Management System software component or service.
Properties
	Name
	Required
	Type
	Constraints
	Description

	dbms_root_password
	yes
	string
	None
	The DBMS server’s root password.

	dbms_port
	no
	integer
	None
	The DBMS server’s port.	Comment by Matt Rutkowski: Thomas: “How does DBMS port relate to Database port?”

Definition
	tosca.nodes.DBMS
 derived_from: tosca.nodes.SoftwareComponent
 properties:
 dbms_root_password:
 type: string
 description: the root password for the DBMS service
 dbms_port:
 type: integer
 description: the port the DBMS service will listen to for data and requests
 capabilities:
 host:
 type: Container
 properties:
 valid_node_containee_types: [tosca.nodes.Database]

Additional Requirements
· None
tosca.nodes.Database
Base type for the schema and content associated with a DBMS.
The TOSCA Database node represents a logical database that can be managed and hosted by a TOSCA DBMS node.

	Shorthand Name
	Database

	Type Qualified Name
	tosca:Database

	Type URI
	tosca.nodes.Database

[bookmark: _Toc379455097]Properties
	Name
	Required
	Type
	Constraints
	Description

	db_user
	yes
	string
	None
	The special user account used for database administration.

	db_password
	yes
	string
	None
	The password associated with the user account provided in the ‘db_user’ property.

	db_port
	yes
	integer
	None
	The port the database service will use to listen for incoming data and requests.

	db_name
	yes
	string
	None
	The logical database Name

[bookmark: _Toc379455098][bookmark: _Toc373867876]Definition
	tosca.nodes.Database:
 derived_from: tosca.nodes.Root
 properties:
 db_user:
 type: string
 description: user account name for DB administration
 db_password:
 type: string
 description: the password for the DB user account
 db_port:
 type: integer
 description: the port the underlying database service will listen to data
 db_name:
 type: string
 description: the logical name of the database
 requirements:
 - host: tosca.nodes.DBMS
 capabilities:
 - database_endpoint: tosca.capabilities.DatabaseEndpoint

[bookmark: _Toc379455099]Additional Requirements
· None
tosca.nodes.ObjectStorage
The TOSCA ObjectStorage node represents storage that provides the ability to store data as objects (or BLOBs of data) without consideration for the underlying filesystem or devices.
	Shorthand Name
	ObjectStorage

	Type Qualified Name
	tosca:ObjectStorage

	Type URI
	tosca.nodes.ObjectStorage

[bookmark: _Toc379455085]Properties
	Name
	Required
	Type
	Constraints
	Description

	store_name
	yes
	string
	None
	The logical name of the object store (or container).

	store_size
	no
	integer
	>=0
	The requested initial storage size in Gigabytes.

	store_maxsize
	no
	integer
	>=0
	The requested maximum storage size in Gigabytes.

[bookmark: _Toc379455086]Definition
	tosca.nodes.ObjectStorage
 derived_from: tosca.nodes.Root
 properties:
 store_name:
 type: string
 store_size:
 type: integer
 constraints:
 - greater_or_equal: 0
 store_maxsize:
 type: integer
 constraints:
 - greater_or_equal: 0

[bookmark: _Toc379455087]Additional Requirements
· None
Notes:
· Subclasses of the ObjectStorage node may impose further constraints on properties such as store_name, such as minimum and maximum lengths or include regular expressions to constrain allowed characters.
[bookmark: _Toc379455088][bookmark: DEFN_TYPE_NODES_BLOCK_STORAGE][bookmark: _Toc373867873]tosca.nodes.BlockStorage
The TOSCA BlockStorage node currently represents a server-local block storage device (i.e., not shared) offering evenly sized blocks of data from which raw storage volumes can be created.
Note: In this draft of the TOSCA Simple Profile, distributed or Network Attached Storage (NAS) are not yet considered (nor are clustered file systems), but the TC plans to do so in future drafts.
	Shorthand Name
	BlockStorage

	Type Qualified Name
	tosca:BlockStorage

	Type URI
	tosca.nodes.BlockStorage

[bookmark: _Toc379455089]Properties
	Name
	Required
	Type
	Constraints
	Description

	store_mount_path
	yes
	string
	min_length: 1
	The relative directory on the file system, which provides the root directory for the mounted volume.

	store_fs_type	Comment by Matt Rutkowski: TOSCA-163:

Suggested values based upon major Linux distros:

RHEL: ext2, ext3, ext4, xfs
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/installconfig-fs.html

SLES: ext3, reiserfs, xfs, btrfs, ocfs2
https://www.suse.com/products/server/technical-information/

Ubuntu: ext2, ext3, ext4, reiserfs, jfs, xfs
https://help.ubuntu.com/community/LinuxFilesystemsExplainedhttps://help.ubuntu.com/community/LinuxFilesystemsExplained

Is there a normative list we can reference? Check OpenStack, Cinder.

http://en.wikipedia.org/wiki/List_of_file_systems
Examples: AFS, JFS, ZFS, NFS, UFS, UFS2, EXT3, HPFS

Derek volunteered to provide more example values that are commonly encountered in local block storage.
	no
	string
	None
	The type of disk file system.

Examples include: ext2, ext3, reiser, etc.

