
 H2020-ICT-2018-2-825040

Rational decomposition and orchestration for

serverless computing

Deliverable D4.3

RADON Models I

Version: 1.0

Publication Date: 31-August-2019

Disclaimer:

The RADON project is co-funded by the European Commission under the Horizon 2020 Framework

Programme. This document reflects only authors’ views. EC is not liable for any use that may be

done of the information contained therein.

 Deliverable 4.3: RADON Models I

Page 2 of 30

Deliverable Card

Deliverable D4.3

Title: RADON Models I

Editor(s): Michael Wurster (UST) and Vladimir Yusupov (UST)

Contributor(s):
Damian Tamburri (TJD), Michael Wurster (UST), Vladimir Yusupov

(UST), Lulai Zhu (IMP)

Reviewers: Mike Long (PRQ), Lulai Zhu (IMP)

Type: Report

Version: 1.0

Date: 31-August-2019

Status: Final

Dissemination level: Public

Download page: http://radon-h2020.eu/public-deliverables

Copyright: RADON consortium

The RADON project partners

IMP IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

TJD STICHTING KATHOLIEKE UNIVERSITEIT BRABANT

UTR TARTU ULIKOOL

XLB XLAB RAZVOJ PROGRAMSKE OPREME IN SVETOVANJE DOO

ATC
ATHENS TECHNOLOGY CENTER ANONYMI BIOMICHANIKI EMPORIKI

KAI TECHNIKI ETAIREIA EFARMOGON YPSILIS TECHNOLOGIAS

ENG ENGINEERING - INGEGNERIA INFORMATICA SPA

UST UNIVERSITAET STUTTGART

PRQ PRAQMA A/S

The RADON project (January 2019 - June 2021) has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No

825040

 Deliverable 4.3: RADON Models I

Page 3 of 30

Executive summary

This document presents an initial version of RADON modeling approach consisting of abstract and

deployable entity modeling layers that comprise a set of abstract and technology-specific modeling

constructs addressing the RADON modeling challenges.

The document outlines the modeling specifics with respect to the challenges in the context of

RADON together with the detailed description of models in the companion document.

This deliverable will serve as a basis for the final RADON Models deliverable due in M18. The

work presented in this document has been performed in the context of task T4.2. All models

described in the document are publicly-available in the so-called “RADON Particles” repository. In

addition, a respective companion document covers the detailed presentation of these “RADON

Particles” in the form of TOSCA type specifications.

 Deliverable 4.3: RADON Models I

Page 4 of 30

Glossary

AEML Abstract Entities Modeling Layer

CML Cloud Modeling Language

CSAR Cloud Service Archive

DEML Deployable Entities Modeling Layer

FaaS Function as a Service

GMT Graphical Modeling Tool

IDE Integrated Development Environment

MSA Microservice Architecture

NFR Non-functional requirement

TOSCA Topology and Orchestration Specification for Cloud Applications

VM Virtual Machine

 Deliverable 4.3: RADON Models I

Page 5 of 30

Table of contents

1. Introduction 6

1.1 Deliverable Objectives 6

1.2 Overview of Main Achievements 6

1.3 Structure of the Document 7

2. Requirements 7

3. TOSCA Fundamentals 9

4. Research and Development Approach 10

4.1 Research Assumptions and Design Issues 10

4.2 Modeling Approach Overview 10

4.3 RADON Modeling Profile 13

4.3.1 RADON Namespace 13

4.3.2 RADON Types Hierarchy 13

Modeling FaaS Functions 14

Data Pipelines Modeling 21

Microservices Modeling 23

Non-Functional Requirements Modeling 24

4.4 RADON Template Library 26

5. Conclusions 28

Future work 29

References 30

 Deliverable 4.3: RADON Models I

Page 6 of 30

1. Introduction

The RADON project [Casale2019] aims to provide a unified DevOps experience allowing to employ

serverless Function as a Service (FaaS) technology in modern software system engineering. In order

to achieve this, RADON introduces a novel modeling approach and a set of standardized, reusable

model components for orchestrating microservices, FaaS-based serverless applications, and data

processing pipelines. This document elaborates on the initial modeling approach and describes in

detail the set of required models. In addition, a companion document is provided presenting the

specification of reusable TOSCA types used to model RADON applications.

1.1 Deliverable Objectives

This document presents the initial version of the RADON Models towards delivering the reported

outcome from above. The baseline for this initial version is the list of reference application-level

technologies agreed upon the consortium that has been published in deliverable D2.1 (Initial

requirements and baseline). RADON models utilize and extend the TOSCA language for emerging

compute contexts. With the formula “emerging compute contexts”, RADON intends to target (1)

serverless and FaaS-enabled orchestration, (2) microservice orchestration, and (3) data pipeline

orchestration.

This deliverable reflects that TOSCA is usable and adaptable for the aforementioned emerging

compute contexts. The present deliverable has four main objectives:

1. Define best practices for the usage of TOSCA in such contexts

2. Publish a first working profile providing reusable TOSCA types for such contexts

3. Provide a series of abstractions that may consolidate or compound the usage of TOSCA

1.2 Overview of Main Achievements

With the work done as part of this deliverable, the consortium makes several contributions:

- Introduction of two modeling layers that can be used to model on abstract level as well as

on concrete level to produce deployable blueprints

- Presentation of RADON’s type hierarchy and the intended use

- Detailed discussion of different modeling styles in the FaaS context by employing different

function triggering semantics using the notion of “invocable” and “standalone” functions

- Presentation of an initial approach to model application components of different granularity,

e.g., modeling of FaaS-based microservices with traditional components

- Introduction of a first step towards the modeling and orchestration of data pipelines using

TOSCA to filter, transform, or analyze streams of data

- Implementation of RADON’s Template Library in the form of a publicly maintained GitHub

repository

- Definition of initial reusable types as defined in detail in the companion document to cover

the reference application level technologies agreed upon the consortium

Calin Curescu

Calin Curescu

Calin Curescu

 Deliverable 4.3: RADON Models I

Page 7 of 30

1.3 Structure of the Document

The rest of the deliverable is structured as follows: Section 2 presents the requirements specifically

defined for the RADON models. In Section 3, we provide fundamental information about TOSCA

and the most important entities used in RADON. Section 4 elaborates on the research and

development approach of creating the RADON Modeling Profile and introduces the RADON

Template Library. Section 5 concludes the deliverable and points out future work.

