
wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 1 of 43

 1

Universal Business Language (UBL) 2

Code List Representation 3

Working Draft 2004-02-08 4

Document identifier: 5

WD-UBLCLSC-CODELIST-20040206.DOC 6

Location: 7

http://www.oasis-open.org/committees/ubl/ 8

Editor: 9

Marty Burns for National Institute of Standards, burnsmarty@aol.com 10

Contributor: 11

Anthony Coates abcoates@londonmarketsystems.com 12
Mavis Cournane mavis.cournane@cognitran.com 13
Anne Hendry anne.hendry@sun.com 14
G. Ken Holman gkholman@CraneSoftwrights.com 15
Sue Probert sue.probert@dial.pipex.com 16
Alan Stitzer alan.stitzer@marsh.com 17
 18

Abstract: 19

This specification provides rules for developing and using reusable code lists. This specification has been developed for 20
the UBL Library and derivations thereof, but it may also be used by other technologies and XML vocabularies as a 21
mechanism for sharing code lists and for expressing code lists in W3C XML Schema form. 22

Status: 23

This is a draft document. It may change at any time. 24

This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your comments are invited. Members 25
of this subcommittee should send comments on this specification to the ubl-clsc@lists.oasis-open.org list. Others should 26
subscribe to and send comments to the ubl-comment@lists.oasis-open.org list. To subscribe, send an email message to 27
ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message. 28

For information on whether any patents have been disclosed that may be essential to implementing this specification, and 29
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Security Services TC 30
web page (http://www.oasis-open.org/committees/security/). 31

 32

Change History 33

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 2 of 43

Revision Editor Description

2004-01-13 Marty Burns First complete version converted from NDR revision 05

2004-01-14 Marty Burns Minor edit of chapter heading 3 & 4

2004-01-20 Marty Burns Incorporated descriptions from AS and KH

2004-02-06 Marty Burns Cleaned up requirements and other sections – removed some
redundant content from merge of contributions. Explicitly identified
Data Model and Metadata models separately from XML
representations of the same.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 3 of 43

Table of Contents 34

1 Introduction.. 6 35

1.1 Scope and Audience ... 6 36

1.2 Terminology and Notation... 6 37

2 Requirements for Code Lists .. 8 38

2.1 Overview ... 8 39

2.2 Use and management of Code Lists... 8 40

2.2.1 [R1] First-order business information entities.. 8 41

2.2.2 [R2] Second-order business information entities ... 8 42

2.2.3 [R3] Data and Metadata model separate from Schema representation ... 8 43

2.2.4 [R4] XML and XML Schema representation ... 9 44

2.2.5 [R5] Machine readable data model... 9 45

2.2.6 [R6] Conformance test for code lists .. 9 46

2.3 Types of code lists.. 9 47

2.3.1 [R7] UBL maintained Code List .. 9 48

2.3.2 [R8] Identify and use external standardized code lists... 9 49

2.3.3 [R9] Private use code list... 9 50

2.4 Technical requirements of Code Lists... 9 51

2.4.1 [R10] Semantic clarity ..10 52

2.4.2 [R11] Interoperability...10 53

2.4.3 [R12] External maintenance ...10 54

2.4.4 [R13] Validatability...10 55

2.4.5 [R14] Context rules friendliness ..10 56

2.4.6 [R15] Upgradability ..10 57

2.4.7 [R16] Readability ...10 58

2.4.8 [R17] Code lists must be unambiguously identified ..10 59

2.4.9 [R18] Ability to prevent extension or modification ..11 60

2.5 Design Requirements of Code List Data Model ..11 61

2.5.1 [R19] A list of the values (codes) for a code list ...11 62

2.5.2 [R20] Multiple lists of equivalents values (codes) for a code list (e.g. integers & mnemonics)11 63

2.5.3 [R21] Unique identifiers for a code list ..11 64

2.5.4 [R22] Unique identifiers for individual values of a code list ...11 65

2.5.5 [R23] Names for a code list ..11 66

2.5.6 [R24] Documentation for a code list ..11 67

2.5.7 [R25] Documentation for individual values of a code list...12 68

2.5.8 [R26] The ability to import, extend, and/or restrict other code lists ...12 69

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 4 of 43

2.5.9 [R27] Support for describing code lists that cannot be enumerated...12 70

2.5.10 [R28] Support for references to equivalent code lists ...12 71

2.5.11 [R29] Support for individual values to be mapped to equivalent values in other code lists12 72

2.5.12 [R30] Support for users to attach their own metadata to a code list ..12 73

2.5.13 [R31] Support for users to attached their own metadata to individual values of a code list12 74

2.5.14 [R32] Support for describing the past and future time-variance of the values ..12 75

2.5.15 [R33] Identifier for UN/CEFACT DE 3055. ..13 76

3 Data and Metadata Model for Code Lists..14 77

3.1 Data Model Definition ..14 78

3.2 Supplementary Components (Metadata) Model Definition ..14 79

3.3 Examples of Use..15 80

4 XML Schema representation of Code Lists..17 81

4.1 Data Model Mapping..17 82

4.2 Supplementary Components Mapping ...17 83

4.3 Namespace URN ...18 84

4.4 Namespace Prefix..18 85

4.5 Schema Location ...19 86

4.6 Code List Schema Usage..19 87

4.7 Instance ...20 88

4.8 Associating UBL Elements with Code List Types...20 89

4.9 Deriving New Code Lists from Old Ones..21 90

4.9.1 Extending code lists ...21 91

4.9.2 Restricting code lists ..22 92

5 Conformance to UBL Code Lists ..23 93

6 References ..24 94

Appendix A. Rationale for the Selection of the Code List Mechanism (Historical Non-Normative) ...25 95

Contenders...25 96

A.1 Enumerated List Method...25 97

A.2 QName in Content Method..27 98

A.3 Instance Extension Method...29 99

A.4 Single Type Method..30 100

A.5 Mltiple UBL Types Method...33 101

A.6 Multiple Namespaced Types Method..35 102

A.7 Analysis and Recommendation...37 103

Appendix B. - ebXML Registry ClassificationScheme ...39 104

B.1 What is ebXML Registry ClassificationScheme ...39 105

B.2 Using ebRIM ClassificationScheme To Represent UBL Code Lists ..39 106

B.3 Mapping Between UBL Code Lists and ebRIM ClassificationScheme ..40 107

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 5 of 43

B.3 References ...41 108

Appendix C. List of Rules for Codes ..42 109

Appendix D. Notices...43 110

 111

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 6 of 43

1 Introduction 112

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded values, termed "code lists", 113
from which values populate particular UBL data fields. Code lists are accessed using many technologies, including databases, 114
programs and XML. Code lists are expressed in UBL for XML using W3C XML Schema for authoring guidance and processing 115
validation purposes. 116

It is important to note that XML schema languages are not purely abstract data models. They provide only a particular 117
representation of the data. In addition, there are many roughly equivalent design choices (e.g. elements versus attributes). The 118
underlying logical model is obscured, and can be difficult to extract. Therefore, XML schema languages are principally useful as a 119
way of specifying rules to an XML validation engine. Database schemas and programming language class models provide similarly 120
independent representations of logical data models. 121

A good logical data model format should allow the information about code lists to be expressed in a format that is as simple and 122
unambiguous as possible. To maximize the abstraction on one hand, and the utility of the code list representations on the other, 123
this document first derives an abstract data model of a code list, and then, an XMLSchema representation of that data model. 124

The document begins with a section expositing the requirements adopted by the committee in order to make certain that design 125
follows requirements. These requirements were used to steer the design choices elected in the balance of the document. 126

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for developing and using 127
reusable code lists expressed using W3C XML Schema [XSD] syntax. 128

The contents combine requirements and solutions previously developed by UBL’s Library, Naming, and Design Rules subcommittee, 129
the work of the National Institute of Standards “eBusiness Standards Convergence Forum” [eBSC], and position papers by Anthony 130
Coates and Gunther Stuhec. 131

The data model attempts to be sufficiently general to be employable with other technologies in other scenarios that are outside the 132
scope of this committee's work. This specification is organized as follows: 133

• Section 2 provides requirements for code lists; 134

• Section 3 provides a data and metadata model of code lists; 135

• Section 4 is an XMLSchema representation of the model; 136

• Section 5 is the recommendations for code producers and the compliance rules. 137

1.1 Scope and Audience 138

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners 139
as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL 140
needs; it may also be used with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-141
maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for 142
all XML vocabularies. 143

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components concepts and ISO 144
11179 concepts that underlie it. 145

1.2 Terminology and Notation 146

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, 147
shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in 148
[RFC2119]. 149

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms. 150

Core Component names from ebXML are in italic. 151

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 7 of 43

Example code listings appear like this. 152

Note: Non-normative notes and explanations appear like this. 153

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, 154
whether or not a namespace declaration is present in the example: 155

