1
TWS Specification

1.1
Development Lifecycle

1.2
Categories of Methods

The TWS specification defines five categories of methods or services, namely ‘Service Support’, ‘Security’, ‘Translation & Request Quote’, ‘Status, Notification and Delivery’ and ‘Reference Files’. These categories form a guideline for the services that the TWS specification provides. Each category encapsulates one facet of the core work required for the completion of a translation job, from initial quote through to final delivery.
1.2.1
Service Support

The ‘Service Support’ category contains only one service. This service allows the client to query the vendor on the type of localisation services they provide. The method used for this service support is retrieveServiceList. When a retrieveServiceList request is made on a vendor a list of languages supported, service types supported, domain types supported, and Mime types supported is returned. In the case where no relationship exists between client and vendor, this is the first service evoked by the client to ensure the vendor meets the requirements for the potential translation job. The client can then use the information returned in their future interactions with the vendor.
1.2.2
Security

As with any transaction over the web, data security is an important consideration. OASIS defines a WS-Security standard specification which provides several methods for the securing of web service related transactions. The TWS specification relies on WS-Security to provide an end-to-end message level security and hence the specification recommends the use of username/password based security over SSL.
1.2.3
Translation and Request Quote

This category details the services required to instantiate a job between a client and a vendor. Web services for translation use a job ticket as a unique identifier for each project. This job ticket is created on the client side usually before a quote request. The job ticket consists of a project ID, a user ID and a unique job ID. This job ticket can then be used in all future interactions with the vendor’s web service. Currently there are two methods of initiating a job in the ‘Translation and Request Quote’ category.
The first method is used when there is no pre-existing relationship between client and vendor. If this is the case, the client submits a requestQuote service. The requestQuote service details the information pertaining to the translation job (word count, languages etc). The client retrieves the generated quote using the service retrieveQuote and chooses to accept or reject the quote. If the quote is accepted an acceptQuote service is activated, if not accepted the generated quote will expire after a certain time limit, defined by the vendor.
The second method is used when a relationship between the client and the vendor already exists. This method is based upon the submitJob service. The submitJob service has similar inputs to the requestQuote service but it also contains the purchase order information found in the acceptQuote service used in the previous method. Using this method it is automatically assumed that the job will be accepted. This interaction might be between two in-house systems, one system has content to be translated, it contacts a second MT system and gets the content translated.
1.2.4
Status, Notification and Delivery

The TWS TC provides seven status, notification and delivery management services in the TWS specification. This set of methods allows the client some control over the work that is being carried out by the vendor for a particular job. Using these services a client can check the status of and cancel or suspend a particular job. The success of each service request is dependant on the state of the job at the time of calling the service. For example you cannot cancel a job that has already been completed for obvious reasons.
· ‘retrieveActiveJobsList’ will return to the client a list of all active jobs that they have with that particular vendor. An alternative to this is the ‘retrieveFullJobsList’ service with returns all jobs associated with the particular vendor irrespective of the jobs current status.
· A client can query the vendor using the ‘retrieveJobInformation’ service and gets a response containing all current information about a job. The status of the job can be deduced from the information received from the ‘retrieveJobInformation’ and possible changes to the project deadlines. If a job is completed then the status of the ‘retrieveJobInformation’ response should reflect this.
· If the information received back from the vendor after a ‘retrieveJobInformation’ request indicates that the job is completed, this job can then be downloaded using the ‘retrieveJob’ service.

· The client can choose to suspend a job temporarily at any time as long as the job status is not complete. This is done by making a ‘suspendJob’ request.

· To remove this temporary suspension of a job (by submitting a ‘suspendJob’ request), the client can choose to resume the job using the ‘resumeJob’ service.

· A client can cancel a job using the ‘cancelJob’ service provided the job is currently active and not in a completed state.
1.2.5
Reference Files

The vast majority of localisation projects require not only the files to be localised but also any reference files that pertain to the project. These files are not for translation but contain information that may help the process. Such files as translation memories, style guides, or terminology references may be sent along with the translatable files. The ‘Reference’ category defines services to allow for this allocation of these files to a particular project.

A resource file can be assigned to any number of active jobs using the ‘associateResource’ service.

To remove an association between a job and a resource file the ‘disassociateResource’ service is used.
The client can review information about a resource file by evoking the ‘retrieveResourceInformation’ service. This will return from the vendor a list of jobs that the resource file is assigned to, what its purpose is and whether it has changed (updated).
The TWS specification allows the client the functionality of uploading assets to the vendor using SOAP messages using the ‘uploadFile’ service.
1.3 Services Supported in Current Specification
At this point there are 18 services being supported by the TWS specification. As indicated in section 1.2 these services are divided into categories depending on their function in a translation process. These services can conversely be thought of under the following headings:

Required Services — these are services that are required for a translation web services implementation and form the basis of a minimalist approach to translation web services use.

Recommended Services — these services are recommended by the TWS TC to be used in an implementation of TWS together with the ‘Required’ services.
Optional Services — optional services are services that are only needed in some specific cases (enquiring about what services a vendor has to offer or setting up a first contact with a vendor by requesting a quote etc.). These services are not essential to the TWS process but are required for some scenarios.