2. Requirements

The RADON requirements analysis was presented in the deliverable D2.1 . The resulting set of

requirements that are going to be used as a basis for guiding the package-related work activities as

its part comprises RADON model-related requirements. This section briefly summarizes these

requirements.

ID R-T4.2-1

Title Deployment types heterogeneity

Priority Must have

Description RADON model must allow expressing combinations of different deployment

types including paradigm-specific elements, e.g., events and triggers.

ID R-T4.2-2

Title Reusable types and blueprints

Priority Should have

Description In RADON we should provide a repository (e.g., GitHub) to provide reusable

types and blueprints.

ID R-T4.2-3

Title Data processing modeling

Priority Must have

Description The models must be able to define different kinds of data processing tasks and

control flow elements in order to express the behavior of my application.

ID R-T4.2-4

 Deliverable 4.3: RADON Models I

Page 8 of 30

Title Preconditions for data processing

Priority Should have

Description The models should be able to define certain preconditions for filtering which data

objects to move/stream through the pipeline.

ID R-T4.2-5

Title Scaling of computing resources

Priority Should have

Description The models should be able to define how and when to scale certain computing

resources.

ID R-T4.2-6

Title Data processing compression

Priority Could have

Description The models could define configurations regarding data compression and

uncompression for certain processing components.

ID R-T4.2-7

Title Test case specification

Priority Must have

Description The models must be able to include the description of test cases for certain

components (annotate test-related information).

 Deliverable 4.3: RADON Models I

Page 9 of 30

3. TOSCA Fundamentals

This section of the deliverable briefly elaborates on the relevant fundamental TOSCA concepts

required for introducing the RADON modeling approach.

TOSCA is a provider-agnostic cloud modeling language (CML) [Bergmayr2018] standardized by

OASIS [OASIS2019]. With TOSCA, cloud applications can be modeled in the form of a graph that

describes the connectivity of application’s components in a declarative fashion [Binz2012,

Lipton2018]. The resulting topology, contained in a so-called service template can then be exported

as a Cloud Service Archive (CSAR) and automatically deployed by a TOSCA compliant

orchestrator. Figure 1 shows graphically TOSCA’s metamodel and depicts the connections between

the entities.

Figure 1 - TOSCA metamodel

The nodes of this topology in TOSCA terminology are called node templates whereas the edges are

called relationship templates. Node templates and relationship templates are typed using node types

and relationship types to define a particular semantics. For example, a node type could define a

certain Ubuntu-based virtual machine exposing particular properties, i.e., to configure the required

memory size. In contrast, a relationship type defines a certain type of dependency between two

nodes, e.g., that a node is “hosted on” or “connects to” another node. Essentially, types define the

semantics including sets of properties and attributes, which are then instantiated in concrete

templates, e.g., node templates or relationship templates. Moreover, TOSCA introduces the

concepts of capabilities and requirements, which, essentially, allow establishing the connections

between nodes. A basic example is matching capabilities and requirements for HostedOn

relationship, e.g., if a node representing MySQL DBMS needs to be hosted on the node that

represents a database server, its requirement called Container has to be fulfilled by the self-titled

capability in the database server node. TOSCA also provides the possibility to explicitly define a

dependency between nodes, which helps prioritizing the deployment orchestration order in case the

a specific deployment order is required. In addition, TOSCA uses policies, which are specified as

 Deliverable 4.3: RADON Models I

Page 10 of 30

self-titled TOSCA constructs, as means to define non-functional requirements for the chosen part

of the model.

Another important and relevant modeling concepts in TOSCA are substitution and grouping. The

substitution allows combining different granularity levels in TOSCA templates, e.g., having more

abstract nodes in the topology that have a composite structure and are described in separate service

templates. The grouping feature in TOSCA allows defining groups in templates, e.g., for attaching

policies to a group of nodes.

To represent an actual deployment logic, TOSCA allows defining implementation artifacts for node

types and node templates. Depending on the orchestrator, the logic can be supplied using, e.g., Shell

scripts or by using configuration management technologies such as Ansible. For the business logic,

on the other hand, TOSCA allows specifying deployment artifacts that are instantiated by the

orchestrator during deployment, e.g., a certain virtual machine image that shall be used to create a

VM.

4. Research and Development Approach

In this section, we elaborate on the RADON modeling approach, which is based on the RADON

type hierarchy defined using TOSCA CML. Prior to describing the introduced modeling approach,

we briefly describe the assumptions and design issues that need to be taken into consideration.

4.1 Research Assumptions and Design Issues

To automate the deployment and provide means for verification and testing of fine-grained and

loosely-coupled microservices and serverless applications, traditional deployment modeling

approaches have to take several new requirements into consideration. Essentially, these challenges

can be clustered into two categories related to functional and non-functional aspects.