The prefix xs: stands for the W3C XML Schema namespace [XSD]. 156

The prefix xhtml: stands for the XHTML namespace. 157

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list. 158

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 8 of 43

2 Requirements for Code Lists 159

“There can be no solution without a requirement!” 160

This section summarizes the requirements to be addressed by this paper. 161

2.1 Overview 162

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners 163
as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL 164
needs; it may also be used with other vocabularies as a mechanism for sharing code lists. If enough code-list-maintaining agencies 165
adhere to these rules, we anticipate that a more open marketplace in code lists will emerge for all vocabularies. 166

The goal is to provide a representation for code lists that are extensible, restrictable, traceable, and cognizant of the need for code 167
lists to be maintained by various organizations who are authorities on their content. 168

2.2 Use and management of Code Lists 169

This section describes requirements for the use and management of code lists. 170

2.2.1 [R1] First-order business information entities 171

As first-order business information entities (BIEs). For example, one property of an address might be a code indicating the country. 172
This information appears in an element, according to the Naming and Design Rules specification [NDR]. For example, in XML a 173
country code might appear as: 174

<Country>UK</Country> 175

2.2.2 [R2] Second-order business information entities 176

As second-order information that qualifies some other BIE. For example, any information of the Amount core component type must 177
have a supplementary component (metadata) indicating the currency code. For example, in XML a currency code might appear as 178
an attribute: 179

<Currency code=”EUR”>2456,000</Country> 180

2.2.3 [R3] Data and Metadata model separate from Schema 181

representation 182

Since all uses of code lists will not be exclusively within the XML domain – ie. Databases, etc…, it is desirable to separate the 183
description of the data model from its XML representative form. This will facilitate use for other purposes of the semantically 184
identical information. 185

The current UBL code list documents speak of other XML specifications re-using UBL's code list Schemas. While this may occur, 186
there are already many specifications whose use of XML is sufficiently different from UBL's that re-use of UBL Schemas (or Schema 187
fragments) is not an option. That does not mean that those other specifications cannot be interoperable with UBL at the level of 188
code lists. 189

Code list operability comes about when different specifications or applications use the same enumerated values (or aliases thereof) 190
to represent the same things/concepts/etc. Sharing XML schemas (or fragments) is one way of achieving this, but it is not a 191
necessary method for achieving this goal. 192

Broader interoperability can be achieved instead by defining a format which models code lists independently of any validation or 193
choice mechanisms that they may be used with. Such a data model should be able to be processed to produce the required XML 194

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 9 of 43

Schemas, and should also be able to be processed to produce other artifacts, e.g. Java type-safe enumeration classes, database 195
Schemas, code snippets for HTML forms or XForms, etc. 196

2.2.4 [R4] XML and XML Schema representation 197

The principal anticipated use of the code list model will be in XML forms – XML for usage, and XMLSchema for validation of instance 198
documents. This paper should realize a proper XML / XMLSchema representation for the code list model. 199

2.2.5 [R5] Machine readable data model 200

A data model is an abstraction and it must be converted to explicit representation for use. The principal such use anticipated by this 201
effort is that of XML data exchange. A machine readable representation of the data model makes the lossless transfer of all 202
meaning to the representation of choice easier since it can be automated. 203

It is therefore desirable that the data model be expressed in a machine readable form. 204

2.2.6 [R6] Conformance test for code lists 205

[1/7/04 GKH] During today's coordination meeting it was suggested that CLSC address in our report criteria for the measurement of 206
conformance ... how will someone who instantiates a code list for use in UBL measure that what they've done will conform in the 207
UBL environment? 208

I'm not sure I know how myself, but it is an issue we need to either address or justify that we won't be addressing it. 209

2.3 Types of code lists 210

2.3.1 [R7] UBL maintained Code List 211

UBL will make use of code lists that describe information content specific to UBL. 212

In some cases the UBL Library may extend an existing code list to meet specific business requirements. In others cases the UBL 213
Library may have to create and maintain a code list where a suitable code list does not exist in the public domain. Both of these 214
type of code lists would be considered UBL-internal code lists. 215

2.3.2 [R8] Identify and use external standardized code lists 216

Because the majority of code lists are owned and maintained by external agencies, UBL will make maximum use of such external 217
code lists where they exist. The UBL Library SHOULD identify and use external standardized code lists rather than develop its own 218
UBL-native code lists. 219

2.3.3 [R9] Private use code list 220

This model must support the construction of private code lists where an existing external code list needs to be extended, or where 221
no suitable external code list exists. 222

2.4 Technical requirements of Code Lists 223

Following are our major requirements on potential code list schemes for use in the UBL library and customizations of that library. 224
For convenience, a weighted point system is used for scoring the solutions against the requirements. 225

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 10 of 43

2.4.1 [R10] Semantic clarity 226

The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for 227
“Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in 228
XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form. 229

2.4.2 [R11] Interoperability 230

The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of 231
possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” 232
(but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat 233
less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This 234
requirement is related to, but distinct from, validatability and context rules friendliness. 235

2.4.3 [R12] External maintenance 236

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them 237
without modification on anyone’s part. Some standards bodies are already starting to do this, though we recognize that others may 238
never choose to create such modules. 239

2.4.4 [R13] Validatability 240

The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the chosen code list. For the 241
purposes of the analysis presented here, “validatability” will not measure the ability for non-XSD applications (for example, based on 242
perl or Schematron) to do validation. 243

2.4.5 [R14] Context rules friendliness 244

The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear 245
(extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists. 246
This has lower point values because we expect it to be easy to design custom features for code lists. For example, the following is a 247
mock-up of one approach that could be used: 248

<CodeList fromType="LocaleCodeType" toCode="MyCodeType"> 249
<Add>JP</Add> 250
<Remove>DE</Remove> 251
</CodeList> 252

2.4.6 [R15] Upgradability 253

The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema 254
modules being used. This has lower point values because requirements related to interoperability take precedence over a 255
“convenience requirement”. 256

2.4.7 [R16] Readability 257

A representation in the XML instance that provides code information in a clear, easily readable form. This is a subjective 258
measurement, and it has lower point values because although we want to recognize readability when we find it, we don’t want it to 259
become more important than requirements related to interoperability. 260

2.4.8 [R17] Code lists must be unambiguously identified 261

(1) - any two uses of the same URI represent the use of the very same code list definition 262

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 11 of 43

(2) - no two differing code list definitions shall be represented by the same URI 263

The business issue is that when two trading partners identify the use of a code list, there must not be any ambiguity. Should 264
either partner create a code list or change an existing code list, the identification of the resulting code list must be distinct from that 265
of its origin. 266

[ISSUE: Note: for implementation considerations, Gunther has suggested the approach of namespace URI fields for code list 267
supplemental identification values in draft-stuhec-codeListNamespaces-0p2.doc ... the "ripple effect" of this ensures that when 268
non-UBL code lists are in use, non-UBL namespace URI strings must be used (because the UBL-standard W3C Schema fragments 269
must be changed to utilize the non-standard code list URI strings). This guarantees the unambiguous identification of the entire 270
schema and two UBL partners who are using the same namespace URI for a UBL schema are guaranteed to be talking about the 271
identical element and attribute structures and code list definitions. 272

In contrast, original proposed UBL approaches to storing code list supplemental identification values in defaulted attributes can 273
"hide" changes in such a way that two uses of the same namespace URI string would not represent the identical *complete* 274
schema definition. This ambiguity could produce interoperability problems.] 275

2.4.9 [R18] Ability to prevent extension or modification 276

Certain code lists should not be extensible. For example, the list of colors, RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. I 277
should be possible to indicate that such a code list is not extensible so the users can be assured of this constancy in its usage. 278

2.5 Design Requirements of Code List Data Model 279

What follows is a list of some of the features that a code list data model should provide. 280

2.5.1 [R19] A list of the values (codes) for a code list 281

The code list must contain at least two (2) valid values to be considered a code list and not a constant. 282

2.5.2 [R20] Multiple lists of equivalents values (codes) for a code list 283

(e.g. integers & mnemonics) 284

Individual code values must be able to be represented in multiple ways to account for individual business requirements. 285

2.5.3 [R21] Unique identifiers for a code list 286

The code list must contain a unique identifier to be able to reference the entire code list as an item. 287

2.5.4 [R22] Unique identifiers for individual values of a code list 288

Each code within the code list must contain a unique identifier to be able to reference that particular code without knowing the code 289
value or decode value for that code. 290

2.5.5 [R23] Names for a code list 291

Each code list must have a unique name that adequately describes the content of the list. 292

2.5.6 [R24] Documentation for a code list 293

Each code list must contain documentation which describes, in detail, the business usage for this code list. 294

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 12 of 43

2.5.7 [R25] Documentation for individual values of a code list 295

Each code value on the code list must not only contain valid values and decode values, but must also contain a long description 296
which describes, in detail, the business meaning and usage for this code value. 297

2.5.8 [R26] The ability to import, extend, and/or restrict other code 298

lists 299

Each code list must provide the ability to extend, restrict or import additional values for this list. 300

2.5.9 [R27] Support for describing code lists that cannot be 301

enumerated 302

Either because of size, volatility, or proprietary restrictions (e.g. a WSDL description of a Web service that can validate which of a 303
set of codes are members of a particular code list) 304

