1 Requirements for Code Lists

What follows is a fragment extract from the working document
1.1 Overview
The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies.

The goal is to provide a representation for code lists that are extensible, restrictable, traceable, and cognizant of the need for code lists to be maintained by various organizations who are authorities on their content.
1.2 Types and usage of Code Lists

1.2.1 First-order business information entities

UBL uses codes in two ways:

· As first-order business information entities (BIEs) in their own right. For example, one property of an address might be a code indicating the country. This information appears in an element, according to the Naming and Design Rules specification [NDR].

<Country>UK</Country>

1.2.2 Second-order business information entities

As second-order information that qualifies some other BIE. For example, any information of the Amount core component type must have a supplementary component (metadata) indicating the currency code. This information appears in an attribute.

<Currency code=”EUR”>2456,000</Country>
1.2.3 Standardized codes whose code lists are managed by an agency from the code list DE 3055.

1.2.4 Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

1.2.5 Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

1.2.6 Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

1.3 Technical requirements of Code Lists

Following are our major requirements on potential code list schemes for use in the UBL library and customizations of that library. For convenience, a weighted point system is used for scoring the solutions against the requirements.

1.3.1 Semantic clarity

The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

1.3.2 Interoperability

The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

1.3.3 External maintenance

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already starting to do this, though we recognize that others may never choose to create such modules.

1.3.4 Validatability

The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for non-XSD applications (for example, based on perl or Schematron) to do validation.

1.3.5 Context rules friendliness

The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists. This has lower point values because we expect it to be easy to design custom features for code lists. For example, the following is a mock-up of one approach that could be used:

<CodeList fromType="LocaleCodeType" toCode="MyCodeType">

<Add>JP</Add>

<Remove>DE</Remove>

</CodeList>
1.3.6 Upgradability

The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used. This has lower point values because requirements related to interoperability take precedence over a “convenience requirement”.

1.3.7 Readability

A representation in the XML instance that provides code information in a clear, easily readable form. This is a subjective measurement, and it has lower point values because although we want to recognize readability when we find it, we don’t want it to become more important than requirements related to interoperability.