[bookmark: _Toc379455090]Definition
	type: tosca.nodes.BlockStorage
 derived_from: tosca.nodes.Root
 properties:
 store_fs_type:
 type: string
 store_mount_path:
 type: string
 constraints:
 - min_length: 1	Comment by Matt Rutkowski: WD02: verify

[bookmark: _Toc379455091]Additional Requirements
· None
[bookmark: _Toc379455112][bookmark: DEFN_TYPE_NODES_NETWORK][bookmark: _Toc373867865][bookmark: _Toc373867877]tosca.nodes.Network
The TOSCA Network node represents a simple, logical network service.
Note: This base Node Type will be further developed in future drafts of this specification.	Comment by Matt Rutkowski: TOSCA-143: Placeholder capturing some initial thoughts and comments.
	Shorthand Name
	Network

	Type Qualified Name
	tosca:Network

	Type URI
	tosca.nodes.Network

[bookmark: _Toc379455113]Properties
	Name
	Required
	Type
	Constraints
	Description

	TBD
	N/A
	N/A
	N/A
	N/A

[bookmark: _Toc379455114]Definition
	 tosca.nodes.Network:
 derived_from: tosca.nodes.Root

[bookmark: _Toc379455115]Additional Requirements
· TBD
[bookmark: _Toc379543893][bookmark: _Toc379544037][bookmark: _Toc379548321][bookmark: _Toc379543894][bookmark: _Toc379544038][bookmark: _Toc379548322][bookmark: _Toc379543904][bookmark: _Toc379544048][bookmark: _Toc379548332][bookmark: _Toc379455131][bookmark: _Toc383073913][bookmark: DEFN_TYPE_ARTIFACTS]Artifact Types
TOSCA Artifacts represent the packages and imperative used by the orchestrator when invoking TOSCA Interfaces on Node or Relationship Types. Currently, artifacts are logically divided into three categories:

· Deployment Types: includes those artifacts that are used during deployment (e.g., referenced on create and install operations) and include packaging files such as RPMs, ZIPs, or TAR files.
· Implementation Types: includes those artifacts that represent imperative logic and are used to implement TOSCA Interface operations. These typically include scripting languages such as Bash (.sh), Chef and Puppet.
· Runtime Types: includes those artifacts that are used during runtime by a service or component of the application. This could include a library or language runtime that is needed by an application such as a PHP or Java library.

Note: Normative TOSCA Artifact Types will be developed in future drafts of this specification.	Comment by Matt Rutkowski: TOSCA-142: Feature that captures all the comments around artifact types.
[bookmark: _rpm__][bookmark: _Toc373867880][bookmark: _Toc379455136]tosca.artifacts.Root
This is the default (root) TOSCA Artifact Type definition that all other TOSCA base Artifact Types derive from.
Definition
	tosca.artifacts.Root:
 description: The TOSCA Artifact Type all other TOSCA Artifact Types derive from

tosca.artifacts.File
This artifact type is used when an artifact definition needs to have its associated file simply treated as a file and no special handling/handlers are invoked.
Definition
	tosca.artifacts.File:
 derived_from: tosca.artifacts.Root

Implementation Types
Script Types
[bookmark: _Toc379455137]tosca.artifacts.impl.Bash
This artifact type represents a Bash script type that contains Bash commands that can be executed on the Unix Bash shell.
Definition
		tosca.artifacts.impl.Bash:	Comment by Matt Rutkowski: WD02: determine how we namespace/group impl. from deployment from runtime types. It has been suggested we have a “package” type for RPMs, would this apply for “scripts” as well?
 derived_from: tosca.artifacts.Root
 description: Script artifact for the Unix Bash shell
 properties:
 mime_type: application/x-sh
 file_ext: [sh]
	
	

[bookmark: _Toc383073914][bookmark: _Toc379455141]Non-normative type definitions
This section defines non-normative types used in examples or use cases within this specification.
[bookmark: _Toc383073915]Capability Types
tosca.capabilities.DatabaseEndpoint.MySQL
This type defines a custom MySQL database endpoint capability.
 Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.capabilities.DatabaseEndpoint.MySQL:
 derived_from: tosca.capabilities.DatabaseEndpoint

[bookmark: _Toc383073916]Node Types
[bookmark: _Toc379872736][bookmark: DEFN_TYPE_NODES_MYSQL][bookmark: _Toc373867886][bookmark: _Toc379455142]tosca.nodes.Database.MySQL
[bookmark: _Toc379455105]Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

[bookmark: _Toc379455106]Definition
	tosca.nodes.Database.MySQL:
 derived_from: tosca.nodes.Database
 requirements:
 - host: tosca.nodes.DBMS.MySQL
 capabilities:
 database_endpoint: tosca.capabilities.DatabaseEndpoint.MySQL

tosca.nodes.DBMS.MySQL
Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.nodes.Database.MySQL:
 derived_from: tosca.nodes.DBMS
 properties:
 dbms_port:
 description: reflect the default MySQL server port
 default: 3306
 capabilities:
 host:
 type: Container
 properties:
 valid_nodecontainee_types: [tosca.nodes.Database.MySQL]

tosca.nodes.WebServer.Apache
Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.nodes.WebServer.Apache:
 derived_from: tosca.nodes.WebServer

tosca.nodes.WebApplication.WordPress
Properties
	Name
	Required
	Type
	Constraints
	Description