2.5.10 [R28] Support for references to equivalent code lists 305

Each code list must be able to refer to other code lists that may or may not be used in place of it. These references are not 306
necessarily exactly the same, but may be equivalent based on business usage. 307

2.5.11 [R29] Support for individual values to be mapped to 308

equivalent values in other code lists 309

Each code list value must be able to refer to other code list values that may or may not be used in place of it. These references are 310
not necessarily exactly the same, but may be equivalent based on business usage. 311

2.5.12 [R30] Support for users to attach their own metadata to a 312

code list 313

Each code list must have the flexibility to have additional descriptive information added by an individual user to account for unique 314
business requirements. 315

2.5.13 [R31] Support for users to attached their own metadata to 316

individual values of a code list 317

Each code value must have the flexibility to have additional descriptive information added by an individual user to account for 318
unique business requirements. 319

2.5.14 [R32] Support for describing the past and future time-320

variance of the values 321

An effective date and expiration date should be established so that the code list can be scoped in time. See, for example, “Patterns 322
for things that change with time”, http://martinfowler.com/ap2/timeNarrative.html 323

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 13 of 43

2.5.15 [R33] Identifier for UN/CEFACT DE 3055. 324

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an identifier for this standard 325
UNTDED 3055 [UNTDED 3055%%%% add reference]. This identifier uniquely identifies UN/EDIFACT standard code lists. 326

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 14 of 43

3 Data and Metadata Model for Code Lists 327

This section provides rules for developing and using reusable code lists. These rules were developed for the UBL Library and 328
derivations thereof, but they may also be used by other code-list-maintaining agencies as guidelines for any vocabulary wishing to 329
share code lists. See section 4.0 Conformance. 330

Note: The OASIS UBL Naming and Design Rules subcommittee is willing to help any organization that wishes 331
to apply these rules but does not have the requisite XSD expertise. 332

Since the UBL Library is based on the ebXML Core Components Version1.9, 11 December 2002; see [3166-XSD] UN/ECE 333
XSD code list module for ISO 3166-1, [CCTS1.9]), the supplementary components identified for the Code. Type core component 334
type are used to identify a code as being from a particular list. 335

3.1 Data Model Definition 336

The data model of a code list is presented below. 337

CC
T

U
BL

 N
am

e

O
bj

ec
t

Cl
as

s

Pr
op

er
ty

Te

rm

R
ep

re
se

n-
ta

tio
n

Te
rm

Pr
im

iti
ve

Ty

pe

Ca
rd

.

R
em

ar
ks

 Code.Content Code Content Text String 1..1 Required

 Code.Description Code Description Description Text String 0..n Optional

 Code.Value Code Value Value Numeric Number 1..1 Optional

3.2 Supplementary Components (Metadata) Model Definition 338

The following model contains the supplementary components description of a code list. 339

CC
T

U
BL

 N
am

e

O
bj

ec
t

Cl
as

s

Pr
op

er
ty

Te

rm

R
ep

re
se

n-
ta

tio
n

Te
rm

Pr
im

iti
ve

Ty

pe

Ca
rd

.

R
em

ar
ks

 name Code Name Text String 0..1 Optional

 listID Code List Identification Identifier String 0..1 Optional

 listName Code List Name Text String 0..1 Optional

 listVersionID

Code List Version Identifier String 0..1 Optional

 listAgencyID Code List Agency Identification Identifier String 0..1 Optional

 listAgencyName Code List Agency Name Text String 0..1 Optional

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 15 of 43

 listAgencySchemeID Code List Agency Scheme Identifier String 0..1 Optional

 listAgencySchemeAgencyID Code List Agency SchemeAgency Identifier String 0..1 Optional

3.3 Examples of Use 340

The data type “Code“ is used for all elements that should enable coded value representation in the communication between 341
partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be 342
subject to frequent alterations (for example, CountryCode, LanguageCode, ...). Codelists must have versions. 343

If the agency that manages the code list is not explicitly named and is specified using a role, then this takes place in a tag name. 344

The following types of code can be represented: 345

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055. 346

Code Standard

listID Code list for standard code

listVersionID Code list version

listAgencyID Agency from DE 3055 (excluding roles)

listAgencySchemeID -

listAgencySchemeAgencyID -

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard. 347

Code Proprietary

listID Code list for the propriety code

listVer Version of the code list

listAgencyID Standardized ID for the agency (normally the company that
manages the code list)

listAgencySchemeID ID schema for the schemeAgencyId

listAgencySchemeAgencyID Agency DE 3055 that manages the standardized ID
‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard. 348

Code Proprietary

listID Code list for the proprietary code

listVer Code list version

listAgencyID Standardized ID for the agency (normally the company that
manages the code list)

listAgencySchemeID ID schema for the schemeAgencyId

listAgencySchemeAgencyID ‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all. 349

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 16 of 43

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than 350
one code list. If there is only one code list, no attributes are required. 351

Code Proprietary

listID ID schema for the proprietary identifier

listVer ID schema version

listAgencyID -

listAgencySchemeID -

ListAgencySchemeAgencyID -

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 17 of 43

4 XML Schema representation of Code Lists 352

This section describes how the data model is mapped to XMLSChema [needs reference???]. 353

Note that the code list is derived in two pieces – a simpleType that contains the actual content of the code list, and, a complexType 354
with simple content that attaches the optional supplementary components to the enumeration. 355

1) Define an abstract element for inclusion in extensible schemas (note: this is “placebo”) 356

2) Define a simpleType to hold the enumerated values 357

3) Define a complexType to add the supplementary components 358

4) Define an element that substitutes for the abstract type to enable usage in unextended schemas 359

5) Define a comprehensive URN to hold supplementary components that can qualify uniqueness of usage 360

4.1 Data Model Mapping 361

The following table summarizes the component mapping of the data model 362

UBL Name XMLSchema Mapping
Code.Content 1. Abstract element

 <xs:element name="{code.name}A" type="xsd:token"
abstract="true"/>
2. Simple type to hold code list values and optional annotations
 <xs:simpleType name="{code.name}Type">
 <xs:restriction base="xsd:token">
 <xs:enumeration value="{code.content}"/>
 <xs:enumeration value="{code.content}"/>
 <xs:enumeration value="{code.content}"/>
 . . .
 </xs:restriction>
 </xsd:simpleType>
3. Complex type to associate supplementary values with code list values that
substitutes for the abstract type.
 <xs:element name="{code.name}" type="{code.name}Type"
 substitutionGroup="{code.name}TypeA">
4. Element to substitute for abstract element in non-exended schemas
 <xs:element name="LocaleCode" type="LocaleCodeType"
 substitutionGroup="LocaleCodeTypeA"/>

Code.Description xsd:annotation/ xsd:documentation/
Code.Value xsd:annotation/ xsd:documentation/

4.2 Supplementary Components Mapping 363

The following table shows all supplementary components of the code type. It shows additionally the current representation by using 364
attributes and the recommended representation by using namespaces and annotations. 365

UBL Name XMLSchema
Mapping

Optional

 URN mapping complex type attribute mapping
Code.name xsd:annotation/

xsd:documentation/

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 18 of 43

cc:codename
Code.listID namespace (URN)

1. position
Mandatory

<xs:attribute name="listID"
type="xs:token"/>

Code.listName namespace (URN)
2. position
Optional

<xs:attribute name="listName"
type="xs:token"/>

Code.listVersionID namespace (URN)
3. position
Mandatory

<xs:attribute
name="listVersionID"
type="xs:string"/>

Code.listAgencyID namespace (URN)
4. position
optional

<xs:attribute
name="listAgencyID"
type="xs:token"/>

Code.listAgencyName namespace (URN)
5. position
optional

<xs:attribute
name="listAgencyName"
type="xs:token"/>

Code.listAgencySchemeID namespace (URN)
6. position
optional

<xs:attribute name="listID"
type="xs:token"/>

Code.listAgencySchemeAgencyID namespace (URN)
7. position
optional

<xs:attribute
name="listAgencySchemeID"
type="xs:token"/>

4.3 Namespace URN 366

The following construct represents the construct for the URN of a code list, according OASIS URN: 367

urn:oasis:tc:ubl:codeList:<Code List. Identification. Identifier>:<Code List. Name. 368
Text>:<Code List. Version. Identifier>:<Code List. Agency Identifier>:<Code List. 369
Agency Name. Text>:<Code List. Agency Scheme. Identifier>:<Code List. Agency Scheme 370
Agency. Identifier> 371

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141] and OASIS URN [see RFC 3121]: 372

o urn --> leading token of URNs 373

o oasis --> registered namespace ID “oasis” 374

o tc --> Technical Committee Work Products 375

o ubl --> From Technical Committee UBL (Universal Business Language) 376

The parameter “codeList” identifies the schema type “code list”. 377

The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency. Identifier> 378
represents the specific code list supplementary components of the CCT codeType. 379

Example: 380

urn:oasis:tc:ubl:codeList:ISO639:Language%20Code:3:ISO:International%20Standardizati381
on%20Organization:: 382

