UBL Customization

Author: Matthew Gertner (matthew@acepoint.cz)

Date: February 3, 2003
Filename: draft-gertner-ublcustomization.doc

1Introduction
2

2Derivation of Customized Types
2

2.1Use of XSD Derivation
3

2.2Use of Ur Types
5

2.3Building Types Using Core Components
6

3Describing Context
6

1 Introduction

With the first public release of UBL, version 0p70, users can now begin to gain experience with using the library in their applications for interchange of business data among trading partners. Although the library will be subject to change and extension as it approaches the final version, it already contains important document types informed by the broad experience of members of the UBL Technical committee, including EDI and XML experts. Furthermore, it draws on the popular xCBL schema library, which has been used for several years by many companies of varying sizes.

One of the most important lesson learned from previous standards like EDI and xCBL is that no business library can be static. Requirements differ significantly between companies, and customization is therefore needed in almost all cases before the document types can be used in real-world applications. A primary motivation for moving from the relatively inflexible EDI formats to a more robust XML approach is the existence of formal mechanisms for performing this customization while retaining maximum interoperability.

In order for this interoperability to be achieved, care must be taken to adhere to strict guidelines when customizing UBL document types. This document aims to describe the procedure for customizing UBL, with two separate goals. The first is to ensure that users of UBL produce schemas that can be exchanged with trading partners whose requirements for data content are different but related. The second is to gather use case data for the future UBL context extension methodology, an automatic mechanism for creating customized UBL schemas.

2 Derivation of Customized Types

Central to the customization approach used by UBL is the notion of schema derivation. This is based on object-oriented principles, the most important of which are inheritance and polymorphism. The importance of the latter can be gleaned from its linguistic origin: poly, meaning “many”, and morph, meaning “shape”. By adhering to these principles, document formats with different “shapes” can be used inchangeably.

The UBL Naming and Design Rules Subcommittee (NDRSC) has taken the decision to use XSD, the standard XML schema language produced by the World Wide Web Consortium (W3C), to model document formats. One of the most significant advances of XSD over previous XML document description languages like DTDs is that it has built-in mechanisms for handling inheritance and polymorphism. It therefore fits well with the real-world requirements for business data interchange.

In order to use XSD derivation, the UBL type is located with the best fit to to requirements. There are three different scenarios:

· An existing UBL type fits the requirements for the application with modifications supported by XSD derivation. These modifications can include extension, adding new information to an existing type, and/or refinement, restricting the set of information allowed to a subset of that permitted by the existing type.

· An existing UBL type is close to the requirements of the application, but the changes needed go beyond those allowed directly by XSD derivation. For example, the new type might need to broaden the set of information allowed to a superset of that permitted by the existing type.

· No existing UBL type is found that can be used as the basis for the new type. Nevertheless, the base library of core components that underlies UBL can be used to build up the new type so as to ensure that interoperability is at least possible on the core component level.

Each of these variants is described in more detail in the following subsections.

2.1 Use of XSD Derivation

XSD extension is used when additional information must be added to an existing UBL type. For example, a company might use a special identification code in relation to trading partners. This code should be included in addition to the standard information used in a BuyerParty description (AccountCode, PartyName, Address, etc.) when purchasing goods. This can be achieved by creating a new type that references the existing type and adds new the information:

 <xsd:complexType name="MyBuyerPartyType">

 <xsd:extension base="cat:BuyerPartyType">

 <xsd:element name="InternalSupplierCode"

type="xsd:string"/>

 </xsd:element>

 </xs:extension>

 </xsd:complexType>

Some comments:

· Notice that derivation can be applied only to types and not to elements that use those types. This is not a problem; although XSD allows for the use of anonymous types, defining a content model directly inside an element declaration, UBL uses explicit type definitions for all elements.

· This derived type can be used anywhere the original type is allowed. The instance document should use the xsi:type attribute to indicate that a derived type is being used. This does not enforce the use of the new type inside a given element, however, so in this example Orders could still be created using the standard UBL BuyerParty type. If the user wishes to require the use of the derived type, a new derived type must be created from the Order type using refinement and specifying that the MyBuyerPartyType is used.

· UBL defines global elements for all types, and these elements, rather than the types themselves, are used in aggregate element declarations. It is therefore recommended that the same procedure be used for derived types, so a MyBuyerParty element should be created based on the MyBuyerPartyType. Note that this decision is under review by the NDRSC and might be subject to change in future releases.

· All derived types should be created in a separate namespace (which might be tied to the user organization) and reference the UBL namespaces as appropriate.

In other cases, the user may wish to use the existing UBL type but restrict the information in some way. This is accomplished using XSD restriction. For instance, the UBL BuyerPartyType permits the inclusion of any number of addresses or none. If a specific organization wishes to allow exactly one address, this is achieved as follows (note that the annotation fields are removed from the type definition to make the example more readable):

<xsd:complexType name="MyBuyerPartyType">

<xsd:refinement base=”cat:BuyerPartyType”>

<xsd:sequence>

<xsd:element ref="ID" id="UBL000090">

</xsd:element>

<xsd:element ref="AccountCode" id="UBL000091"

minOccurs="0">

</xsd:element>

<xsd:element ref="PartyName" id="UBL000092"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

<xsd:element ref="Address" id="UBL000093"

minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element ref="PartyTaxScheme"

id="UBL000094"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

<xsd:element ref="BuyerContact" id="UBL000095"

minOccurs="0">

</xsd:element>

</xsd:sequence>

<xsd:refinement>

</xsd:complexType>

Note that the entire content model of the base type, with the appropriate changes must be repeated when performing refinement.