	None
	N/A
	N/A
	N/A
	N/A

Definition
	tosca.nodes.WebApplication.WordPress:
 derived_from: tosca.nodes.WebApplication
 properties:
 admin_user:
 type: string
 admin_password:
 type: string
 db_host:
 type: string
 requirements:
 - host: tosca.nodes.WebServer
 - database_endpoint: tosca.nodes.Database
 interfaces:
 LifecycleStandard:
 inputs:	Comment by Matt Rutkowski: MUSTFIX: TODO: adjust grammar to allow this.
 db_host: string
 db_port: integer
 db_name: string
 db_user: string
 db_password: string

[bookmark: _Toc383073917]Component Modeling Use Cases
Use Case: Establishing a HostedOn relationship using WebApplication and WebServer
This use case examines the ways TOSCA YAML can be used to express a simple hosting relationship (i.e., HostedOn) using the normative WebServer and WebApplication node types defined in this specification.
For convenience, relevant parts of the normative Node Type for Web Server are shown below:
	tosca.nodes.WebServer
 derived_from: tosca.nodes.SoftwareComponent
 capabilities:
 ...
 host:
 type: Container
 properties:
 valid_node_types: [tosca.nodes.WebApplication]

As can be seen, the WebServer Node Type declares its capability to “contain” other nodes using the logical name “host” and providing the Capability Type tosca.capabilities.Container using its alias Container. It should be noted that the logical name of “host” is not a reserved word, but one assigned by the type designer that implies at or betokens the associated capability. The Container capability definition also includes a required list of valid Node Types that can be contained by this, the WebServer, Node Type. It is given the property name of valid_node_types and in this case it includes only the type WebApplication.
If we wish to establish a HostedOn relationship between a source WebApplication NodeType to a target WebServer Node Type we need to be able to declare a requirement from the source WebApplication that either explicitly declares the relationship or one that allows the relationship to be unambiguously inferred. We will examine three options for declaring this relationship below.
Option A: Inferred HostedOn relationship via logical name matching
In this option, the target WebApplication declares a requirement with the logical name “host” which matches the logical name for the declared capability in the WebServer Node Type, also named “host”. By virtue of the logical names matching (via the type designers), the HostedOn Relationship Type can be inferred by an orchestrator. 	Comment by Jacques Durand: Unclear how the engine is able to do this inference: since the name “host” has no explicit connection with the “HostedOn” relationship, this inference seems to be possible only pure coincidence, as it happens that the only existing relationship type between WebApplication and WebServer is “HostedOn”. Had there been more than one Relationship types defined between these two Node types, could this inference have been made?

	tosca.nodes.WebApplication:
 derived_from: tosca.nodes.Root
 requirements:
 - host: tosca.nodes.WebServer

Notes
· The logical name “host” is not a keyword and was selected for us in TOSCA normative types to give the reader an indication of the type of requirement being referenced.
Option B: Explicit HostedOn relationship via relationship_type keyword
In this option, the target WebApplication declares a requirement with the logical name “host” (as in Option A), but also uses the relationship_type keyword to explicitly declare the Relationship Type HostedOn.

	tosca.nodes.WebApplication:
 derived_from: tosca.nodes.Root
 requirements:
 - host: tosca.nodes.WebServer
 relationship_type: HostedOn

Option C: Explicit HostedOn relationship with capability keyword
In this option, let us instead declare a different Node Type called CustomWebApplication which declares a requirement with the logical name “bar” for a WebServer Node Type and also uses the relationship_type keyword to explicitly declare the Relationship Type HostedOn.
Since there is no implicit logical name match between “host” capability in the WebServer and “bar” requirement in CustomWebApplication, the type designer MUST use the capability keyword on the requirement to indicate to the orchestrator the exact name (i.e., “host”) of the capability in WebServer it should use to create the HostedOn relationship with.
	tosca.nodes.WebApplication:
 derived_from: tosca.nodes.Root
 requirements:
 - bar: tosca.nodes.WebServer
 relationship_type: HostedOn
 capability: host

The service template that would reference the hosted on relationship would appear as follows:
	TBD

Use Case: Establishing a ConnectsTo relationship to WebServer
This use case examines the ways TOSCA YAML can be used to express a simple connection relationship (i.e., ConnectsTo) between some service, derived from the SoftwareComponent Node Type, to the normative WebServer node type defined in this specification.
For convenience, relevant parts of the normative Node Type for Web Server are shown below:
	tosca.nodes.WebServer
 derived_from: tosca.nodes.SoftwareComponent
 capabilities:
 http_endpoint: tosca.capabilites.Endpoint
 https_endpoint: tosca.capabilities.Endpoint
 host:
 type: Container
 properties:
 valid_node__types: [tosca.nodes.WebApplication]
 ...