Functional aspects are concerned with representing particular novel features and properties of new

component types in the application such as microservices, serverless functions, e.g., event-driven

nature of FaaS-hosted functions [Baldini2017], or how several components can be composed in a

data shipping architecture, to represent a deterministic data flow within the application’s model, i.e.,

adding behavioral information into the deployment model.

Non-functional aspects are concerned with non-functional application requirements, for example,

how certain constraints can be defined within the application model, e.g., security or performance

constraints, which facilitates constraint verification process. Moreover, continuous testing of such

finer-grained application topologies is significantly harder to achieve. As a result, the models must

also support specification of tests-related requirements.

4.2 Modeling Approach Overview

While TOSCA CML provides multiple normative types, which can be used for modeling cloud-

native applications, due to its abstract nature and high flexibility it is not sufficient for tackling the

Calin Curescu

Calin Curescu

Calin Curescu

Calin Curescu

Calin Curescu

 Deliverable 4.3: RADON Models I

Page 11 of 30

described design issues. To fulfill the requirements described in Section 2, the modeling approach

employed by RADON builds on top of TOSCA and introduces a hierarchy of new RADON-specific

types, both abstract and concrete, that represent specific technologies and are deployable. The

former types constitute RADON Abstract Entities Modeling Layer (AEML), whereas the latter

constitute RADON Deployable Entities Modeling Layer (DEML). Figure 2 presents a global view

on the RADON type hierarchy combining the abstract and deployable types. Basically, mostly the

leaf nodes in the figure represent concrete, deployable types, whereas the remaining nodes are

abstract and serve as a basis for deployable types.

The majority of introduced types describe nodes in the application topology including traditional

PaaS-hosted components such as nodes related to Kafka Streaming Platform, e.g., Kafka Broker or

Kafka Topic, or FaaS-hosted functions and data pipeline components. Since TOSCA provides

multiple generic normative types such as tosca.nodes.SoftwareComponent and tosca.nodes.Root, to

avoid introducing redundancy, multiple types in the hierarchy inherit from suitable normative types,

which results in relatively-large number of leaf nodes without any explicitly present abstract parent

nodes.

For example, technology-specific nodes such as Apache Nifi and Kafka Broker originate from

tosca.nodes.SoftwareComponent node type. In cases where there was a need to introduce additional

abstract types, e.g., Function and CloudPlatform node types, tosca.nodes.Root type was used as a

parent. A large segment of introduced node types focuses on modeling FaaS-hosted functions as

well as serverless and cloud platforms. The decision to introduce multiple abstract and deployable

types in the context of different providers and open source technologies is motivated by several

factors that are explained in the following sections.

The next large segment in the hierarchy is dedicated to relationship types. This segment also consists

of abstract and concrete types. Most of the concrete relationship types in the current state originate

from an abstract Triggers relationship type, which is described in the following sections. Having

technology-specific, concrete relationship types such as PublishtoKafkaTopic facilitates

specification of provider- and technology-specific properties. To support modeling with the newly-

introduced function types, the special capability Invocable is introduced, its semantics is also

described in the subsequent subsections. Finally, to specify RADON-specific non-functional

requirements, a set of policies is introduced. In its current state, the hierarchy supports specifying

scaling and performance-related requirements using the corresponding policy types.

 Deliverable 4.3: RADON Models I

Page 12 of 30

Figure 2 - RADON Types hierarchy

The Nechromancer
- Calin also remarks to address the Gap-analysis of TOSCA w.r.t., serverless compute languages in techs that already provide such a language, e.g., AWS and how it offers a language to specify serverless

 Deliverable 4.3: RADON Models I

Page 13 of 30

4.3 RADON Modeling Profile

This section provides the details on the RADON Modeling Profile together with examples of how

the introduced modeling entities can be used in RADON models.

4.3.1 RADON Namespace

Firstly, to uniquely identify RADON types a separate namespace is introduced. The general schema

of RADON’s namespace is defined as follows:

radon.[entity-type].[purpose-identifier*].[entity]

It consists of four parts, namely:

● The first part of the namespace is a fixed keyword radon that separates all TOSCA types

developed under the umbrella of RADON.

● Next part, i.e., [entity-type], specifies a corresponding TOSCA entity type, e.g., nodes,

relationships, or policies.

● The [purpose-identifier*] part of the namespace serves as an identifier of the entity’s

purpose. More specifically, this part of the namespace: (i)���� separates technology-agnostic

types from technology-specific types using the keyword abstract, (ii) describes particular

technologies or providers, e.g., aws for Amazon Web Services or kafka for a popular

streaming platform, and (iii) identifies the purpose of the TOSCA entity, e.g., scaling for

grouping scaling policies.

● Finally, the [entity] part refers to an actual entity, e.g., S3Bucket to describe the bucket

created in AWS S3 object storage service. Table 1 demonstrates several examples of how

the namespace is defined for some of the RADON types.

Table 1 - Examples of the RADON namespace usage

Example Description

radon.nodes.abstract.Function Identifies an abstract node type that represents a FaaS

function, which is hosted on an abstract FaaS platform.

radon.nodes.nifi.NifiPipeline Identifies a technology-specific node type that represents a

data pipeline defined for and hosted on Apache NiFi.

radon.policies.scaling.AutoScale Identifies one of RADON’s scaling policies, namely an

autoscaling policy.

4.3.2 RADON Types Hierarchy

The main parent nodes in the hierarchy of introduced types are of TOSCA origin, i.e., nodes,

relationships, policies. As discussed previously, Figure 2 demonstrates this hierarchy, with the

largest amount of new types being node types. In the following we explain the modeling approach

for representing the new component types using TOSCA.