4.4 Namespace Prefix 383

Namespace prefix could be freely defined. However, it is helpful for better understanding, to identity the code lists by a convention 384
of namespace prefixes. 385

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 19 of 43

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended that this prefixe should 386
contain the information of the supplementary component <Code List. Identification Identifier> and if it is necessary for separation, 387
the information of the supplementary component <Code List. Version. Identifier> separated by a dash “-“. All letters should be 388
lower case. 389

Example: 390

iso639 391
iso639-3 (with version) 392

4.5 Schema Location 393

A question for code lists related to namespace identification is also the schemaLocation. The schema location includes the complete 394
URI, which is used to identify code list schemas. 395

Every code list must normally be provided by the specific responsible agency. Therefore the following URI should be used for these 396
codelists: 397

http://www.<Code List. Agency Name. Text>.org/ubl/codeLists/<Code List. 398
Identification. Identifier>_<Code List. Version. Identifier>.xsd 399

The name “ubl” specifies that the specific code list be based on the UBL convention. Under “codeLists” will be listed all specific code 400
lists of this responsible agency. 401

Example: 402

http://www.iso.org/ubl/codeLists/iso639_3.xsd 403

 404

If some responsible agencies cannot provide their own code lists by a URI, it is possible that these code lists could be provided by 405
OASIS. In the fashion of other OASIS specifications, UBL specific code lists of other responsible agencies will be located under the 406
UBL committee directory: 407

http://www.oasis-open.org/committees/ubl/codeLists/<Code List. Agency Name. 408
Text>/<Code List. Identification. Identifier>_<Code List. Version. Identifier>.xsd 409
 410

Example: 411

http://www.oasis-open.org/committees/ubl/codeLists/ISO/iso639_3.xsd 412
 413

4.6 Code List Schema Usage 414

For every code list, there exists a specific code list schema. This code list schema must have a targetNamespace with the UBL 415
specific code list namespace and have a prefix with the code list identifier itself. 416

The element in the code list schema can be used for the representation as a global declared element in the document schemas. The 417
name of the element is the UBL tag name of the specific BIE for a code. 418

The simpleType represents the possible codes and the characteristics of the code content. The name of the simpleType must be 419
always ended with “..Content”. Within the simpleType is a restriction of the XSD built-in data type “xsd:token”. This restriction 420
includes the specific facets “length”, “minLength”, “maxLength” and “pattern” for regular expressions to describe the specific 421
characteristics of each code list. 422

Each code will be represented by the faucet “enumeration” after the characteristics. The value of each enumeration represents the 423
specific code value and the annotation includes the further definition of each code, like “Code. Name”, “Language. Identifier” and 424
the description. 425

The schema definitions to support this might look as follows: 426

 427

<?xml version="1.0" encoding="UTF-8"?> 428
<xs:schema 429

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 20 of 43

 targetNamespace="urn:oasis:ubl:codeList:ISO4217:Currency%20Code:3:5:ISO::" 430
 xmlns:iso4217="urn:oasis:ubl:codeList:ISO4217:Currency%20Code:3:5:ISO::" 431
 xmlns:xs="http://www.w3.org/2001/XMLSchema" 432
 elementFormDefault="qualified" attributeFormDefault="unqualified"> 433
 434
<xs:element name="LocaleCodeTypeA" type="xs:token" 435
 abstract="true"> 436
 <xs:annotation> 437
 <xs:documentation> 438
 An abstract place holder for a code list element 439
 </xs:documentation> 440
 </xs:annotation> 441
</xs:element> 442
 443
<xs:simpleType name="LocaleCodeType"> 444
 <xs:restriction base="xs:token"> 445
 <xs:enumeration value="DE"/> 446
 <xs:enumeration value="FR"/> 447
 <xs:enumeration value="US"/> 448
 . . . 449
 </xs:restriction> 450
</xs:simpleType> 451
 452
<xs:element name="LocaleCode" type="LocaleCodeType" 453
 substitutionGroup="LocaleCodeTypeA"> 454
 <xs:annotation> 455
 <xs:documentation> 456
 A substitution for the abstract element based 457
 on aStdEnum 458
 </xs:documentation> 459
 </xs:annotation> 460
</xs:element> 461
 462
<xs:element name="LocaleCode" ref="LocaleCodeTypeA"/> 463
</xs:schema> 464
 465

4.7 Instance 466

The enumerated list method results in instance documents with the following structure. 467

<LocaleCode>US</LocaleCode> 468

4.8 Associating UBL Elements with Code List Types 469

First, the relevant code list module must be imported into the relevant UBL Library module. 470

<xs:import 471
 namespace="...namespace for ISO 3166 code list module..." 472
 schemaLocation="...location of code list module..." /> 473

Then, an outer code element representing the code BIE must be set up to hold one or more inner code elements. Here, a global 474
CountryIdentificationCode element is assumed to require a code from the hypothetical ISO 3166 code list defined in 475
Section 3.1. Thus, it needs to reference the iso3166:ISO3166Code global element. 476

Every first-order code appearing in the UBL Library must be double-wrapped. 477

[ISSUE: We need some rules around the naming and construction of types such as CountryIdentificationCodeType, with 478
the types being generated based on the contents of the “Code Lists/Standards” column of the spreadsheet. These rules should 479
probably go in the NDR document, not here.] 480

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 21 of 43

 481

<xs:complexType name="Address"> 482
 ... 483
 <xs:sequence> 484
 ...other content... 485
 <xs:element 486
 ref="ubl:CountryIdentificationCode"/> 487
 </xs:sequence> 488
</xs:complexType> 489
 490
<xs:element name=”CountryIdentificationCode”> 491
 ... 492
 <xs:element ref=”iso3166:ISO3166Code”/> 493
</xs:complexType> 494

In this case, only one code list is allowed to be used for country codes. However, it is possible for the outer element to allow a 495
choice of one or more inner elements, each containing a code from a different list. For example, if a country code from Codes “R” 496
Us were also allowed, the element definition for CountryIdentificationCode would change as follows (assuming the Codes 497
“R” Us module were properly imported): 498

<xs:complexType name="Address"> 499
 ... 500
 <xs:sequence> 501
 ...other content... 502
 <xs:element 503
 ref="ubl:CountryIdentificationCode"/> 504
 </xs:sequence> 505
</xs:complexType> 506
 507
<xs:element name=”CountryIdentificationCode”> 508
 ... 509
 <xs:choice> 510
 <xs:element ref=”iso3166:ISO3166Code”/> 511
 <xs:element ref=”codesrus:CodeRUsCode”/> 512
 </xs:choice> 513
</xs:complexType> 514

In this way, minimal support for a selection of code lists can be indicated not just through normative prose but through formal 515
schema constraints as well. 516

4.9 Deriving New Code Lists from Old Ones 517

In order to promote maximum reusability and ease code lists maintenance, code list designers are expected to build new code lists 518
from existing lists. They could for example combine several code lists or restrict an existing code list. 519

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used. 520

4.9.1 Extending code lists 521

The base schema shown above could be extended to support new codes as follows: 522

<xs:schema targetNamespace="cust" 523
 xmlns:std="std" 524
 xmlns="cust" 525
 xmlns:cust="custom" 526
 xmlns:xs=http://www.w3.org/2001/XMLSchema 527
 elementFormDefault="qualified" 528
 attributeFormDefault="unqualified"> 529
 530
<xs:import namespace="std" 531

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 22 of 43

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 532
 533
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 534
 <xs:annotation> 535
 <xs:documentation>A substitute for the abstract LocaleCodeA 536
 that extends the enumeration 537
 </xs:documentation> 538
 </xs:annotation> 539
 <xs:simpleType> 540
 <xs:union memberTypes="std:aStdEnum"> 541
 <xs:simpleType> 542
 <xs:restriction base="xs:token"> 543
 <xs:enumeration value="IL"/> 544
 <xs:enumeration value="GR"/> 545
 </xs:restriction> 546
 </xs:simpleType> 547
 </xs:union> 548
 </xs:simpleType> 549
</xs:element> 550
</xs:schema> 551

4.9.2 Restricting code lists 552

The base schema shown above could be restricted to support a subset of codes as follows: 553

<xs:import namespace="std" 554
 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/> 555
<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA"> 556
 <xs:annotation> 557
 <xs:documentation> 558
 A substitute for the abstract LocaleCodeA that restricts 559
 the enumeration 560
 </xs:documentation> 561
 </xs:annotation> 562
 <xs:simpleType> 563
 <xs:restriction base="xs:token"> 564
 <xs:enumeration value="DE"/> 565
 <xs:enumeration value="US"/> 566
 </xs:restriction> 567
 </xs:simpleType> 568
</xs:element> 569

Let’s consider we want to union the code”R”Us code list and the ISO3166 code list to create a compound list. 570

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 23 of 43

5 Conformance to UBL Code Lists 571

This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of different type of 572
organizations. The conformance 573

 574

We probably need a Conformance section in this document so that code list producers (who, in general, won’t be UBL itself) will 575
know how/when to claim conformance to the requirements (MUST) and recommendations (SHOULD/MAY) in this specification. This 576
spec is not for the UBL TC, but for code list producers (which may occasionally include UBL itself). 577