The service template that would reference the connection on relationship would appear as follows:
	
MyService:
 derived_from: tosca.nodes.SoftwareComponent
 requirements:
 - connection1: tosca.nodes.WebServer
 relationship_type: ConnectsTo
 capability: https_endpoint

node_templates:
 my_web_app:
 type: WebApplication
 ...
 requirements:
 - connection1: my_web_server

 my_web_server:
 type: WebServer

A.1.1.1 Issues
1. How do we know that the requirement labeled “host” is a HostedOn relationship?
versus a general “DependsOn” relationship? For example, what if the WebApplication had a different dependency on a WebServer node in addition to a hosting (i.e., HostedOn) dependency?
Currently, our normative node uses the same named slot “host” on the requirement and capabilities side. If this were not the case, an ambiguity exists.
Should Nodes be restricted to one Container requirement?
2. What capability does the “http_endpoint” export versus the “https_endpoint” from the WebServer?
How does a WebApplication provide a Requirement to (one or the other of) them?
3. How do we list additional (sub) capabilities on the WebServer node that are NOT types?
How do we reference them as additional requirements from the WebApplication?

Application Modeling Use Cases
[bookmark: _Toc373867893][bookmark: _Toc379455149][bookmark: _Toc383073918]Application Modeling Use Cases:
	Short description
	Interesting Feature
	Description

	Virtual Machine (VM), single instance
	Introduces the TOSCA base Node Type for “Compute”.
	TOSCA simple profile ates how to stand up a single instance of a Virtual Machine (VM) image using a normative TOSCA Compute node.

	WordPress + MySQL, single instance
	Introduces the TOSCA base Node Types of: “WebServer”, “WebApplication”, “DBMS” and “Database” along with their dependent hosting and connection relationships.
	TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on a single server (instance).

	WordPress + MySQL + Object Storage, single instance
	Introduces the TOSCA base Node Type for “ObjectStorage”.
	TOSCA simple profile service showing the WordPress web application hosted on a single server (instance) with attached (Object) storage.	Comment by Matt Rutkowski: PLACEHOLDER: OpenStack Object Storage (Cinder) should have a CFN derived use case for us to reference. This should be co-located with block storage and before it since block will potentially introduce new node types.

	WordPress + MySQL + Block Storage, single instance
	Introduces the TOSCA base Node Type for “BlockStorage” (i.e., for Volume-based storage).
	TOSCA simple profile service showing the WordPress web application hosted on a single server (instance) with attached (Block) storage.

	WordPress + MySQL, each on separate instances
	Instantiates 2 tiers, 1 for WordPress, 1 for DMBS and coordinates both.
	Template installs two instances: one running a WordPress deployment and the other using a specific (local) MySQL database to store the data.

	WordPress + MySQL + Network, single instance
	· Introduces the TOSCA base Node Type for a simple “Network”.
	TOSCA simple profile service showing the WordPress web application and MySQL database hosted on a single server (instance) along with demonstrating how to define associate the instance to a simple named network.

	WordPress + MySQL + Floating IPs, single instance
	Connects to an external (relational) DBMS service
	TOSCA simple profile service showing the WordPress web application and MySQL database hosted on a single server (instance) along with demonstrating how to create a network for the application with Floating IP addresses.

[bookmark: _Toc379455150]Virtual Machine (VM), single instance
[bookmark: _Toc379455151]Description
This use case demonstrates how the TOSCA Simple Profile specification can be used to stand up a single instance of a Virtual Machine (VM) image using a normative TOSCA Compute node. The TOSCA Compute node is declarative in that the service template describes both the processor and host operating system platform characteristics (i.e., properties) that are desired by the template author. The cloud provider would attempt to fulfill these properties (to the best of its abilities) during orchestration.
Features
This use case introduces the following TOSCA Simple Profile features:
· A node template that uses the normative TOSCA Compute Node Type along with showing an exemplary set of its properties being configured.
· Use of the TOSCA Service Template inputs section to declare a configurable value the template user may supply at runtime. In this case, the property named “cpus” (of type integer) is declared.
· Use of a property constraint to limit the allowed integer values for the “cpus” property to a specific list supplied in the property declaration.
· Use of the TOSCA Service Template outputs section to declare a value the template user may request at runtime. In this case, the property named “instance_ip” is declared	Comment by Matt Rutkowski: TBD: After some stage of lifecycle?
· The “instance_ip” output property is programmatically retrieved from the Compute node’s “ip_address” property using the TOSCA Service Template-level get_property function.
[bookmark: _Toc379455152]Logical Diagram
TBD
[bookmark: _Toc379455153]Sample YAML
	tosca_definitions_version: tosca_simple_yaml_1_0yaml_1_0_0

description: >
 TOSCA simple profile that just defines a single compute instance. Note, this example does not include default values on inputs properties.

inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 constraints:
 - valid_values: [1, 2, 4, 8]

node_templates:
 my_server:
 type: tosca.nodes.Compute
 properties:
 # compute properties
 disk_size: 10 # in GB
 num_cpus: { get_input: cpus }
 mem_size: 4 # in MB
 # host image properties
 os_arch: x86_64
 os_type: linux
 os_distribution: ubuntu
 os_version: 12.04

outputs:
 instance_ip:
 description: The IP address of the deployed instance.
 value: { get_property: [my_server, ip_address] }

[bookmark: _Toc379455154]Notes
· This use case uses a versioned, Linux Ubuntu distribution on the Compute node.
[bookmark: _Toc379455155]WordPress + MySQL, single instance
[bookmark: _Description][bookmark: _Toc379455156]Description
TOSCA simple profile service showing the WordPress web application with a MySQL database hosted on a single server (instance).