 Deliverable 4.3: RADON Models I

Page 14 of 30

Modeling FaaS Functions

The important segment of RADON types deals with representation of serverless, FaaS-hosted

functions [Jonas2019] in deployment models. To support modeling of FaaS-hosted functions,

several crucial aspects have to be addressed. In the following, we elaborate on these modeling

aspects.

A. Serverless and Cloud Platforms

To simplify modeling of provider-specific services, e.g., AWS Lambda FaaS platform or Microsoft

Azure Object Storage service, RADON types hierarchy has a generic CloudPlatform node type in

the AEML, which is used as a parent for such technology-specific nodes. Consequently,

technology-specific node serve as a target for HostedOn relationship with respect to multiple

heterogeneous node types. For example, AWS S3 bucket is modeled as hosted on AWS Cloud

Platform without specifying the exact service to avoid model cluttering. This decision is motivated

by the fact that provider-managed services do not require a detailed configuration process requiring

multiple separate node types, thus it is possible to encapsulate cloud platform specific properties,

such as authentication credentials or region settings using generalized node types. Figure 3 shows

an example how to use a “AwsPlatform” node as a hosting component for a Lambda function as

well as a S3 bucket. In this case, the “AwsPlatform” acts as a serverless and cloud platform and

provides technology-specific semantics for AWS. The RADON profile also provides a serverless

platform node to define the semantics for a reusable OpenFaaS node. Listing 1 shows an excerpt of

such respective node template as an example.

tosca_definitions_version: tosca_simple_yaml_1_0

 topology_template:

 node_templates:

 Platform:

 type: radon.nodes.openfaas.OpenFaaSPlatform

 properties:

 basic_auth_user: JohnDoe

 basic_auth_password: abc123#!a

 api_gateway_host: https://openfaas.host.me

Listing 1 - Example of an OpenFaaS serverless platform node

B. Function triggering semantics

The first important modeling challenge is how to address different function triggering semantics.

More specifically, functions need to be modeled differently based on what triggers them. For

example, most of the functions deployed to commercial offerings such AWS Lambda are event-

driven and can be triggered by a plethora of events emitted by provider-specific services, e.g., AWS

S3 object storage or AWS SNS message queue. Contrarily, there are functions that can be referred

to as standalone as they do not require explicit modeling of event sources. For example, a scheduled

 Deliverable 4.3: RADON Models I

Page 15 of 30

function is typically triggered by an internally defined cron job, which does not need to be explicitly

represented in the deployment model. As a result, the modeling semantics changes depending on

the function kind.

To separate these function types, RADON type hierarchy specifies invocable and standalone

function types with respect to the corresponding FaaS platforms. The invocable function types

requires modeling a relationship of a specific type called Triggers in RADON types hierarchy that

connects the specific resource, i.e., event source, and the function itself. A similar approach was

proposed by Wurster et al. [Wurster2018] as they recommend to use TOSCA’s relationships to

model the notion of events if a cloud resource triggers a cloud FaaS function. Moreover, this

relationship must describe which event types trigger the function and provide a binding logic that

links the event source with the function. A graphical representation of the invocable function that is

triggered by the event emitted from AWS S3 bucket is depicted in Figure 3, whereas the actual

listing describing this use case is shown in Listing 2.

Figure 3 - Modeling an Invocable function for thumbnail generation use case; function code

 is attached as deployment artifact (DA)

tosca_definitions_version: tosca_simple_yaml_1_0

 topology_template:

 node_templates:

 Platform:

 type: radon.nodes.aws.AwsPlatform

 properties:

 access_key_id: asdv5846qasd2134153311

Calin Curescu
Calin: How do you specify the Event type generated here?

Calin Curescu
Calin: How do you know which event types this Capability supports?

 Deliverable 4.3: RADON Models I

Page 16 of 30

 secret_access_key: asddv54653724932asd165

 region: eu-central-1

 CreateThumbnail:

 type: radon.nodes.aws.LambdaFunction

 properties:

 name: CreateThumb

 role_name: CreateThumbRole

 runtime: nodejs

 handler: index.handler

 memory: 512

 timeout: 30

 artifacts:

 deployment_package:

 file: thumbnail.zip

 type: radon.artifacts.archive.Zip

 requirements:

 - host: Platform

 Uploads:

 type: radon.nodes.aws.S3Bucket

 properties:

 name: Uploads

 requirements:

 - host: Platform

 - invoker:

 node: CreateThumbnail

 relationship: ResourceTrigger

Listing 2 - Modeling an Invocable function for thumbnail generation use case

Compared to invocable functions, standalone functions do not require a relationship, since all

binding logic can be defined directly within the function. As an example, for scheduled functions,

the only information that is required is the actual timeout and the configuration logic, i.e.,

implementation artifact in TOSCA terms, that sets up the appropriate trigger, i.e., a cron job, on the

provider’s side. A graphical model specifying a scheduled function deployed to Azure Functions

platform is shown in Figure 4. Another example of a standalone function might be the endpoint

exposed via API Gateway. While this type of functions can also be modeled as invocable functions,

e.g., with a Client node serving as the triggering node, it can also be represented as a standalone

node with all the required semantics and logic, e.g., an OpenAPI specification to configure the API

Gateway, attached directly to the function. Moreover, providing the API Gateway Configuration for

some FaaS platforms is not obligatory, e.g., OpenFaaS automatically exposes deployed functions

The Nechromancer
- what we have here is possible in standard TOSCA; to play the devils advocate, how does this cope with more complex aggregations?

