[bookmark: _GoBack]
Notifications Proposal

This is a revised version of the EventInterface2018_06_20.docx proposal, NotificationInterface2018_10_02.docx, and NotificationInterface2018_10_15.docx

Introduction to notifications
TOSCA allows service template designers to define operation interfaces that allows the execution of lifecycle management operations using external artefacts. While executing these operations within workflows, attributes of the different nodes might be changed. Nevertheless, there are many situations when the information modeled by an attribute changes as a consequence of external events (load changes, failures, mode changes) and not as a consequence of workflow execution.

As of today, there is no way by which such information can be communicated to the orchestrator (i.e. for updating the instance model) in a TOSCA-defined formal way. Moreover, while the concept of an event is used in policies to trigger executions (of either single operations or entire workflows, see section 3.6.18) the language does not define yet how such events come to be. This leaves implementations to employ ad-hoc solutions to change attribute value and/or generate trigger events that are not standardized or even visible to the template creator.

To this end we propose the definition of “notifications” in TOSCA. They allow service template designers to specify how to receive external events and/or attribute changes in a way that is asynchronous to the lifecycle management workflows and operations. Even more, these notifications can be used to define a standardized way of asynchronous interaction between the TOSCA orchestrator and the outside world (that implements the managed objects).

The major difference between notifications and operations is that the former are called from the outside world to on the orchestrator, and not the other way around. For ease of use, we propose a format similar to operations, however no inputs are defined (as it is called asynchronously from the outside), information is pushed to the orchestrator via outputs (similarly to operation outputs). In addition, we can associate different event_types with notifications, that is these event types are generated when the notification is called.

We recommend that TOSCA should be extended as follows:
· Allow service template designers to define notifications associated with nodes or relationships.
· Each interface may expose several notifications that can be called by the outside world on the orchestrator.
· Within an interface, to differentiate operations from notifications we should gather the operations under the “operations” keyname and notifications under the “notifications” keyname. For backward compatibility if an interface does not specify the operations or notifications keyname the definitions should be regarded as operations, but this usage should be deprecated.
· Each reception of a notification also generates a homonymous event type that can be used to set off triggers as specified in policies.
· Each notification can have several outputs specified, these are a way to introduce information from the outside world, Similar to the outputs of operations, the output values of notifications are mapped into attributes in the scope of SELF for nodes or SELF, SOURCE or TARGET for relationships.

Interface definition
Within an interface we can either define operations or notifications. Thus, we change the grammar to gather the operations under the operations keyname and the notifications under the notifications keyname. For back compatibility if neither the operations or notifications are specified then we assume the symbolic names in the interface definition to mean operations, but this use is deprecated. The rest stays the same. Operations and notifications names should not overlap.

Interface grammar
Interface definitions have the following grammar:
	<interface_definition_name>
 type: <interface_type_name>
 inputs:
 <property_definitions or property_assignments>
 operations:
 <operation_definitions>
 notifications:
 <notification_definitions>

In the above grammars, the pseudo values that appear in angle brackets have the following meaning:
· interface_definition_name: represents the required symbolic name of the interface as a string.
· interface_type_name: represents the required name of the interface type for the interface definition.
· property_definitions: represents the optional list of property definitions (i.e., parameters) which the TOSCA orchestrator would make available (i.e. will pass) to all defined operations. This means these properties and their values would be accessible to the implementation artifacts (e.g., scripts) of any interface operation during their execution. The property definitions should be used within Node or Relationship type definitions, including as part of a Requirement definition in a Node Type.
· property_assignments: represents the optional list of property assignments that should be used for passing parameters to operations within Node or Relationship Template providing values for properties defined in their respective type definitions.
· operation_definitions: represents the required name of one or more operation definitions.
· notification_definitions: represents the required name of one or more notification definitions.

Notification definition
A notification definition defines a named notification that can be associated with an interface. The notification is a way for an external event to be transmitted to the TOSCA orchestrator. Parameter values can be sent together with a notification and we can map them to node/relationship attributes similarly to operation outputs. The artifact that the orchestrator is registering with in order to receive the notification is specified using the “implementation” keyname in a similar way to operations.

When the notification is received an event is generated within the orchestrator that can be associated to triggers in policies to call other internal operations and workflows. The notification name (the unqualified full name) itself identifies the event type that is generated and can be textually used when defining the associated triggers.

Notification definition keynames
	Keyname
	Required
	Type
	Description

	description
	no
	description
	The optional description string for the associated named notification.

	implementation
	no
	notification implementation definition
	The optional definition of the notification implementation.

	outputs
	no
	list of attribute mappings
	The optional list of property mappings that specify named notification output values and their mappings onto attributes of the node or relationship that contains the interface within which the notification is defined.

Grammar
The following multi-line grammar may be used in Node or Relationship Template or Type definitions:
	<notification_name>:
 description: <notification_description>
 implementation: <notification_implementation_definition>
 outputs:
 <attribute_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following meaning:
· notification_name: represents the required symbolic name of the notification as a string.
· notification_description: represents the optional description string for the corresponding notification_name.
· notification_implementation_definition: representes the optional specification of the notification implementation (i.e. the external artifact that is may send notifications)
· attribute_mappings: represents the optional list of attribute assignments for mapping the outputs values to the respective attributes of the node or relationship.