This use case is built upon the following templates fro, OpenStack Heat’s Cloud Formation (CFN) template and from an OpenStack Heat-native template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_With_RDS.template
· https://github.com/openstack/heat-templates/blob/master/hot/F18/WordPress_Native.yaml
However, where the CFN template simply connects to an existing Relational Database Service (RDS) our template below will also install a MySQL database explicitly and connect to it.
[bookmark: _Toc379455157]Logical Diagram
TBD
[bookmark: _Sample_YAML][bookmark: _Toc379455158]Sample YAML
	tosca_definitions_version: tosca_simple_1.0

description: >
 TOSCA simple profile with WordPress, a web server, mMySQL DBMS and mysql database on the same server. Does not have input defaults or constraints.

inputs:
 cpus:
 type: numberinteger
 description: Number of CPUs for the server.
 db_name:
 type: string
 description: The name of the database.
 db_user:
 type: string
 description: The username of the DB user.
 db_pwd:
 type: string
 description: The WordPress database admin account password.
 db_root_pwd:
 type: string
 description: Root password for MySQL.
 db_port:
 type:integer
 description: Port for the MySQL database

node_templates:
 wordpress:
 type: tosca.nodes.WebApplication.WordPress
 requirements:
 - host: webserver
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 preconfigure:
 implementation: wordpress_preconfigure.sh
 input:
 wp_db_name: { get_property: [mysql_database, db_name] }
 wp_db_user: { get_property: [mysql_database, db_user] }
 wp_db_password: { get_property: [mysql_database, db_password] } 	Comment by Matt Rutkowski: TBD: Do not need separate name and could overload as the signature is the method name + parameters.
 # goto requirement, goto capability, goto port property
 wp_db_port: { get_ref_property: [database_endpoint, database_endpoint, port] }	Comment by Matt Rutkowski: Verify

 mysql_database:
 type: tosca.nodes.Database
 properties:
 db_name: { get_input: db_name }
 db_user: { get_input: db_user }
 db_password: { get_input: db_pwd }
 capabilities:
 database_endpoint:
 properties:
 port: { get_input: db_port }
 requirements:
 - host: mysql_dbms
 interfaces:
 postconfigure: mysql_database_postconfigure.sh

 mysql_dbms:
 type: tosca.nodes.DBMS
 properties:
 dbms_root_password: { get_input: db_root_pwd }
 dbms_port: { get_input: db_portroot_pwd }
 requirements:
 - host: server
 interfaces:
 Standard:
 create: mysql_dbms_install.sh
 start: mysql_dbms_start.sh
 configure: mysql_dbms_configure.sh
 input:	Comment by Matt Rutkowski: Is this needed??? We do not have grammar for it. Is this redundant????
 db_root_password: { get_property: [mysql_dbms, dbms_root_password] }

 webserver:
 type: tosca.nodes.WebServer
 requirements:
 - host: server
 interfaces:
 Standard:
 create: webserver_install.sh
 start: webserver_start.sh
	
 server:
 type: tosca.nodes.Compute
 properties:
 # compute properties (flavor)
 disk_size: 10
 num_cpus: { get_input: cpus }
 mem_size: 4096
 # host image properties
 os_arch: x86_64
 os_type: Linux
 os_distribution: Fedora
 os_version: 17

outputs:
 website_url:
 description: URL for Wordpress wiki.
 value: { get_property: [server, ip_address] }

[bookmark: _Toc379455159]Sample scripts
Where the referenced implementation scripts in the example above would have the following contents
[bookmark: UC_2_WORDPRESS_INSTALL_SH]wordpress_install.sh
	yum -y install wordpress

[bookmark: UC_2_WORDPRESS_CONFIGURE_SH]wordpress_preconfigure.sh
	sed -i "/Deny from All/d" /etc/httpd/conf.d/wordpress.conf
sed -i "s/Require local/Require all granted/" /etc/httpd/conf.d/wordpress.conf
sed -i s/database_name_here/db_name/ /etc/wordpress/wp-config.php
sed -i s/username_here/db_user/ /etc/wordpress/wp-config.php
sed -i s/password_here/db_password/ /etc/wordpress/wp-config.php
systemctl restart httpd.service	Comment by Matt Rutkowski: TOSCA-164:
Do we need a “restart” lifecycle operations?

Ideally, this would be done via the orchestrator. via some “restart” request.