- Paul remarks that a use-case which is complex enough should be used as a ref to address the aforementioned point;

- Paul also remarks on what are the ramifications for the aforementioend complexity w.r.t the complexity of the language/type-system, we should look into that in the gap analysis�

The Nechromancer
- Paul asks how do these abstractions map to v1.3? we should have a clear overview of that;

The Nechromancer
- Paul remarks that the conclusion of this exercise should be the value proposition of using TOSCA in the scope of serverless; how are we placing this language with respect to that?

 Deliverable 4.3: RADON Models I

Page 17 of 30

using the endpoints of a predefined format, which can also be reconfigured using the corresponding

implementation artifacts attached directly to the function.

Figure 4 - Modeling a Standalone function for scheduled task use case

tosca_definitions_version: tosca_simple_yaml_1_0

 topology_template:

 node_templates:

 Platform:

 type: radon.nodes.azure.AzurePlatform

 properties:

 user_name: JohnDoe

 password: asddv54653724932asd165

 region: europe

 BatchJob:

 type: radon.nodes.azure.TimerTriggeredAzureFunction

 properties:

 function_name: BatchJob

 timeout: 30

 schedule: 00 12 * * *

 app_name: BatchJob

 app_runtime: node

 artifacts:

 deployment_package:

 file: batchjob.zip

 type: radon.artifacts.archive.Zip

 requirements:

 - host: Platform

Listing 3 - Modeling a Standalone function for scheduled task use case

Calin Curescu
Calin: A way of expressing a well-know capability for e.g. standalone triggers could be via a TOSCA capability

 Deliverable 4.3: RADON Models I

Page 18 of 30

C. Event triggers

As described above, for invocable functions there is a dedicated relationship type called Triggers.

The name of the relationship follows the TOSCA naming approach where the name represents an

action, e.g., HostedOn or ConnectsTo. In this case, the relationship’s name signifies that the event

source triggers a function, based on one or more events. To achieve this, Triggers relationship type

as one of its properties has a list of events. For example, if AWS Lambda function must be triggered

by several AWS S3 events, these events can be specified in the corresponding Triggers relationship

connecting the respective S3 bucket and Lambda function. Moreover, to establish an actual binding

between the bucket and a function, the implementation artifact needs to be attached to this

relationship type. This is required since both the function and the bucket are initially deployed

independently of each other, thus, requiring to establish a binding between them.

In RADON, we introduce an abstract Triggers relationship type that is prepared to be used together

with any kind of Invocable capability. However, as each cloud provider or serverless platform

provides different interfaces to configure the event binding, we further introduce specific

relationship types for them.

For example, with OpenFaaS there is a special KafkaTriggers relationship type that is used to

establish a corresponding event binding between a Kafka topic and a function hosted on OpenFaaS.

In addition, there is a AWS-specific Triggers relationship type having the semantics and the

deployment logic attached to setup and establish several resource-triggered relationships between

AWS services and Lambda functions.

An example of resource-triggered relationship modeling is shown in Figure 5, which depicts a

detailed excerpt of Figure 3. In this example, the model describes how the corresponding Lambda

function is triggered whenever a new file is uploaded or changed inside the modeled S3 bucket. For

describing different events, there is a special event datatype in RADON type repository. Currently,

this data type’s structure is based on the CloudEvents specification, however, to simplify the

modeling process most of the properties are made optional. This allows specifying only particular

event names, e.g., AWS S3 Put event with the corresponding AWS event name string as it is

depicted in Figure 5. Lastly, Listing 4 shows how such a model translates to TOSCA YAML

showing how RADON’s event data type is used.

 Deliverable 4.3: RADON Models I

Page 19 of 30

Figure 5 - Modeling of a “Triggers” relationship using the toy example use case

...

relationship_templates:

 ResourceTrigger:

 type: radon.relationships.aws.Triggers

 properties:

 event_types:

 - putEvent:

 type: radon.datatypes.Event

 properties:

 type: s3:ObjectCreated:Put

 - postEvent:

 type: radon.datatypes.Event

 properties:

 type: s3:ObjectCreated:Post

Listing 4 - Modeling of a “Triggers” relationship using the toy example use case

D. Abstracting FaaS providers

The function-related node types are represented by both abstract and deployable modeling layers,

i.e., AEML and DEML. All function node types originate from a generic Function type, which

represents a FaaS-hosted function in a provider-agnostic fashion. For example, the already

mentioned toy example use case could be modeled using abstract types as shown in Figure 6.

 Deliverable 4.3: RADON Models I

Page 20 of 30

Figure 6 - Abstract modeling of the toy example use case

Further, abstract provider-specific function types comprise different sets of properties, but are not

yet deployable due to the aforementioned difference between the invocable and standalone function

types. As a result, every provider has their invocable and standalone function types that originate

from the corresponding provider-specific abstract type shown in Table 2.

Table 2 - Abstract function types in RADON type hierarchy belonging to AEML

Name Namespace Description

Function radon.nodes.abstract.Function A generic, provider-agnostic

function node type which serves

as a basis for provider-specific

function nodes.

AWS Lambda Function radon.nodes.aws.LambdaFunction An abstract AWS Lambda

function node type that serves as

a basis for AWS Invocable and

AWS Standalone function types.

Azure Function radon.nodes.azure.Function An abstract Microsoft Azure

function node type

Google Cloud Function radon.nodes.google.CloudFunction An abstract Google Cloud

Function function node type

OpenWhisk Function radon.nodes.openwhisk.Function An abstract OpenWhisk function

node type

OpenFaaS Function radon.nodes.openfaas.Function An abstract OpenFaaS function

 Deliverable 4.3: RADON Models I

Page 21 of 30

node type

Data Pipelines Modeling

For the first version of the RADON models, the consortium agreed to implement data processing

pipelines using Apache NiFi as technology. To model an application containing Apache NiFi

processing elements, two TOSCA node types are required. On the one hand, a node type is required

that represents Apache NiFi as a middleware component. This node type is capable of installing and

starting the respective software components and can only be hosted on traditional compute

infrastructure, such as an Ubuntu operating system. Further, a node type is required that represents

the actual Apache NiFi processing pipeline.