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 24 of 43

6 References 578

[3166-XSD] UN/ECE XSD code list module for ISO 3166-1, [CCTS1.9] UN/CEFACT Draft Core Components 579
Specification, Part 1, 11 December, 2002, Version 1.9. 580

[CLSC] OASIS UBL Code List Subcommittee. Portal: http://www.oasis-581
open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive: http://lists.oasis-582
open.org/archives/ubl-clsc/. 583

[CLTemplate] OASIS UBL Naming and Design Rules code list module template, http://www.oasis-584
open.org/committees/ubl/ndrsc/archive/. 585

[eBSC] “eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc. 586

[NDR] M. Cournane et al., Universal Business Language (UBL) Naming and Design Rules, OASIS, 2002, 587
http://www.oasis-open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/. 588

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 589
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 590

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. 591
http://www.unece.org/etrades/unedocs/repository/codelist.htm. 592

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 25 of 43

Appendix A. Rationale for the Selection of the Code 593

List Mechanism (Historical Non-Normative) 594

This non-normative section describes the analysis that was undertaken by the OASIS UBL Naming and Design Rules subcommittee 595
to recommend a particular XSD-based solution for the encoding of code lists. 596

Note that some of the examples in this section may be incorrect or obsolete, without compromising the results of the analysis. If 597
you notice problems, please report them and we will attempt to fix them. Otherwise, please consider this section historical. 598

Contenders 599

The methods for handling code lists in schemas are as follows: 600

The enumerated list method, using the classic method of statically enumerating the valid codes corresponding to a code list in 601
an XSD string-based type internally in UBL 602

The QName in content method, involving the use of XML Namespaces-based “qualified names” in the content of elements, 603
where the namespace URI is associated with the supplementary components 604

The instance extension method, where a code is provided along with a cross-reference to somewhere in the same instance to 605
the necessary supplementary information 606

The single type method, involving a single XSD type that sets up attributes for supplying the supplementary components directly 607
on all elements containing codes 608

The multiple UBL types method, where each element dedicated to containing a code from a particular code list is bound to a 609
unique UBL type, which external organizations must derive from 610

The multiple namespaced types method, where each element dedicated to containing a code from a particular code list is 611
bound to a unique type that is qualified with a (potentially external) namespace 612

Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element 613
in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style 614
derivation. Each method is assessed to see which requirements it satisfies. 615

A.1 Enumerated List Method 616

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML. It involves creating a type 617
in UBL that literally lists the allowed codes for each code list. 618

A.1.1 Instance 619

The enumerated list method results in instance documents with the following structure. 620

<LocaleCode>code</LocaleCode> 621

A.1.2 Schema Definitions 622

The schema definitions to support this might look as follows. 623

<xs:simpleType name="LocaleCodeType"> 624
 <xs:restriction base="xs:token"> 625
 <xs:enumeration value="DE"/> 626
 <xs:enumeration value="FR"/> 627
 <xs:enumeration value="US"/> 628
 . . . 629

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 26 of 43

 </xs:restriction> 630
</xs:simpleType> 631
 632
<xs:element name="LocaleCode" type="LocaleCodeType"/> 633

A.1.3 Derivation Opportunities 634

Using the XSD feature for creating unions of simple types, it is possible to extend the valid values of such an enumeration. 635
However, it seems that we can't restrict the list of valid values. This is because <xs:enumeration> is not a type 636
construction mechanism, but a facet. 637

The base schema shown above could be extended to support new codes as follows: 638

<xs:simpleType name="OtherCodeType"> 639
 <xs:restriction base="xs:token"> 640
 <xs:enumeration value="SP"/> 641
 <xs:enumeration value="DK"/> 642
 <xs:enumeration value="JP"/> 643
 . . . 644
 </xs:restriction> 645
</xs:simpleType> 646
 647
<xs:element name="MyLocalCode"> 648
 <xs:simpleType> 649
 <xs:union memberTypes="LocaleCodeType OtherCodeType"/> 650
 </xs:simpleType> 651
</xs:element> 652

A.1.4 Assessment 653

Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL itself defeats our hope that code 654
lists can be defined and maintained in a decentralized fashion. 655

Requirement Score Rank

Semantic clarity 0 Low

The supplementary components of the code list could
be provided as schema annotations, but they are not
directly accessible as first-class information in the
instance or schema.

Interoperability 4 High

The allowed values are defined by a closed list defined
in the schema itself.

External maintenance 0 Low

We have to modify the type union in the base schema
to "import" the new codes.

Validatability 4 High

The allowed values are defined by a closed list defined
in the schema itself.

Context rules friendliness 0 Low

The allowed values are defined in the middle of a
simple type, whereas the context methodology so far
only knows about elements and attributes.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 27 of 43

Requirement Score Rank

Upgradability 0 Low

A schema extension would be needed to add any new
codes defined in a new version.

Readability 2 High

The instance is as compact as it can be, with no
extraneous information hindering the visibility of the
code itself.

Total 11

A.2 QName in Content Method 656

The QName method was proposed in V04 of the code lists paper. 657

A.2.1 Instance 658

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part 659
separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the 660
namespace prefix and “US” is the local part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute 661
(which could have been on any ancestor element). 662

<LocaleCode 663
 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”> 664
iso3166:US 665
</LocaleCode> 666

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal 667
XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies 668
the actual code in the list that is desired. 669

The namespace URI shown here is just an example. However, it is likely that the UBL library itself would have to define a set of 670
common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used 671
as a code list namespace name. 672

A.2.2 Schema Definitions 673

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL should make reference to a UBL 674
type based on QName wherever a code is allowed to appear, so that this particular use of QNames in UBL can be isolated and 675
documented. For example: 676

<xs:simpleType name=”CodeType”> 677
 <xs:restriction base=”QName”/> 678
</xs:simpleType> 679
 680
<xs:complexType name="LanguageType" id="UBL000013"> 681
 <xs:sequence> 682
 <xs:element name="IdentificationCode" . . .></xs:element> 683
 <xs:element name="Name" . . .></xs:element> 684
 <xs:element name="LocaleCode" 685
 type="cct:CodeType" id="UBL000016" minOccurs="0"> 686
 </xs:element> 687
 </xs:sequence> 688
</xs:complexType> 689

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 28 of 43

The documentation for the LocaleCode element should indicate the minimum set of code lists that are expected to be used in 690
this attribute. However, the attribute can contain codes from any other code lists, as long as they are in the form of a QName. 691

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the 692
documents. 693

A.2.3 Derivation Opportunities 694

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, and whiteSpace. However, since 695
namespace prefixes are ideally changeable, depending only on the presence of a correct xmlns namespace declaration, the facets 696
(which are merely lexical in nature) are not a sure bet for controlling values. 697

A.2.4 Assessment 698

The idea of using XML namespaces to identify code lists is potentially useful, but because this method uses namespaces in a hard-699
to-process (and somewhat non-standard) manner, both semantic clarity and validatability suffer. 700

Requirement Score Rank

Semantic clarity 1.5 Low to medium

You have to go through a level of indirection, and a complicated one
at that (because QNames in content are pseudo-illegitimate and are
not supported properly in many XML tools), in order to refer back to
the namespace URI. Further, the namespace URI might not resolve to
any useful information. However, in cases where the URI is
meaningful or sufficient documentation of the code list exists
(something we could dictate by fiat), clarity can be achieved.

Interoperability 0 Low

The shared understanding of minimally supported code lists would
have to be conveyed only in prose.

External maintenance 0 Low

There is no good way to define a schema module that controls
QNames in content.

Validatability 0 Low

All validation is pushed off to the application.

Context rules friendliness 0 Low

This method is similar to the single type method in this respect. If
extensions and subsets are to be managed by means of a context
rules document at all, there would need to be a code list-specific
mechanism added to reflect this method. If extensions and subsets
don’t need to be managed by means of context rules because
everything happens in the downstream application, there is no need
to do anything at all.

Upgradability 2 High

You need to have a different URI for each version of a code list, but if
you do this, using a new version is easy: You just use a prefix that is
bound to the URI for the version you want. However, there is no
magic in namespace URIs that allows version information to be
recognized as such; the whole URI is just an undifferentiated string.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 29 of 43

Requirement Score Rank

Readability 1 Medium

The representation is very compact because the supplementary
component details are deferred to another place (and format) entirely,
but the QName format and the need for the xmlns: attribute make
the information a little obscure.