BASICALLY WE ARE HARDCODED TO APACHE HERE AND BYPASSING THE ORCHESTRATOR

[bookmark: UC_2_MYSQL_DATABASE_CONFIGURE_SH]mysql_database_postconfigure.sh
	# Setup MySQL root password and create user
cat << EOF | mysql -u root --password=db_rootpassword
CREATE DATABASE db_name;
GRANT ALL PRIVILEGES ON db_name.* TO "db_user"@"localhost"
IDENTIFIED BY "db_password";
FLUSH PRIVILEGES;
EXIT
EOF

[bookmark: UC_2_MYSQL_DBMS_INSTALL_SH]mysql_dbms_install.sh
	yum -y install mysql mysql-server
Use systemd to start MySQL server at system boot time
systemctl enable mysqld.service

[bookmark: UC_2_MYSQL_DBMS_START_SH]mysql_dbms_start.sh
	# Start the MySQL service (NOTE: may already be started at image boot time)
systemctl start mysqld.service	Comment by Matt Rutkowski: Is this redundant?
This will not work for a restart

Please note that in our SugarCRM interop demo our start script actually called “restart”:

#!/bin/bash
service mysqld restart

[bookmark: UC_2_MYSQL_DBMS_CONFIGURE_SH][bookmark: UC_2_WEBSERVER_INSTALL_SH]mysql_dbms_configure
	# Set the MySQL server root password
mysqladmin -u root password db_rootpassword

webserver_install.sh
	yum -y install httpd
systemctl enable httpd.service
firewall-cmd --add-service=http	Comment by Matt Rutkowski: TODO: Verify these commands. (Sahdev)	Comment by Matt Rutkowski: JIRA: MUST REMOVE FIREWALL commands AND HAVE A WAY TO ADD THIS BACK FOR OPENSTACK HEAT.

This should be tackled as part of networking. Need to say “this is how TOSCA models firewalls”
firewall-cmd --permanent --add-service=http

[bookmark: UC_2_WEBSERVER_START_SH]webserver_start.sh
	# Start the httpd service (NOTE: may already be started at image boot time)
systemctl start httpd.service	Comment by Matt Rutkowski: TODO: is this redundant if we enable it for boot start? Also, our SugarCRM demo script had to test if was already started? Is this all script devs. need to worryu about with TOSCA?

#!/bin/bash

check if apache is already running
ps -A | grep -q httpd
if [$? -eq 1]; then
 echo "httpd is currently stopped, is getting started"
 service httpd start
 if [$? -ne 0]; then
 	echo "killing httpd processes"
 	ps -ef | grep httpd | grep -v grep | awk '{print $2}' | xargs kill -9
 	service httpd start
 fi	
else
 echo "httpd is already started"
fi

[bookmark: _Toc379455160]WordPress + MySQL + Object Storage, single instance
[bookmark: _Toc379455161]Description
This use case shows a WordPress application that makes use of an Object Storage service to application artifacts.
Note: Future drafts of this specification will detail this use case
[bookmark: _Toc379455162]Logical Diagram
TBD
[bookmark: _Toc379455163]Sample YAML
	TBD

[bookmark: _Toc379455164]WordPress + MySQL + Block Storage, single instance
[bookmark: _Toc379455165]Description
This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EBS.template

Note: Future drafts of this specification will detail this use case.
[bookmark: _Toc379455166]Logical Diagram
TBD
[bookmark: _Toc379455167]Sample YAML
	TBD

[bookmark: _Toc373867896][bookmark: _Toc379455168]WordPress + MySQL, each on separate instances
Description
TOSCA simple profile service showing the WordPress web application hosted on one server (instance) and a MySQL database hosted on another server (instance).

This is based upon OpenStack Heat’s Cloud Formation (CFN) template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_2_Instances.template

Note: Future drafts of this specification will detail this use case.
Logical Diagram
TBD
Sample YAML
	TBD

WordPress + MySQL + Network, single instance
[bookmark: _Toc379455169]Description
This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_Quantum.template

Note: Future drafts of this specification will detail this use case.
[bookmark: _Toc379455170]Logical Diagram
TBD
[bookmark: _Toc379455171]Sample YAML
	TBD

[bookmark: _Toc373867897][bookmark: _Toc379455172]WordPress + MySQL + Floating IPs, single instance
[bookmark: _Description_1][bookmark: _Toc379455173]Description
This use case is based upon OpenStack Heat’s Cloud Formation (CFN) template:
· https://github.com/openstack/heat-templates/blob/master/cfn/F17/WordPress_Single_Instance_With_EIP.template
Note: Future drafts of this specification will detail this use case.
[bookmark: _Toc379455174]Logical Diagram
TBD
[bookmark: _Toc379455175]Sample YAML
	TBD