Figure 7 - Modeling example of a data pipeline processing Kafka events and calling a Lambda backend function

Figure 7 shows a modeling example of an Apache NiFi data pipeline that processes arbitrary events

coming from a Kafka topic. In this example, the NiFi pipelines connects to the Kafka topic and

listens for events. After processing events, i.e., filtering or transforming data, the pipeline invokes

a Lambda function hosted on AWS for further processing (cf. relation between “Event Processing”

and “Create Thumbnail” nodes in Figure 5). Further, the NiFi pipeline and the Kafka topic are hosted

on respective software middleware components: on a “Apache NiFi” node template and “Kafka

Broker” node template respectively. Listing 5 shows an excerpt of how the connection between the

Kafka topic, the NiFI pipeline, and the Lambda function can be expressed in TOSCA. The advantage

of this modeling approach is that the data pipeline can be specified using Apache NiFi’s native XML

specification syntax, which, in turn, can be attached as a TOSCA deployment artifact to the pipeline

 Deliverable 4.3: RADON Models I

Page 22 of 30

node type. On top of that, Apache NiFi pipelines can be connected using TOSCA’s connectsTo

relationship. Application developers have to supply the respective implementations in its blueprint

to establish the physical connection between two pipelines.

tosca_definitions_version: tosca_simple_yaml_1_0

 topology_template:

 node_templates:

 EventProcessing:

 type: radon.nodes.apache.nifi.NifiPipeline

 artifacts:

 pipeline_template:

 file: pipeline.zip

 type: radon.artifacts.archive.Zip

 requirements:

 - host: Nifi

 - events:

 node: Events

 capability: endpoint

 relationship: tosca.relationships.ConnectsTo

 - invoker:

 node: CreateThumb # omitted for brevity

 capability: endpoint

 relationship: tosca.relationships.ConnectsTo

 Nifi:

 type: radon.nodes.apache.nifi.NifiPipeline

 properties:

 component_version: 1.9.2

 port: 88888

 requirements:

 - host: Compute # omitted for brevity

 Events:

 type: radon.nodes.apache.kafka.KafkaTopic

 properties:

 topic_name: events

 partitions: 2

 replicas: 2

 requirements:

 - host: Broker # omitted for brevity

Listing 5 - Modeling example of a data pipeline processing Kafka events and calling a Lambda backend function

 Deliverable 4.3: RADON Models I

Page 23 of 30

One disadvantage of this modeling approach is that the actual pipeline is hidden from the modeler,

which limits the possibilities to model non-functional requirements and constraints for testing,

defect prediction, and decomposition. However, the granularity of modeled pipeline processing

nodes can be adjusted by modelers, i.e., nodes will represent separate pipeline actions instead of

groups of actions, providing more flexibility for specifying NFRs. Resulting pipeline models are

flexible enough to fulfill the given modeling requirements, which makes this modeling approach

suitable for employing in RADON.

Microservices Modeling

Microservice architectures [Newman2015] typically consist of multiple units. In TOSCA, a single

microservice can be represented as a node template or as a service template. For example, a

container-based microservice can be represented by using a node template of type DockerContainer

inside the RADON template library. Further, a microservice itself can consist of multiple

components such as a database or block storage to store its state. In such a case, a microservice can

be modeled based on a service template that, in turn, contains the detailed structure of it, e.g., several

serverless FaaS functions hosted on a serverless platform using a database to store its state. Hence,

service templates are TOSCA’s native construct to group the components of a microservice.

Using this, a service template containing multiple small serverless functions represents at the bigger

picture a single microservice. By employing TOSCA’s substitution feature, one can orchestrate such

independent service templates by referencing them in a separate service template using substitutable

nodes based on abstract node types. Figure 8 shows an example of how microservice applications

can be developed using RADON’s approach. On the left hand side of the figure, a simple service

template is shown containing a serverless FaaS function hosted on AWS. This function is using a

“User” microservice to query and modify the data provided by this service.

However, this node template is of a special substitutable type Microservice. This node template

points to another service template containing the details of the respective service. In this case, and

as shown on the right hand side in Figure 8, this service consists of multiple serverless FaaS

functions hosted on Azure. By using RADON’s envisioned template substitution mechanisms, a

user is able to develop single microservice-based service templates which can be later on referenced

and orchestrated by the mentioned constructs.

 Deliverable 4.3: RADON Models I

Page 24 of 30

Figure 8 - Using RADON’s template substitution to implement microservice applications

Non-Functional Requirements Modeling

A typical way to specify non-functional requirements in TOSCA is to use policies. This entity type

can be attached to various constructs and describe arbitrary information related to the chosen target

entity. To support attachment of various NFR relevant in the context of RADON, the type hierarchy

comprises a list of dedicated policy types.

As an initial set, RADON offers policies for specification of scaling behavior. Further, RADON

provides policies to express certain performance-related requirements. Finally, a first set of

functional testing policies are provided used to specify model-based test cases that can be executed

by the tools provided in RADON.

As an example, Figure 9 shows how an auto-scaling policy can be attached to a group of nodes. In

this case, the model defines that the whole stack must auto-scale between 1 and 5 instances. On top

of that, Listing 6 shows exemplary how such a model is translated into TOSCA syntax.