Notification implementation definition
Notification implementations definition specifies one or more artifacts to be used by the orchestrator to subscribe for that particular notification. We use the primary and dependencies keynames as in the operation implementation definition. The operation_host and timeout are not used as they make no sense for notifications.

Discussions:
Denomination of notification:
After a discussion on email, we decided to use the name “notification” for this construct, and have it defined as part of an interface. Thus, an interface can define a mix of zero or more operations and zero or more notifications.

Identifying the right notification:
We are specifying an implementation for the notification, that is, using this information the orchestrator is registering to an external artifact that will send the notifications. Note that there are several ways to implement this (out of scope of this definition):
· the template designer may specify different implementation artifacts for each template node
· the template designer may specify the same implementation artifact for similar nodes, and then relies on the orchestrator to communicate the node name and the notification name to the external artifact when registering (during template parsing/ instance model creation).

Examples:
The following example shows how an interface can be set up to receive an external notification, and then set up a policy that triggers on it.

Preliminaries: already existing event-condition-action specification in TOSCA:
There are already two constructs in TOSCA to deal with event-condition-action patterns: policies and triggers. As part of a policy definition, we can combine the existence of one or more triggers with a policy target group (i.e. a set of nodes or relationships). Each trigger further defines a combination of an event_type with a certain action (the action can be used either to invoke a workflow or a specific operation). The way I interpret the standard, is that events of the event_type defined in the trigger and which in addition are associated with the entities in the target group trigger the specified actions.

What has not been specified before is how these events are generated. Here, this proposes that one way to generate such an event is when receiving a notification. Thus, besides updating the attributes associated with the notification outputs, the reception of a notification also generates a homonymous event type that can be used to set off triggers as specified in policies.

Now, getting back to the policy, the following semantics is assumed:
If
· a trigger triggers on the specific event type, and
· the node on which the notification has been called is in the target list
the associated action will be performed.

Notification example:
In the case below the notifications are defined in the org.ego.interfaces.StayingAlive interface, the policy is recover_after_crash_policy, the action is to call the failure_recovery_workflow, the event it will react on is the org.ego.interfaces.StayingAlive.failure_report notification.

Templates:
Note: only the highlighted text uses the proposed extensions.

tosca_definitions_version: tosca_simple_yaml_1_3_x
description: Example template of notification usage

interface_types:
 org.ego.interfaces.Upgrade:
 derived_from: tosca.interfaces.Root
 description: A simple interface
 operations:
 upgrade:
 implementation: upgrade_artifact
 inputs:
 name:
 type: string
 mode:
 type: string
 outputs:
 status:
 type: string
 cancel_upgrade:
 implementation: cancel_upgrade_artifact
 outputs:
 message:
 type: string
 upgrade_cleanup:
 implementation: upgrade_cleanup_artifact

 org.ego.interfaces.StayingAlive:
 derived_from: tosca.interfaces.Root
 description: >
 A simple interface to receive heartbeat, fault and failure events
 (only notifications)	
 notifications:
 heartbeat:
 implementation: staying_alive_artifact
 outputs:
 tick:
 type: boolean
 failure_report:
 implementation: staying_alive_artifact
 outputs:
 level:
 type: integer
 time:
 type: timestamp
 environment:
 type: string

topology_template:
 node_templates:
 db_1:
 type: org.ego.nodes.Database
 interfaces:
 org.ego.interfaces.Upgrade:
 ...

 org.ego.interfaces.StayingAlive:
 notifications:
 heartbeat:
 outputs:
 tick: [SELF, still_alive]
 failure_report:
 outputs:
 level: [SELF, failure_level]
 time: [SELF, failure_time]
 environment: [SELF, failure_context]
 ...

policies:
 - recover_policy:
 type: org.ego.policies.trigger.RecoveryPolicy
 description: >
 A trigger type policy.
 Kicks in if either the database or app_logic nodes fail.
 Triggers the execution of the failure_recovery workflow.
 targets: [db_1, app_logic_1]
 triggers:
 - mon_fail_trigger:
 event_type: org.ego.interfaces.StayingAlive.failure_report
 action: failure_recovery_workflow
 ...

workflows:
 failure_recovery_workflow:
 description: Recover the end-to-end service after failure
 steps:
 stepA:
 target:
 db_1
 filter:
 - assert:
 - failure_level: [{greater_than: 0}]
 activities:
 - call_operation: Standard.create
 on_success:
 - stepB
 - stepC
 stepB:
 target:
 app_logic_1
 filter:
 - assert:
 - failure_level: [{greater_than: 0}]
 activities:
 - call_operation: Standard.create
 on_success:
 - stepC
 stepC:
 target:
 app_logic_1
 activities:
 - call_operation: Standard.configure

2