[bookmark: _Toc373867899][bookmark: _Toc379455184]Notes
· The Heat/CFN use case also introduces the concept of “Elastic IP” (EIP) addresses which is the Amazon AWS term for floating IPs.
· The Heat/CFN use case provides a “key_name” as input which we will not attempt to show in this use case as this is a future security/credential topic.
· The Heat/CFN use case assumes that the “image” uses the “yum” installer to install Apache, MySQL and Wordpress and installs, starts and configures them all in one script (i.e., under Compute). In TOSCA we represent each of these software components as their own Nodes each with independent scripts.
[bookmark: _Toc383073919]Notes and Issues
[bookmark: _Toc379455188][bookmark: _Toc383073920]Known Extensions to TOSCA v1.0
The following items will need to be reflected in the TOSCA (XML) specification to allow for isomorphic mapping between the XML and YAML service templates.
[bookmark: _Toc379455189]Model Changes
The “TOSCA Simple ‘Hello World’” example introduces this concept in Section 3. Specifically, a VM image assumed to accessible by the cloud provider.
Introduce template Input and Output parameters
The “Template with input and output parameter” example introduces concept in Section 3.1.
“Inputs” could be mapped to BoundaryDefinitions in TOSCA v1.0. Maybe needs some usability enhancement and better description.
“outputs” are a new feature.
Grouping of Node Templates
This was part of original TOSCA proposal, but removed early on from v1.0 This allows grouping of node templates that have some type of logically managed together as a group (perhaps to apply a scaling or placement policy).
Lifecycle Operation definition independent/separate from Node Types or Relationship types (allows reuse). For now we added definitions for “node.lLifecycle” and “rRelationship.lifecycle”.
Override of Interfaces (operations) in the Node Template.
Service Template Naming/Versioning
Should include TOSCA spec. (or profile) version number (as part of namespace)
Allow the referencing artifacts using a URL (e.g., as a property value).
[bookmark: _Toc379455190]Normative Types
Constraint (addresses TOSCA-117)
Property / Parameter
Includes YAML intrinsic types.
Node
Relationship
Root, DependsOn, HostedOn, ConnectsTo
Artifact
Deployment: Bash (for WD01)
Requirements
(TBD), Goal is to rely less upon source defined requirements that point to types, and instead reference names of features exported by the target nodes.
Capabilities
Feature, Container, Endpoint
Lifecycle
Lifecycle, Relationship
Resource
In HEAT they have concept of key pairs (an additional resource type in the template).	Comment by Matt Rutkowski: FEATURE: Thomas indicated that this might be something to endorse in TOSCA (YAML) as part of the discussion of referencing VM images using a URL.
[bookmark: _Toc379455191]Functions
Intrinsic functions for model navigation, referencing etc.
get_input
get_property
get_ref_property
[bookmark: _Toc379455192][bookmark: _Toc383073921]Issues to resolve in future drafts
	Issue #
	Target
	Priority / Owner
	Title
	Notes

	TOSCA-132
	WD02
	
	Use "set_property" methods to "push" values from template inputs to nodes
	None

	TOSCA-133
	WD02
	
	Add text/examples/grammar for defining a nested template that implements a node type
	Proposed draft text exists, needs review/update.

	TOSCA-134
	WD02
	
	Define TOSCA version type based upon Apache Maven versioning
	NoneFix proposed in this revision, please review

	TOSCA-135
	WD02
	
	Define/reference a Regex language (or subset) we wish to support for constraints
	None

	TOSCA-136
	WD02
	
	Need rules to assure non-collision (uniqueness) of requirement or capability names
	None

	TOSCA-137
	WD02
	
	Need to address "optional" and "best can" on node requirements (constraints) for matching/resolution
	None

	TOSCA-138
	WD02
	
	Define a Network topology for L2 Networks along with support for Gateways, Subnets, Floating IPs and Routers
	Luc Boutier has rough proposal in MS Word format.

	TOSCA-142
	WD02
	
	WD02 - Define normative Artifact Types (including deployment/packages, impls., and runtime types)
	None

	TOSCA-143
	WD02
	
	WD02 - Define normative tosca.nodes.Network Node Type (for simple networks)
	Separate use case as what Luc proposes in TOSCA-138.

	TOSCA-144
	WD01
	
	WD01 - Update Ch 6, Example 5, "Template for deploying a two-tier application servers on two instances"
	Thomas assigned

	TOSCA-145
	WD01
	
	WD01 - Update Ch 7, Example 6 "Template for deploying a two-tier application on two servers."
	Thomas assigned

	TOSCA-146
	WD02
	
	WD02 - Define a grammar for each property function and provide examples.
	None

	TOSCA-147
	WD02
	
	WD02 - Define grammar for and examples of using Relationship templates
	None

	TOSCA-148
	WD02
	
	WD02 - Need a means to express cardinality on relationships (e.g., number of connections allowed)
	None

	TOSCA-149
	WD02
	
	WD02 - Create an independent section to describe a single requirement definitions’ grammar
	Improvement for readability of grammar.

	TOSCA-150
	WD02
	
	WD02 - Work towards a common syntax for Requirement definitions (currently 3 variants)
	Related to TOSCA-149

	TOSCA-151
	WD02
	
	WD02 - Resolve spec. behavior if name collisions occur on named Requirements
	Dale assigned

	TOSCA-152
	WD02
	
	WD02 - Extend Requirement grammar to support "Optional/Best Can" Capability Type matching
	Derek assigned

	TOSCA-153
	WD02
	
	WD02 - Define grammar and usage of Service Template keyname (schema namespace) "tosca_default_namespace"
	Need to define what normative types may be implied to be automatically imported as part of the schema declaration.

	TOSCA-154
	WD02
	
	WD02 - Decide how security/access control work with Nodes, update grammar, author descriptive text/examples
	

	TOSCA-155
	WD02
	
	WD02 - How do we provide constraints on properties declared as simple YAML lists (sets)
	

	TOSCA-156
	WD02
	
	WD02 - Are there IPv6 considerations (e.g., new properties) for tosca.capabilities.Endpoint
	

	TOSCA-157
	WD02
	
	WD02 - Can/how do we make a property defn. "final" or "read-only"
	

	TOSCA-158
	WD02
	
	WD02 - Provide prose describing how Feature matching is done by orchestrators
	Dependency on TOSCA-137, Future item, W03 or beyond.