Further, in Figure 10 we show how a performance requirement policy can be attached to a serverless

FaaS function. Essentially, RADON will provide tools to interpret, process, and enforce such

policies. These types will be part of the envisioned template library and a user can extend them with

additional properties if required.

 Deliverable 4.3: RADON Models I

Page 25 of 30

Figure 9 - Auto-scaling policy for a group of nodes Figure 10 - Performance requirement policy

tosca_definitions_version: tosca_simple_yaml_1_0

 topology_template:

 groups:

 nifi_group:

 type: tosca.groups.Root

 members: [EventProcessing, Nifi, Ubuntu]

 policies:

 - nifi_autoscaling_policy:

 type: radon.policies.scaling.AutoScale

 targets: [nifi_group]

 properties:

 min_size: 1

 max_size: 5

Listing 6 - Auto-scaling policy for a group of nodes

 Deliverable 4.3: RADON Models I

Page 26 of 30

4.4 RADON Template Library

The RADON Template Library is a repository containing TOSCA blueprints, reusable definitions

and extensions to deploy and manage RADON applications. The template library provides reusable

TOSCA types of application runtimes, computing resources, and FaaS platforms in the form of

abstract (AEML) as well as deployable modeling entities (DEML). The repository also comprises

RADON’s FaaS abstraction layer that provides TOSCA definitions to deploy particular FaaS

application component to AWS, Azure, and Google as well as to on-premise serverless platforms

such as OpenFaaS and OpenWhisk.

A. RADON Particles

The template library is a central element in RADON’s envisioned development workflow. It is

mainly used by the Graphical Modeling Tool (GMT) as its central repository of reusable types and

existing deployable blueprints, but it is also shared and used by other RADON toolchain tools such

as the IDE. The template library serves three main scenarios:

(1) the GMT uses the template library to understand which blueprints and types exist and could be

reused for a specific application deployment,

(2) a user of the GMT utilizes the template library to create a new application blueprint based on

the existing types inside the repository,

(3) the template library provides the necessary type definitions that can be exported into a CSAR

required by the orchestrator for the deployment. On top of the GMT, the template library is also

used by other RADON tools.

For example, the respective application blueprints are inputs for the Defect Prediction Tool to

highlight code smells or bad practices introduced during application modeling. Further, RADON’s

constraint definition language (CDL) uses the blueprints as an input in order to check if all described

hard constraints are satisfied by the modeled application.

In general, the template library is a file-based repository and is managed by a version control system.

The RADON consortium decided to use GitHub to maintain the template library. Therefore, we

created a publicly available repository:

https://github.com/radon-h2020/radon-particles

The repository is called “RADON Particles” and is a cryptonym for the template library as it

contains small, reusable entities to model modern, serverless, and data-driven applications.

The repository’s structure is organized by the main TOSCA elements on the root level, such as there

is a directory name “nodetypes” containing all TOSCA node types relevant for RADON. Below the

root level, the RADON namespace of an entity is used for structuring. We apply a similar file system

layout like the directory structure for Java packages. Considering the RADON namespace from

above, “radon”, “[entity-type]”, “[purpose-identifier]”, and “[entity]” become directories and form

the repository’s structure. RADON’s conventions is that below each “[entity]” directory is a

https://github.com/radon-h2020/radon-particles

 Deliverable 4.3: RADON Models I

Page 27 of 30

“definitions.yaml” and “README.md” file. The following listing shows an excerpt of the file

structure:

 radon-particles

 |-artifacttypes

 |-capabilitytypes

 | |-radon

 | | |-capabilities

 | | | |-Invocable

 | | | |-...

 |-datatypes

 |-docs

 |-nodetypes

 | |-radon

 | | |-nodes

 | | | |-abstract

 | | | | |-...

 | | | |-apache

 | | | |-aws

 | | | | |-AwsPlatform

 | | | | |-LambdaFunction

 | | | | |-S3Bucket

 | | | |-google

 | | | |-...

 |-policytypes

 |-relationshiptypes

 | |-radon

 | | |-relationships

 | | | |-abstract

 | | | | |-Triggers

 | | | |-...

Listing 7 - RADON Template Library structure

The “definitions.yaml” file contains the actual TOSCA syntax describing the respective type. The

“README.md” file, on the other hand, contains a user-friendly documentation and highlights the

most important facts for each corresponding type. Furthermore, to make the repository self-

contained, TOSCA implementation artifacts that belong to a node or relationship type are

maintained in subdirectories of the respective type. With all implementation artifacts in place,

service templates representing desired applications can be automatically deployed using the chosen,

TOSCA-compliant orchestrator.

B. RADON Contribution Model

 Deliverable 4.3: RADON Models I

Page 28 of 30

To control the contributions to the shared template library, the RADON consortium agreed to apply

a Feature-Branch-Workflow model to update the blueprints and type definitions inside the

repository.

The template library is RADON’s central repository and, therefore, we assume the master to

represent the official project history and latest development state. Whenever a TOSCA entity needs

to be adapted or added, the respective project partner creates a so-called “feature branch” (using a

descriptive name) based on the current master. This feature branch is used to commit and push

the required changes or additions. By regularly pushing the feature branch to the central repository,

teammates or other project partners can comment or collaborate on this feature. To merge the

changes into the repository’s master branch, a pull request has to be created. This gives other project

partners the opportunity to review the changes before they become a part of the main codebase.

Once UST (responsible for WP4) approved the PR, it is merged into the master.

5. Conclusions

In this document, we described the current version of RADON Models and the details on the

corresponding RADON template repository that supports them. Further, the definitions of these

reusable types are specified in the respective companion document covering the reference

application level technologies agreed upon the consortium.