Total 4.5

A.3 Instance Extension Method 701

In the instance extension method, a code is provided along with a cross-reference to the ID of an element in the same instance that 702
provides the necessary code list supplementary information. One XML instance might contain many code list declarations. 703

A.3.1 Instance 704

The instance extension method results in instance documents with something like the following structure. The CodeListDecl 705
element sets up the supplementary information for a code list, and then an element provides a code (here, LocaleCode) also 706
refers to the ID of the relevant declaration. 707

<CodeListDecl ID=”ID-LocaleCode” 708
 CodeListIdentifier=”ISO3166” 709
 CodeListAgencyIdentifier=”ISO” 710
 CodeListVersionIdentifier=”1.0”/> 711
. . . 712
<LocaleCode IDRef=”ID-LocaleCode”> 713
US 714
</LocaleCode> 715

A.3.2 Schema Definitions 716

The schema definitions to support this might look as follows. 717

<xs:element name=”CodeListDeclaration” type=”CodeListDeclType”/> 718
<xs:complexType name=”CodeListDeclType”> 719
 <xs:attribute name="CodeListIdentifier" type="xs:token"/> 720
 <xs:attribute name="CodeListAgencyIdentifier" type="xs:token"/> 721
 <xs:attribute name="CodeListVersionIdentifier" type="xs:token"> 722
</xs:complexType> 723
. . . 724
<xs:element name=LocaleCode” type=”LocaleCodeType”/> 725
<xs:complexType name=”LocaleCodeType”> 726
 <xs:simpleContent> 727
 <xs:extension base="xs:token"> 728
 <xs:attribute name="IDRef" type="xs:IDREF"/> 729
 </xs:extension> 730
 </xs:simpleContent> 731
</xs:complexType> 732

 733

A.3.3 Derivation Opportunities 734

Since code lists are declared in the instance document, there are not many opportunities for schema type derivation. Additional 735
attributes for supplementary components could be added by this means, though this is unlikely to be needed. 736

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 30 of 43

A.3.4 Assessment 737

This method allows for great flexibility, but leaves validatability and interoperability nearly out of the picture. 738

 739

Requirement Score Rank

Semantic clarity 3 Medium to high

All of the necessary information is present in the code list
declaration, but retrieving it must be done somewhat indirectly.

Interoperability 1 Low to medium

Standard XML entities could be provided that define the desired
code lists, but there is no a machine-processable way to ensure
that they get associated with the right code-usage elements.

External maintenance 2 Medium

Using XML entities, external organizations could create and
maintain their own code list declarations.

Validatability 0 Low

Using XSD, there is no way to validate that the usage of a code
matches the valid codes in the referenced code list.

Context rules friendliness 0 Low

Since this method resides primarily in the instance and not the
schema, the context rules have little opportunity to operate on
code list definitions.

Upgradability 2 High

It is easy to declare a code list with a higher version directly in
the instance.

Readability 1.5 Medium to high

The instance looks fairly clean, but the code list choice is a bit
opaque.

Total 9.5

A.4 Single Type Method 740

The single type method is currently being used in UBL, as a result of a perl script running over the Library Content SC’s modeling 741
spreadsheet. The script makes use of our decision to use attributes for supplementary components of a CCT and elements for 742
everything else. 743

A.4.1 Instance 744

The single type method results in instance documents with the following structure. 745

<LocaleCode 746
 CodeListIdentifier=”ISO3166” 747
 CodeListAgencyIdentifier=”ISO” 748
 CodeListVersionIdentifier=”1.0”> 749
US 750

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 31 of 43

</LocaleCode> 751

A.4.2 Schema Definitions 752

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements). Notice that CodeType is a 753
complex type that sets up a series of attributes (the supplementary components for a code) on an element that has simple content 754
of CodeContentType (the code itself). Also note that, although a CodeName attribute is defined along with its corresponding 755
type, this is a duplicate component for the code itself, and need not be used in the instance. 756

<xs:simpleType name="CodeContentType" id="000091"> 757
 <xs:restriction base="token"/> 758
</xs:simpleType> 759
 760
<xs:simpleType name="CodeListAgencyIdentifierType" id="000093"> 761
 <xs:restriction base="token"/> 762
</xs:simpleType> 763
 764
<xs:simpleType name="CodeListIdentifierType" id="000092"> 765
 <xs:restriction base="token"/> 766
</xs:simpleType> 767
 768
<xs:simpleType name="CodeListVersionIdentifierType" id="000099"> 769
 <xs:restriction base="token"/> 770
</xs:simpleType> 771
 772
<xs:simpleType name="CodeNameType" id="000100"> 773
 <xs:restriction base="string"/> 774
</xs:simpleType> 775
 776
<xs:simpleType name="LanguageCodeType" id="000075"> 777
 <xs:restriction base="language"/> 778
</xs:simpleType> 779
 780
<xs:complexType name="CodeType" id="000089"> 781
 <xs:simpleContent> 782
 <xs:extension base="cct:CodeContentType"> 783
 <xs:attribute name="CodeListIdentifier" 784
 type="cct:CodeListIdentifierType"> 785
 </xs:attribute> 786
 <xs:attribute name="CodeListAgencyIdentifier" 787
 type="cct:CodeListAgencyIdentifierType"> 788
 </xs:attribute> 789
 <xs:attribute name="CodeListVersionIdentifier" 790
 type="cct:CodeListVersionIdentifierType"> 791
 </xs:attribute> 792
 <xs:attribute name="CodeName" type="cct:CodeNameType"> 793
 </xs:attribute> 794
 <xs:attribute name="LanguageCode" 795
 type="cct:LanguageCodeType"> 796
 </xs:attribute> 797
 </xs:extension> 798
 </xs:simpleContent> 799
</xs:complexType> 800
 801
<xs:complexType name="LanguageType" id="UBL000013"> 802
 <xs:sequence> 803
 <xs:element name="IdentificationCode" . . .></xs:element> 804
 <xs:element name="Name" . . .></xs:element> 805
 <xs:element name="LocaleCode" type="cct:CodeType" 806
 id="UBL000016" 807

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 32 of 43

 minOccurs="0"> 808
 </xs:element> 809
 </xs:sequence> 810
</xs:complexType> 811

A.4.3 Derivation Opportunities 812

While it is possible to derive new simple types that restrict other simple types (including built-in types such as xs:token, used 813
here for the actual code and other components), it is not possible to use such derived simple types directly in a UBL attribute such 814
as CodeListVersionIdentifier without defining a whole new element structure. This is because you need to use the 815
XSD xsi:type attribute to “swap in” the derived type for the ancestor, and you can’t put an attribute on an attribute in XML. 816

A.4.4 Assessment 817

This method is strong on semantic clarity because of the attributes for supplementary components, but it loses interoperability and 818
schema flexibility because it is using a single type for everything. 819

Requirement Score Rank

Semantic clarity 4 High

The various supplementary components for the code are
provided directly on the element that holds the code, allowing
the code to be uniquely identified and looked up.

Interoperability 0 Low

The shared understanding of minimally supported code lists
would have to be conveyed only in prose.

External maintenance 0 Low

There is no particular XSD formalism provided for encoding the
details of a code list; thus, there is no way for external
organizations to create a schema module that works smoothly
with the UBL library. However, there are no barriers to
creating a code list (in some other form) for use in any code-
based UBL element.

Validatability 0 Low

There is no XSD structure for testing the legitimacy of any
particular codes. All validation would have to happen at the
application level (where the application uses the attribute
values to find some code list in which it can do a lookup of the
code provided).

Context rules friendliness 0 Low

If extensions and subsets are to be managed by means of a
context rules document at all, there would need to be a code
list-specific mechanism added to reflect this method. If
extensions and subsets don’t need to be managed by means
of context rules because everything happens in the
application, there is no need to do anything at all.

Upgradability 2 High

A document creator could merely change the
CodeListVersionIdentifier value and supply a
code available only in the new version.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 33 of 43

Requirement Score Rank

Readability 1.5 Medium to high

The code is accompanied by “live” supplementary components
in the instance, which swells the size of instance. However, the
latter are only in attributes, and it is nonetheless very clear
what information is being provided.

Total 7.5

A.5 Mltiple UBL Types Method 820

In this method, each list is associated with a unique element, whose content is a code from that list. The element is bound to a type 821
that is declared in the UBL library; the type ensures that the Code.Type supplementary components are documented. 822

A.5.1 Instance 823

The multiple UBL types method results in instance documents with the following structure. 824

<LocaleCode> 825
<ISO3166Code>code</ISO3166Code> 826
</LocaleCode> 827

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement that is dedicated to codes from a 828
particular list. If codes from multiple lists are allowed here, the element could contain any one of a choice of subelements, each 829
dedicated to a different code list. 830

A.5.2 Schema Definitions 831

There are many different ways that UBL can define the ISO3166Code element, but it probably makes sense to base it on 832
something like the single type method (for the supplementary component attributes) and to use the enumerated type method 833
where practical (for the primary component). Thus, the optimal form of the multiple UBL types method is really a hybrid method. 834

The schema definition of the types governing the ISO3166Code element might look like this: 835

<xs:simpleType name=”ISO3166CodeContentType”> 836
 <xs:extension base=”token”> 837
 <xs:enumeration value=”DE”/> 838
 <xs:enumeration value=”FR”/> 839
 <xs:enumeration value=”US”/> 840
 . . . 841
 </xs:extension> 842
</xs:simpleType> 843
 844
<xs:complexType name=”ISO3166CodeType”> 845
 <simpleContent> 846
 <xs:extension base=" ISO3166CodeContentType"> 847
 <xs:attribute name="CodeListIdentifier" 848
 type="cct:CodeListIdentifierType" fixed=”ISO3166”/> 849
 <xs:attribute name="CodeListAgencyIdentifier" 850
 type="cct:CodeListAgencyIdentifierType" 851
 fixed=”ISO”/> 852
 <xs:attribute name="CodeListVersionIdentifier" 853
 type="cct:CodeListVersionIdentifierType" 854
 default=”1.0”/> 855
 <xs:attribute name="LanguageCode" 856
 type="cct:LanguageCodeType" 857
 use=”optional”/> 858