	TOSCA-159
	WD02
	
	WD02 - Describe how not all interfaces need to supply scripts (artifacts), it is a no-op behavior
	

	TOSCA-160
	WD02
	
	WD02 - Need examples of using the "tosca.interfaces.relationship.Configure" interface
	

	TOSCA-161
	WD02
	
	WD02 - Need examples of using the built-in feature (Capability) and dependency (Requirement) of tosca.nodes.Root
	

	TOSCA-162
	WD02
	
	WD02 - Provide recognized values for tosca.nodes.compute properties: os_arch
	Could be WD03 item

	TOSCA-163
	WD02
	
	WD02 - Provide recognized values for tosca.nodes.BlockStorage: store_fs_type
	Could be WD03 item

	TOSCA-164
	WD02
	
	WD02 - Do we need a restart lifecycle operation for nodes?
	

	TOSCA-165
	WD02
	
	WD02 - New use case / example: Selection/Replacement of web server type (e.g. Apache, NGinx, Lighttpd, etc.)
	Could be WD03 item

	TOSCA-166
	WD02
	
	WD02 - New use case / example: Web Server with (one or more) runtimes environments (e.g., PHP, Java, etc.)
	Could be WD03 item

	TOSCA-167
	WD03
	
	WD02 - New use case / example: Show abstract substitution of Compute node OS with different Node Type Impls.
	Could be WD03 item

	TOSCA-168
	WD03
	
	WD02 - New use case / example: Show how substitution of IaaS can be accomplished.
	Could be WD03 item

	
	
	
	
	

[bookmark: _Toc383073922]References
[bookmark: _Toc85472893][bookmark: _Toc287332007][bookmark: _Toc379800441][bookmark: _Toc383073923]Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [TOSCA-1.0].
[bookmark: _Ref7502892][bookmark: _Toc12011611][bookmark: _Toc85472894][bookmark: _Toc287332008][bookmark: _Toc379800442][bookmark: _Toc383073924]Normative References
[bookmark: rfc2119][bookmark: REF_TOSCA_1_0][TOSCA-1.0]	Topology and Orchestration Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0, an OASIS Standard, 25 November 2013, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
[bookmark: REF_YAML_1_2][YAML-1.2]	YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy döt Net http://www.yaml.org/spec/1.2/spec.html
[bookmark: REF_YAML_TIMESTAMP_1_1][YAML-TS-1.1]	Timestamp Language-Independent Type for YAML Version 1.1, Working Draft 2005-01-18, http://yaml.org/type/timestamp.html

[bookmark: _Toc85472895][bookmark: _Toc287332009][bookmark: _Toc379800443][bookmark: _Toc383073925]Non-Normative References
[bookmark: REF_AWS_CFN][AWS-CFN]	Amazon Cloud Formation (CFN), http://aws.amazon.com/cloudformation/
[bookmark: REF_CHEF][Chef]	Chef, https://wiki.opscode.com/display/chef/Home
[bookmark: REF_OPENSTACK_HEAT][OS-Heat]		OpenStack Project Heat, https://wiki.openstack.org/wiki/Heat
[bookmark: REF_PUPPET][Puppet]		Puppet, http://puppetlabs.com/
[bookmark: REF_WORDPRESS][WordPress]	WordPress, https://wordpress.org/
[bookmark: _Toc85472897][bookmark: _Toc287332012][bookmark: _Toc379800449][bookmark: _Toc383073926]Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Contributors:
Derek Palma (dpalma@vnomic.com), Vnomic
Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart
Gerd Breiter (gbreiter@de.ibm.com), IBM
Jacques Durand (jdurand@us.fujitsu.com), Fujitsu
Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu
Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu
Kevin Wilson (kevin.l.wilson@hp.com), HP
Krishna Raman (kraman@redhat.com) , Red Hat
Luc Boutier (luc.boutier@fastconnect.fr), FastConnect
Matt Rutkowski (mrutkows@us.ibm.com), IBM
Richard Probst (richard.probst@sap.com), SAP AG
Sahdev Zala (spzala@us.ibm.com), IBM
Stephane Maes (stephane.maes@hp.com), HP
Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM
Travis Tripp (travis.tripp@hp.com), HP
[bookmark: _Toc85472898][bookmark: _Toc287332014][bookmark: _Toc379800453][bookmark: _Toc383073927][bookmark: _Toc379455187][bookmark: _Toc373867901]Revision History

	Revision
	Date
	Editor
	Changes Made

	WD02, Rev. 03
	2014-04-29
	Matt Rutkowski, IBM
	Includes TOSCA Version (and resulting changes), node states, Standard and Basic lifecycle interfaces.

Includes Jacques’ comments (Fujitsu).

TOSCA-Simple-Profile-YAML-v1.0-wd02	Working Draft 02	22 April 2014
Standards Track Draft	Copyright © OASIS Open 2014. All Rights Reserved.	Page 74 of 89
image1.png
OASIS)