Table 3 shows an overview of the level of fulfillment for each of the agreed requirements. The labels

specifying the “Level of fulfillment” are defined as follows:

(i) ✗ (unsupported): the requirement is not fulfilled by the current version

(ii) ✔ (partially-low supported): a few of the aspects of the requirement is fulfilled by the

current version

(iii) ✔✔ (partially-high supported): most of the aspects of the requirement is fulfilled by the

current version

(iv) ✔✔✔ (fully supported): the requirement is fulfilled by the current version). Afterwards,

we discuss for each requirement briefly how it has been addressed by publishing this

deliverable

Table 3 - Overview of requirement compliance level

Id Requirement Title Priority Level of fulfillment

R-T4.2-1 Deployment types heterogeneity MUST_HAVE ✔✔

R-T4.2-2 Reusable types and blueprints SHOULD_HAVE ✔✔

R-T4.2-3 Data processing modeling MUST_HAVE ✔✔

R-T4.2-4 Preconditions for data processing SHOULD_HAVE ✗

 Deliverable 4.3: RADON Models I

Page 29 of 30

R-T4.2-5 Scaling of computing resources SHOULD_HAVE ✔✔✔

R-T4.2-6 Data processing compression COULD_HAVE ✗

R-T4.2-7 Test case specification MUST_HAVE ✔

Future work

In the next iteration of the deliverable RADON Models - final version at month 18, we will further

detail the type hierarchy to address the appearing use cases requirements. Generally, the

requirements related to specification of NFRs will need to be revised and refined based on the arising

requirements collected during the iterative feedback sessions with the use case providers. The usage

of introduced modeling constructs in practical settings defined by the use cases will help to highlight

the shortcomings and overlooked areas. Moreover, new requirements can arise and be collected

from the feedback loops with the tool owners. For example, the constraints definition language and

its relation to RADON modeling constructs will be further enhanced with more details. One possible

direction would be defining CDL-specific TOSCA data types that will facilitate representing CDL

statements and using these introduced types for specification of properties in CDL-specific policy

types. In a similar fashion, specification of test annotations and other NFRs will be supported by

more detailed RADON modeling entities.

Moreover, with respect to the requirements described in Section 2, we still need to address the

following issues:

● Requirement R-T4.2-1: the type hierarchy currently does not address the challenge of

modeling cross-cloud FaaS use cases, where sources and targets do not belong to the same

provider. In addition, the node and relationship types might become finer-grained in case

required by the use cases.

● Requirement R-T4.2-2: the template repository structure will be further refined and

revised based on the fulfillment of remaining requirements.

● Requirement R-T4.2-3: depending on the desired granularity of processing nodes, the

data processing modeling will be revised and refined with additional entities if needed by

arising use case requirements.

● Requirement R-T4.2-4: this requirement has to be addressed

● Requirement R-T4.2-6: this requirement has to be addressed

● Requirement R-T4.2-7: current test annotations will be enhanced with additional details

according to the arising requirements from the tool owners

 Deliverable 4.3: RADON Models I

Page 30 of 30

References

[Binz2012] Binz, T.; Breiter, G.; Leymann, F. & Spatzier, T.: “Portable Cloud Services Using

TOSCA”, IEEE Internet Computing, IEEE, 2012, 16, 80-85

[OASIS2019] OASIS, TOSCA Simple Profile in YAML Version 1.2, 2019

[Lipton2018] Lipton, P.; Palma, D.; Rutkowski, M. & Tamburri, D. A.: “TOSCA Solves Big

Problems in the Cloud and Beyond!”, IEEE Cloud Computing, 2018

[Wurster2018] Wurster, M.; Breitenbücher, U.; Képes, K.; Leymann, F. & Yussupov, V.:

“Modeling and Automated Deployment of Serverless Applications using

TOSCA”, Proceedings of the IEEE 11th International Conference on Service-

Oriented Computing and Applications (SOCA), IEEE Computer Society, 2018,

73-80

[Casale2019] G. Casale, M. Artač, W.-J. van den Heuvel, A. van Hoorn, P. Jakovits, F.

Leymann, M. Long, V. Papanikolaou, D. Presenza A. Russo, S.N. Srirama, D.A.

Tamburri, M. Wurster, L. Zhu, “Rational Decomposition and Orchestration for

Serverless Computing”, The Symposium and Summer School on Service-

Oriented Computing (SummerSoc), 2019, (accepted for publication)

[Jonas2019] Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.-C.; Khandelwal, A.; Pu, Q.;

Shankar, V.; Carreira, J. M.; Krauth, K.; Yadwadkar, N.; Gonzalez, J.; Popa, R.

A.; Stoica, I. & Patterson, D. A.: “Cloud Programming Simplified: A Berkeley

View on Serverless Computing”, Electrical Engineering and Computer Sciences,

University of California at Berkeley, Electrical Engineering and Computer

Sciences, University of California at Berkeley, 2019

[Baldini2017] Baldini I. et al. (2017) Serverless Computing: Current Trends and Open Problems.

In: Chaudhary S., Somani G., Buyya R. (eds) Research Advances in Cloud

Computing. Springer, Singapore

[Newman2015] Newman, S.: “Building Microservices: Designing Fine-Grained Systems”

O'Reilly, 2015

[Bergmayr2018] Bergmayr, A.; Breitenbücher, U.; Ferry, N.; Rossini, A.; Solberg, A.; Wimmer,

M. & Kappel, G.: “A Systematic Review of Cloud Modeling Languages”, ACM

Computing Surveys (CSUR), ACM, 2018, 51, 1-38