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 34 of 43

 </simpleContent> 859
</xs:complexType> 860

Such a definition does several things: 861

• It enumerates the possible values of the code itself. An alternative would be just to allow the code to be a string or 862
token, or to specify a regular expression pattern that the code needs to match. 863

• It provides a default value for the version of the code list being used, with the possiblity that the default could be 864
overridden in an instance of a UBL message to provide a different version (though, since the codes are enumerated 865
statically, if new codes were added to a new version they could not be used with this element as currently defined). 866
Some alternatives would be to fix the version and to require the instance to set the version value. 867

• It fixes the values of the code list identifier and code list agency identifier for the code list, such that they could not 868
be changed in an instance of a UBL message. Some alternatives would be to provide changeable defaults and to 869
require that the instance set these values. 870

• It makes the language code optional to provide in the instance. 871

A.5.3 Derivation Opportunities 872

Because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful. A derived type 873
could be created that does any of the following: 874

• Adds to the enumerated list of values by means of the XSD union technique 875

• Adds defaults where there were none before 876

• Adds fixed values where there were none before 877

In addition, the element containing the dedicated code list subelement can be modified to allow the appearance of additional code 878
list subelements. 879

A.5.4 Assessment 880

This method is quite strong on most requirements; it falls down only on external maintenance. 881

Requirement Score Rank

Semantic clarity 4 High

The supplementary components are always accessible, either
through the instance or (through defaulting or fixing of values) the
schema.

Interoperability 4 High

Each code-containing construct in UBL can indicate, through
schema constraints, exactly what is expected to appear there.

External maintenance 0 Low

In order to work with the UBL library, the code lists maintained by
external organizations would have to derive from the UBL type,
which creates a circular dependency (UBL needs to include an
external schema module, but the external module needs to derive
from UBL). Alternatively, the UBL library has to do all the work of
setting up all the desired code list types.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 35 of 43

Requirement Score Rank

Validatability 4 High

The constraint rules can range from very tight to very loose, and
anyone who wants to subset or extend the valid values can express
this in XSD terms fairly easily. The limitations are only due to XSD’s
capabilities.

Context rules friendliness 2 High

Since there is a dedicated element for a code, it can be added or
subtracted like a regular element – something that is already
assumed to be part of the power of the context rules language.

Upgradability 1.5 Medium to high

Depending on how the constraint rules have been set up, it might
be required to define a new (possibly derived) type to allow for a
new version of a code list. However, in many cases, it will be
desirable to design the schema module to avoid the need for this.

Readability 1.5 Medium to high

Because there is an element dedicated to the list “source” for the
code, the code itself is relatively readable. However, the
supplementary components are likely to be hidden away from the
instance, which makes their values a bit obscure.

Total 17

A.6 Multiple Namespaced Types Method 882

This method is very similar to the multiple UBL types method, with one important change: The UBL elements that each represent a 883
code from a particular list are bound to types that may have come from an external organization’s schema module. 884

A.6.1 Instance 885

The namespaced type method results in instance documents with the following structure. This is identical to the multiple UBL types 886
method, because the element dedicated to a single code list is still a UBL-native element. 887

<LocaleCode> 888
<ISO3166Code>code</ISO3166Code> 889
</LocaleCode> 890

A.6.2 Schema Definitions 891

The schema definitions to support the content of LocaleCode might look as follows. Here, three code list options are offered for a 892
locale code. The xmlns: attributes that provide the namespace declarations for the iso3166:, xxx:, and yyy: prefixes 893
are not shown here. It is assumed that an external organization (presumably ISO) has created a schema module that defines the 894
iso3166:CodeType complex type and that this module has been imported into UBL. 895

<xs:complexType name="LanguageType"> 896
 <xs:sequence> 897
 <xs:element name="IdentificationCode" . . .></xs:element> 898
 <xs:element name="Name" . . .></xs:element> 899
 <xs:element name="LocaleCode" 900
 type="cct:LocaleCodeType" minOccurs="0"> 901
 </xs:element> 902
 </xs:sequence> 903
</xs:complexType> 904

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 36 of 43

 905
<xs:complexType name=”LocaleCodeType” id=”. . .”> 906
 <xs:choice> 907
 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/> 908
 <xs:element name=”XXXCode” type=”xxx:CodeType”/> 909
 <xs:element name=”YYYCode” type=”yyy:CodeType”/> 910
 </xs:choice> 911
</xs:complexType> 912

Just as for the multiple UBL types method, there are many different ways that the iso3166:CodeType complex type can be 913
defined, but it probably makes sense to base it on something like the single type method (for the supplementary component 914
attributes) and to use the enumerated type method where practical (for the primary component). Thus, the optimal form of the 915
multiple namespaced types method is really a hybrid method. For example, the definition might look like this: 916

<xs:simpleType name=”CodeContentType”> 917
 <xs:extension base=”token”> 918
 <xs:enumeration value=”DE”/> 919
 <xs:enumeration value=”FR”/> 920
 <xs:enumeration value=”US”/> 921
 . . . 922
 </xs:extension> 923
</xs:simpleType> 924
 925
<xs:complexType name=”CodeType”> 926
 <simpleContent > 927
 <xs:extension base="iso3166:CodeContentType"> 928
 <xs:attribute name="CodeListIdentifier" 929
 type="cct:CodeListIdentifierType" 930
 fixed=”xxx”/> 931
 <xs:attribute name="CodeListAgencyIdentifier" 932
 type=" iso3166:CodeListAgencyIdentifierType" 933
 fixed=”yyy”/> 934
 <xs:attribute name="CodeListVersionIdentifier" 935
 type=" iso3166:CodeListVersionIdentifierType" 936
 default=”1.0”/> 937
 <xs:attribute name="LanguageCode" 938
 type=" iso3166:LanguageCodeType" 939
 use=”optional”/> 940
 </simpleContent> 941
</xs:complexType> 942

Because the UBL library would not have direct control over the quality and semantic clarity of the datatypes defined by external 943
organizations, it would be important to document UBL’s expectations on these external code list datatypes. 944

A.6.3 Derivation Opportunities 945

Just as for multiple UBL types, because a whole element is dedicated to the code for each code list, the derivation opportunities are 946
more plentiful. 947

Also, if the external organization failed to meet our expectations about semantic clarity and didn’t add the supplementary 948
component attributes, we could add them ourselves by defining our own complex type whose primary component (the element 949
content) is bound to their type, or by deriving a UBL type from their external type. 950

A.6.4 Assessment 951

This is a strong contender in every area. 952

Requirement Score Rank

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 37 of 43

Requirement Score Rank

Semantic clarity 4 High

The supplementary components are always accessible to the
parser, either through the instance or (through defaulting or fixing
of values) the schema. This assumes that UBL’s high expectations
on external types are met, but this is a reasonable assumption.

Interoperability 4 High

Each code-containing construct in UBL can indicate, through
schema constraints, exactly what is expected to appear there.

External maintenance 4 High

External organizations can freely create schema modules that
define elements dedicated to their particular code lists, and can
even make the constraint rules as flexible or as draconian as they
want.

Validatability 4 High

The constraint rules can range from very tight to very loose, and
anyone who wants to subset or extend the valid values can express
this in XSD terms fairly easily. The limitations are only due to XSD’s
capabilities.

Context rules friendliness 2 High 2

Since there is a dedicated element for a code, it can be added or
subtracted like a regular element – something that is already
assumed to be part of the power of the context rules language.

Upgradability 1.5 Medium to high

Depending on how the constraint rules have been set up, it might
be required to define a new (possibly derived) type to allow for a
new version of a code list. However, in many cases, the
organization maintaining the code list might design the schema
module in such a way as to avoid the need for this.

Readability 1.5 Medium to high

Because there is an element dedicated to the list “source” for the
code, the code itself is relatively readable. However, the
supplementary components are likely to be hidden away from the
instance, which makes their values a bit obscure.

Total 21

A.7 Analysis and Recommendation 953

Following is a summary of the scores of the different methods. 954

Method Score Comments

Enumerated list 11 Spelling out the valid values assures validatability, but defining all the
necessary code lists in UBL itself defeats our hope that code lists can
be defined and maintained in a decentralized fashion.

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 38 of 43

Method Score Comments

QName in content 4.5 The idea of using XML namespaces to identify code lists is potentially
useful, but because this method uses namespaces in a hard-to-
process (and somewhat non-standard) manner, both semantic clarity
and validatability suffer.

Instance extension 9.5 This method allows for great flexibility, but leaves validatability and
interoperability nearly out of the picture.