2.2 Use of Ur Types

XSD derivation is sufficient for most cases, but in some instances it might be necessary to perform changes to the UBL types that are not handled by standard mechanisms. In this case, the UBL ur types should be used. An ur type exists for each UBL standard type and differs only in that all elements in the content model are optional, including elements that are required in the standard type. By using the ur type, the user can therefore make modifications such as eliminating a required field that would not be possible using XSD derivation on the standard type.

For instance, suppose an organization would like to use the UBL BuyerPartyType, but does not want to use the required ID element. In this case, normal XSD refinement is used, but on the ur type rather than the standard type:

<xsd:complexType name="MyBuyerPartyType">

<xsd:refinement base=”ur:BuyerPartyType”>

<xsd:sequence>

<xsd:element ref="ID" id="UBL000090"

minOccurs=”0” maxOccurs=”0”>

</xsd:element>

<xsd:element ref="AccountCode" id="UBL000091"

minOccurs="0">

</xsd:element>

<xsd:element ref="PartyName" id="UBL000092"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

<xsd:element ref="Address" id="UBL000093"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

<xsd:element ref="PartyTaxScheme"

id="UBL000094"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

<xsd:element ref="BuyerContact" id="UBL000095"

minOccurs="0">

</xsd:element>

</xsd:sequence>

<xsd:refinement>

</xsd:complexType>

The new type is no longer compatible with the UBL BuyerPartyType, so standard processing engines that know about XSD derivation will not recognize the type relationship. However, some level of interoperability is still preserved, since both UBL BuyerPartyType and MyBuyerPartyType are derived from the BuyerPartyType ur type. If this additional flexibility is required, a processor can be implemented to use the ur type rather than the UBL type. It will then be able to process both the UBL type and the custom type, since they have a common ancestor in the ur type.

Once again, changes to the ur type do not enforce changes in the enclosing type, so the UBL OrderType has to be changed as well if the user organization wants to ensure that only the new MyBuyerPartyType is used. In fact, the new OrderType will not be compatible with the UBL OrderType, since MyBuyerPartyType is no longer derived from UBL BuyerPartyType. However, the new OrderType can be derived from the OrderType ur type to achieve maximum interoperability.

2.3 Building Types Using Core Components

Sometimes no type can be found in the UBL library or ur type library that can be used as the basis of a new type. In this case, we should still strive for maximum interoperability by building up the new type using types from the core component library that underlies UBL.

For example, suppose a user organization needs to include a specialized product description inside business documents. This description includes a unique ID, a name and the storage capacity of the product expressed as an amount. The type definition should appear as follows:

<xsd:complexType name="ProductDescriptionType">

<xsd:sequence>

<xsd:element name=”ID” type=”cct:IdentifierType”/>

<xsd:element name=”Name” type=”cct:TypeType”/>

<xsd:element name=”Capacity” type=”cct:AmountType”/>

</xsd:sequence>

</xsd:complexType>

It goes without saying that all new names defined when creating custom types from scratch should also conform to the UBL Naming and Design Rules.

3 Describing Context

One final point is of primary importance for the future evolution of UBL. It is planned that a context extension methodology be designed to enable automatic customization of UBL types for specific purposes. This methodology works by using a formal specification of the reasons for customizing the type, known as the context. By expressing the context formally and specifying rules for adapting types based on context, most of the changes that need to be made to UBL in order for it to fit in a given usage environment can be generated by the context engine rather than performed manually. In addition, significant new flexibility can be gained, since rules from two complementary contexts can be applied simultaneously, yielding types appropriate for, say, the automobile industry and the French geopolitical entity.

At this stage, one of the main goals of the UBL Context Methodology Subcommittee is to gather as many use cases as possible to determined what types of customizations are performed in the real world, and on what basis. For this reason, it is hoped that use of the UBL 0p70 release will provide a wealth of information valuable to future work. To aid in this effort, new types should be annotated to indicate the context in which they are to be used.

Context is expressed using a set of name/value pairs, where the names are one of a limited set of context drivers established by the UBL TC:

· Business process

· Official constraints

· Product classification

· Business process role

· Industry classification

· Supporting role

· Geopolitical

· System capabilities

Context should be included as an element Context (in the UBL namespace) inside the documentation for each customized type, with the name of the context derived expressed as in the list above, but using capitalized camel case. The Context element has two attributes, driver and value. For example, if the type is to be used in the French automobile industry, the Context documentation would appear as follows:

<xsd:annotation>

<xsd:documentation>

<ubl:Context driver=”IndustryClassification”

value=”Automotive”/>

<ubl:Context driver=”Geopolitical” value=”France”/>

</xsd:documentation>

<xsd:annotation>

If a customization is made that does not fit into any of the existing context drivers, it should be described in prose form inside the Context element:

<xsd:annotation>

<xsd:documentation>

<ubl:Context>Used for jobs performed on weekends to specify additional data required by the trade union</ubl:Context>

</xsd:documentation>

<xsd:annotation>

Any issues with the set of context drivers currently defined or the taxonomies to be used for specifying values should be communicated to the UBL Context Driver Subcommittee.

