e mm e mmm e S€MVICE INPUtS [,

E TOSCA Processor ' i rchestrator | i Platform i
1 1

’ | B i
L 1

1

zt) x Normalized Node . :E E: :

D 5 Parser > Node » Resolver [~ Representations #—> | plementations | 1

OO Templates (graph) “+—i :

1

H _/_ I I : : :

1 : 1 i : 1

| I . e ———————————————————————————————) b mmm———————) e

Repositories

1. Parser

* Accepts a single TOSCA service template plus imported TOSCA “units” (files without a “topology_template”)
* Can (optionally) import these units from one or more repositories, either individually or as complete profiles
* Outputs valid normalized node templates and unresolved requirements (one-to-one equivalency)

2. Resolver

* Applies service inputs

* Satisfies all requirements and creates the relationship graph (an unsatisfied requirement results in an error)

* Converts normalized node templates to node representations (one-to-one equivalency [cardinality?]) [a full TOSCA orchestrator can manage these instead of the external orchestrator/platform]
* Calls intrinsic functions (on demand for all the above) using the graph of node representations

3. Out of the scope of the processor

* (Continuously) turns node representations into zero or more node instances (one-to-any)

* (Continuously) calls operations on node instances

* (Continuously) updates node representation attribute values (error if they do not adhere to TOSCA type constraints) [we still don’t know how to handle multiplicity]
* (Continuously) reactivates the resolver: outputs and even satisfaction of requirements may change

* (Optionally) changes the node representations themselves for day 2 transformations

@ juBCiy

	Slide 1