	Required Services
	Optional Services
	Recommended Services

	submitJob
	retrieveServiceList
	rejectJob

	retrieveJobInformation
	requestQuote
	associateResource

	retrieveJob
	acceptQuote
	disassociateResource

	retrieveActiveJobsList
	retrieveQuote
	retrieveResourceInformation

	suspendJob
	retrieveFullJobsList
	retrieveFullResourceList

	resumeJob
	
	UploadFile

	cancelJob
	
	

Table 1 - List of services
1.4
Possible Inclusions in next Iteration of Specification
2.
Translation Web Services

2.1
Web Services - Use

2.2
Why use Translation Web Services

2.3
Technologies in Translation Web Services
2.3.1
SOAP
Simple Object Access Protocol is a W3C developed standard described as a communication protocol or a message passing system between two computers. SOAP is the specification that defines the XML format for these messages being passed. SOAP is one of three core XML based standards that are the foundation of a web services implementation (the others being WSDL and UDDI see Section 2.3.2 & Section 2.3.3).
2.3.2 WSDL

A Web Services Description Language is an XML document that describes (a) a set of SOAP messages and (b) how these messages are exchanged. The WSDL file in a practical sense contains the information required by a client to access a service, i.e. what parameters need to be passed to the service to evoke a response. The WSDL file should also contain the actual location (HTTP address) of the web service.
2.3.3 UDDI

UDDI (Universal Description, Discovery and Integration) provides a mechanism for clients to dynamically find other web services. UDDI is the third protocol that is required to implement web services. It allows a company the ability to register their provided web services online thus exposing them to potential clients.
In summation, SOAP is the communication protocol for web services, WSDL defines how the interaction occurs between the two computers, i.e. how to evoke the services and the UDDI is a mechanism for finding these services or registering ones own services.

3
Use Cases
4
TWS Reference Implementation

The TWS Technical Committee reference implementation of the TWS draft specification was undertaken by the Localisation Research Centre, at the University of Limerick, in Ireland as part of the IGNITE project.
The basic premise of TWS — and indeed any web services implementation — is that you have a client machine and a server machine. The server machine will contain a pre-programmed set of methods or functions that the client machine will access using the web services. An example of this would be an online credit card validation system. One website (the client) connects to a remote service (the server) with the details; the service validates the credit card and returns the result to the website.

4.1
Implementation Work

The first stage was to decide on an implementation platform. The Translation Web Services Technical Committee (TC) decided to use the J2EE development platform and the Java programming language. The rationale behind this decision was that the open source ‘Apache Project’ had a Java-based implementation of SOAP called AXIS. The AXIS implementation is a reliable and stable base on which to implement Java Web Services. This implementation provides an Application Programming Interface (API) into the SOAP actions that are required for implementing the TWS specification. The logical choice of web server to complement the use of Apache AXIS was Apache Tomcat — so this was used to host the web services on our internal LRC server.

The development process was based on the prototype model of software development. The first stage was to start with one of the 18 services currently available in the TWS specification, and from there to develop one service at a time reporting back to the TC on any issues or suggestions for improvements that arose as we progressed.

As previously mentioned, AXIS provides an API to the SOAP functionality. It also provides two command line utilities that further aid the implementation of web services. The ‘Java2WSDL’ utility takes pre-existing Java code and creates a WSDL file for that code. The TWS specification already has a WSDL, so this utility was useless for our purposes. However, the second utility, ‘WSDL2Java’, creates the Java stubs (Java files that contain the code needed to use SOAP) required by (a) the server to write and deploy the service and (b) the client to access the service through its own code. Figures 1 and 2 show this process. Firstly the Java stubs are created:

[image: image1.png]Server-side
Java Stubs

Translation
Web Services
WSDL

-

Client-side
Java Stubs

Figure 1: Creating the Java Stubs from the WSDL.
Then the Java stubs are used by the client application to access the services and by the server to deploy the services.

[image: image2.png]Client

Services Application

Using SOAP
over HTTP

Server-side Client-side
Java Stubs f————= | JavaStubs

L. L

Figure 2: Connecting client and server (through the Java stubs) over HTTP using SOAP.
The first service that we implemented was the retrieveServiceList service. This service was chosen because there were no input parameters required for it. All that was required to invoke the service was an instance of the retrieveServiceListRequest class. The retrieveServiceList service returns “a complete list of services offered by a particular vendor. This will include the languages dealt with and services offered by a particular vendor” (Translation Web Services Specification Draft 1.0). After writing the server-side code to handle a retrieveServiceListRequest, i.e. return all of the appropriate values, the next stage was to create a simple test class that could instantiate a retrieveServiceListRequest and handle the results received back from the server in a retrieveServiceListResponse. With both classes now ready, we needed to deploy the services to the Apache web server. The WSDL file also contains the location of the service, i.e. where it can be accessed from. Deployment is necessary to ensure the service is in the location as defined in the WSDL.

When the utility ‘WSDL2Java’ creates the Java stubs needed for the server-side machine, it also creates two other files that are used to deploy and ‘un-deploy’ the service to a web server (Apache Tomcat). These files are called Web Service Deployment Descriptors (‘deploy.wsdd’ and ‘undeploy.wsdd’).

The next stage in the development of the implementation was to write the code for the rest of the services. While writing the code we encountered some issues with the specification (including inconsistencies between the schema and the specification document). These issues were quickly amended by the TC. During the process of coding we also made some suggestions to the TC about possible improvements to the specification and we were actively involved in applying these changes. For example, the service ‘retrieveQuote’ in the original specification did not return any information about the location of the actual quote. This was deemed to be an important piece of information for this service and was promptly included in the specification.

With the code for the implementation of the services now written, the initial service deployed (retrieveServiceList) was un-deployed and the full list of services was deployed to the web server. A JSP (Java Server Pages) client‑interface was developed to allow for the input of the parameters required for each service and also to show the responses from the server — see Figure 3.
4.1
Next Steps
The next step in the reference implementation is to attach the front-end JSP interface to a back-end database system that returns some relevant information that is not pre-defined. The current implementation can be seen running live on www.electonline.org:8080/index.html. To view or download the source code used please go to www.igniteweb.org/TWSImpl. Here you will also find instructions on how to install this implementation on your own local machine and server.
5
Glossary of Terms

6
References
