TOSCA Enhancements for Operation Outputs
June 4, 2018
Introduction
TOSCA allows service template designers to define the signature of interface operations by specifying the set of inputs (and their types) that need to be provided when invoking an operation. However, no equivalent support currently exists for defining the expected return values for interface operations.
We recommend that TOSCA should be extended as follows:
Allow service template designers to define operation outputs: named values that are expected to be returned by interface operations.
Provide a mechanism for reflecting output values returned by interface operations into attributes on nodes or relationships.
Adding support for output definitions addresses two shortcomings in the current grammar:
It completes the contract between the orchestrator and the artifacts that provide operation implementations (the “plug-ins”) by specifying the set of output values that must be returned in order for the artifact to be a valid implementation of the operation.
Without operation output functionality, there is no mechanism for a TOSCA orchestrator to obtain values for attributes specified in TOSCA node templates.
This document presents a proposal for providing output definition functionality.
Output Definitions and Assignments
Our proposed approach leverages the property mapping grammar that is part of substitution mappings to specify:
The set of named output values that must be returned by operation implementations
Property mappings that specify node or relationship attributes into which the returned output value must be stored.
These proposed extensions result in the following updated operation definition grammar that is to be used in node type or relationship type definitions:
	Keyname
	Required
	Type
	Description

	description
	no
	description
	The optional description string for the associated named operation.

	implementation
	no
	operation implementation definition
	The optional definition of the operation implementation

	inputs
	no
	list of
parameter definitions
	The optional list of input property definitions (i.e., parameter definitions) for operation definitions that are within TOSCA Node or Relationship Type definitions. This includes when operation definitions are included as part of a Requirement definition in a Node Type.

	outputs
	no
	list of
property mappings
	The optional list of property mappings that specify named operation output values and their mappings onto attributes of the node_type or relationship that contains the interface within which the operation is defined.

Output Definition Grammar
The proposal above results in the following grammar for operation output definitions:
	[bookmark: _GoBack]output_name: [<SELF | SOURCE | TARGET >, <optional_capability_name>, <attribute_name>, <nested_attribute_name_or_index_1>, ..., <nested_attribute_name_or_index_or_key_n>]

The various entities in this grammar are defined as follows:
	Parameter
	Required
	Type
	Description

	SELF | SOURCE | TARGET
	yes
	string
	For operation outputs in interfaces on node templates, the only allowed keyname is SELF: output values must always be stored into attributes that belong to the node template that has the interface for which the output values are returned.
For operation outputs in interfaces on relationship templates, allowable keynames are SELF, SOURCE, or TARGET.

	<optional_capability_name>
	no
	string
	The optional name of the capability within the specified node template that contains the named attribute into which the output value must be stored.

	<attribute_name>
	yes
	string
	The name of the attribute into which the output value must be stored.

	<nested_attribute_name_or_index_or_key_*>
	no
	string| integer
	Some TOSCA attributes are complex (i.e., composed as nested structures). These parameters are used to dereference into the names of these nested structures when needed.
Some attributes represent list or map types. In these cases, an index or key may be provided to reference a specific entry in the list or map (as named in the previous parameter) to return.

Examples
The service template below shows an example of the operation output syntax. The template is used to create a compute node. The config operation of the Standard lifecycle returns both the private and the public IP addresses of the config node. The property mappings grammar is used to reflect these addresses into the appropriate Compute node attributes:
	tosca_definitions_version: tosca_simple_yaml_1_2_0

description: Template for creating compute node

topology_template:

 node_templates:

 node:
 type: tosca.nodes.Compute
 interfaces:
 Standard:
 configure:
 outputs:
 ip1: [SELF, private_address]
 ip2: [SELF, public_address]

Some operation outputs may need to be reflected into attributes of capabilities of nodes, rather than in attributes of the nodes themselves.
The following example shows how an IP address returned by a config operation is stored in the ip_address attribute of the endpoint capability of a Compute node:
	tosca_definitions_version: tosca_simple_yaml_1_2_0

description: Template for creating compute node

topology_template:

 node_templates:

 compute:
 type: tosca.nodes.Compute
 interfaces:
 Standard:
 config:
 outputs:
 ip1: [SELF, endpoint, ip_address]

Additional Notes
It is possible for multiple operations to define outputs that map onto the same attribute value. For example, a create operation could include an output value that sets an attribute to an initial value, and the subsequence configure operation could then update that same attribute to a new value.
It is also possible that a node template assigns a value to an attribute that has an operation output mapped to it (including a value that is the result of calling an intrinsic function). Orchestrators could handle this scenario in one of the following two ways:
The orchestrator could flag such templates as invalid.
Alternatively, the orchestrator could use the assigned value for the attribute as its initial value. After the operation runs that maps an output value onto that attribute, the orchestrator must then use the updated value, and the value specified in the node template will no longer be used.
Further discussion is required to decide on the best approach.
2