Single type 7.5 This method is strong on semantic clarity because of the attributes for
supplementary components, but it loses interoperability and schema
flexibility because it is using a single type for everything.

Multiple UBL types 17 This method is quite strong on most requirements; it falls down only
on external maintenance.

Multiple namespaced types 21 This is a strong contender in every area.

We recommend the multiple namespaced types method, with the addition of strong documented expectations on the external 955
organizations that define schema modules for code lists in order to ensure maximum semantic clarity and validatability. 956

Note that is is possible that the UBL library will not have many external schema modules to choose from initially, and some external 957
organizations may choose never to create schema modules for their code lists. Thus, UBL might be in the position of having to 958
create dummy datatypes for some of the code lists it uses. In these cases, at least UBL will achieve most of the benefits, while 959
having to balance the costs of maintenance against these benefits. It may be that UBL can even “kick-start” the interest of some 960
external organizations in producing such a deliverable by supplying a starter schema module. 961

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 39 of 43

Appendix B. - ebXML Registry ClassificationScheme 962

This section provides the proposed text for inclusion in the UBL specification to add a non-normative recommendation to use ebXML 963
Registry ClassificationScheme XML Schema as a schema for representing UBL Code lists. The author is committed to working with 964
the UBL TC on this proposal as deemed necessary by that body. 965

B.1 What is ebXML Registry ClassificationScheme 966

The OASIS ebXML Registry standard defines an abstract information model for representing structured taxonomies. It also defines a 967
normative binding of this model to XML Schema which may be used to define structured taxonomies in a standard XML format. 968

In this model a taxonomy is represented by a class named ClassificationScheme while taxonomy values are represented by a class 969
named ClassificationNode. Any taxonomy, its taxonomy values and the hierarchical structure of its taxonomy values may be defined 970
using an instance of a ClassificationScheme and a set of ClassificationNode instances arranged in a hierarchical structure. Figure 1 971
shows the information model for ClassificationScheme in UML format. 972

 973

Figure 1: Information Model Classification View 974

In addition to the information model classes defined above, ebRIM also defines a class called Slot which is used to add dynamic 975
attributes to any object (including ClassificationScheme and ClassificationNode). Slots provide for attribute extensibility within 976
ebRIM. 977

B.2 Using ebRIM ClassificationScheme To Represent UBL Code 978

Lists 979

The ebRIM ClassificationScheme information model and its normative binding to an XML Schema representation is recommended 980
for representing UBL code lists for the following reasons: 981

 982

• Provide an open, standards-based XML schema that can be used to represent UBL code lists. 983

• Supports the “ UBL Code List Rules” defined by [wp-ubl-codelist]. 984

• Is extensible to accommodate additional requirements in the future. 985

• Allows any UBL code lists to be based upon and validated by a single common XML schema. 986

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 40 of 43

• Enable the definition of hierarchical UBL code lists. 987

• Make it easier to use ebXML Registry to store UBL content. 988

 989

B.3 Mapping Between UBL Code Lists and ebRIM 990

ClassificationScheme 991

A normative binding to XML schema [ebRIM Schema] has been defined for the abstract ebRIM ClassificationScheme information 992
model shown in Figure 1. This section describes how the ebRIM ClassificationScheme schema may be used to represent UBL code 993
lists. 994

 995

At the highest level, a UBL code lists maps to an ebRIM ClassificationScheme while the values within the code list map to an ebRIM 996
ClassificationNode. The following example illustrates a very simple code list for representing Gender: 997

 998

<ClassificationScheme id="urn:uuid:d1462ca5-a643-46e9-b3da-eda1403d9d3a" 999
isInternal="true" nodeType="UniqueCode" userVersion=”1.0”> 1000
 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Gender"/></Name> 1001
 <Description><LocalizedString lang="en-US" charset="UTF-8" value="A gender code 1002
list"/></Description> 1003
 1004
 <Slot name="xmlNameSpace"> 1005
 <ValueList><Value>urn:nameSpaceURN</Value></ValueList> 1006
 </Slot> 1007
 1008
 <Slot name="responsibleOrganization"> 1009
 <ValueList><Value>urn:orgURN</Value></ValueList> 1010
 </Slot> 1011
 1012
 <ClassificationNode id="urn:uuid:4c764c0d-6248-4017-b58e-e0b1667fa2e5" 1013
code="Male"> 1014
 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Male"/></Name> 1015
 <Description><LocalizedString lang="en-US" charset="UTF-8" value="Code for 1016
Male"/></Description> 1017
 </ClassificationNode> 1018
 1019
 <ClassificationNode id="urn:uuid:078f0d7b-5f3a-4aa6-8b59-af6b91da4185" 1020
code="Female"> 1021
 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Female"/></Name> 1022
 <Description><LocalizedString lang="en-US" charset="UTF-8" value="Code for 1023
Female"/></Description> 1024
 </ClassificationNode> 1025
 1026
</ClassificationScheme> 1027

 1028

[wp-ubl-codelist] defines that a UBL code list representations MAY include the following attributes. This section defines the mapping 1029
to ebRIM: 1030

 1031

Code Attribute
Name

Mapping in ebRIM

Name Name element of ClassificationNode

listID Slot with same name

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 41 of 43

listName Slot with same name

listVersionID

userVersion attribute of ClassificationScheme

listAgencyID Slot with same name

listAgencyName Slot with same name

listAgency-
SchemeID

Slot with same name

listAgency-
SchemeAgencyID

Slot with same name

xml:lang Lang attribute of LocalizedString in Name and Description

xlink:href Slot with same name

xlink:role Slot with same name

xlink:type Slot with same name

 1032

Using the simple mapping provided above, any UBL code lists may be represented within ebRIM Classification XML Schema and be 1033
adherent to [wp-ubl-codelist]. 1034

B.3 References 1035

 1036

[ebRIM] ebXML Registry Information Model version 2.1 1037
http://www.oasis-open.org/committees/regrep/documents/2.1/specs/ebRIM.pdf 1038

 1039

[ebRIM Schema] ebXML Registry Information Model Schema 1040

http://www.oasis-open.org/committees/regrep/documents/2.1/schema/rim.xsd 1041

 1042

(Note version 2.5 will soon be TC approved. Note sure which you want to reference. Version 2.1 is OASIS approved 2.5 has just 1043
been TC approved this week and will be available on web site in next 3 weeks). 1044

 1045

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 42 of 43

Appendix C. List of Rules for Codes 1046

[R 1] All newly defined types must be named; they must not be anonymous. 1047

Note: Only locally scoped code lists should use anonymous types, to prevent the types from being associated with multiple 1048
elements or with elements in other namespaces. 1049

[R 2] A properly named target namespace must be assigned to the code list schema module. It is recommended that the types 1050
be defined in their own dedicated schema module, so that the namespace unambiguously refers to a single code list. 1051

[R 3] In the code list type, attributes must be defined at least for the code list identification identifier (listID), code list 1052
agency identifier (listAgencyID), and code list version identifier (listVersionID). Defining attributes for the 1053
code name (name) and its language code (languageCode) is optional. The attributes may be associated with any 1054
appropriate simple types. The attribute values need not be fixed; a default could be provided, or the value could simply be 1055
required to appear in the instance. 1056

[R 4] The XSD definitions should be made as reasonably constraining as possible, defining value defaults or fixed values for 1057
supplementary components and circumscribing the valid values of the code content without compromising the maintainability 1058
goals of the agency. It might make sense not to use enumeration but rather to use pattern-matching regular expressions or to 1059
avoid strict code validation entirely. 1060

[R 5] Embedded documentation must be provided as shown in the template above in order to indicate the appropriate code list 1061
metadata. If the code list module serves for multiple versions of the same code list, the documentation block for Code List. 1062
Version. Identifier is optional. See the Naming and Design Rules specification [NDR] for more information on embedded 1063
documentation rules. 1064

[R 6] A global element in the agency’s namespace may optionally be defined and associated with the code list type. 1065

Be aware that the UBL Library currently does not plan to use such elements, but it might be helpful for use in other XML 1066
vocabularies that import global elements from other namespaces. 1067

Note: Various features of XSD could be used for purposes not related to this specification, such as attribute groups (to manage the 1068
attributes for supplementary components) and the use of non-built-in XSD simple types for the attribute values (for tighter 1069
management of constraints on these values). 1070

[R 7] Every first-order code appearing in the UBL Library must be double-wrapped. 1071

 1072

 1073

wd-ublclsc-codelist-20040206.doc 8 February 2004
Copyright © OASIS 2004. All rights reserved. Page 43 of 43

Appendix D. Notices 1074

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain 1075
to the implementation or use of the technology described in this document or the extent to which any license under such rights 1076
might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on 1077
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 1078
made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a 1079
general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained 1080
from the OASIS Executive Director. 1081

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights 1082
which may cover technology that may be required to implement this specification. Please address the information to the OASIS 1083
Executive Director. 1084

Copyright © OASIS Open 2002. All Rights Reserved. 1085

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise 1086
explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction 1087
of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. 1088
However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, 1089
except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the 1090
OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English. 1091

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns. 1092

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, 1093
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL 1094
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 1095

