UBL Comment/Proposal 1

Dividing the Property Term into noun and adjective parts (ref. Line 1348/ 1434)

Suggestion from Mike Adcock (in memory)

Mike suggested that Property Terms should be divided into two parts: “Adjective” and “Noun”. The “Noun” is the main part of each property term with any additional characteristic represented by an additional “Adjective”. The specification of a Property Term “Adjective” as opposed to a Property Term Qualifier is necessary when the additional information related to the main Property Term (the Property Term “Noun”) is not the expression of one of the Context Drivers. On experimentation of this method UBL has found that this method of including an additional “Adjective” column results in extra semantic clarity in defining property terms and supports the reuse of components as well as the harmonization process.

It is proposed that if adopted Property Term “Adjectives” could be separated in the dictionary entry name by a dash and white space from the noun of its property term.

For example:

Box. Minium- Fill-Up Quantity. Quantity

Box. Maximum- Fill-Up Quantity. Quantity

or

Race. Start- Time. Time

Race. End- Time. Time

UBL Comment/Proposal 2

Definition of data types (ref. Lines 1587 – 1667)

UBL found that it is not clear, when a Data Type must be defined by many BCC or BBIE and could be described by different characteristics and restrictions.

For example supposing that the length of “Buyer_ Product. Type. Code” is a fixed length of 3 characters and the length of “Seller_ Product. Code” is a variable length with the minimum length of 2 characters and a maximum length of 5 characters. The question raised were whether it is necessary in this case to define two “Data. Types” for these two BBIEs? And, if so, how should these two Data Types be named?

UBL proposes that there are two possibilities for defining such Data Type names:

a.) using the same names as each BBIE e.g. “Buyer Product Type_ Code. Data Type” or

b.) put the format restriction information into the name of each different Data. Type, like “3Characters_ Code. Data Type”.
The second possibility is not very attractive because it includes some non-semantic information.

Solving this Data Type naming problem will be more complicated if we need to differentiate between identifier schemes or code lists. For example, there does exist different versions of the “International Classification of Diseases”. The different versions have different code lists and each of these code lists may have different format restriction e.g. 3 alpha characters or 2 numeric digits. Normally we would define the different versions by using the specific supplementary components in the appropriate CCT e.g. Code List. Version. Identifier, but the code lists will be enumerations, and enumerations are restrictions of Data Types. As a consequence of this, we may have to define for every code list or identifier scheme a new Data Type.

If this is necessary, what will be the naming convention of these Data Types? Should we in these cases put all of the necessary supplementary information for its distinction into the Data Type name? For example: “ICD_ V10_ Disease Classification_ Code. Type”. This would not appear to be a very efficient way for naming Data Types and this could also result in some of the supplementary components becoming unnecessary.

UBL Comment/Proposal 3

Clarification of the use of data type qualifiers in a BCC and BBIE (ref. Lines 1629 – 1637)

UBL found that it is not very clear, how we can use the Qualifiers of Data Types in the specific BCCs or BBIEs. The best explanation could be done by the following examples:

Name_ Text. Type

Picture_ Binary Object. Type

Country_ Code. Type

Language_ Code. Type

According to the rules of the CCTS V1.9, the qualifiers of the two Data Types “Name_ Text. Type” and “Picture_ Binary Object. Type” will be used for the representation term of a BCC or BBIE like

Person. Surname. Name

Person. Passport. Picture

But what is with the qualifiers of “Country_ Code. Type” or “Language_ Code. Type”. Can we use these qualifiers for the property terms of each BCC or BBIE or will this be qualifiers representation terms only?

And if we have to define a new data type for every specific physical characteristic (like length, regular patterns etc.) of a BCC or BBIE, the names of these data types will become longer and will have included many more qualifiers. How do we have to use these qualifiers in the names of BCCs and BBIEs? Do we represent each qualifier term as part of the object class term, property term, their qualifiers and representation term of each BCC/BBIE? Can the name of data type be different as a dictionary entry name of BCC/BBIE? If the names different, a type awarness is always necessary. Because, we have to know on which Data. Type every BCC/BBIE will be based.

UBL Comment/Proposal 4

Clear distinction between Identifier and Codes (ref. Line 2245 through to Table 8-1)

Suggestion from Mike Adcock (in memory)

UBL found that the distinction in the definition of “Code. Type” and “Identifier. Type” is not clear enough.

The current definition of “Identifier. Type” is: “A character string to identify and distinguish uniquely, one instance of an object in an identification scheme from all other objects in the same scheme together with relevant supplementary information.”

The current definition of “Code. Type” is: “A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute together with relevant supplementary information. Should not be used if the character string identifies an instance of an object class or an object in the real world, in which case the Identifier. Type should be used.”

This definitions have the following problems:

· “code” is according some dictionaries normally a synonym of “identifier”.

· Everthing could be an object which means consequently that everthing must be identified by an identifier.

Mike Adcock made a very good suggestion to UBL for the clear and unambiguous definition of code and identifier. The definitions are:

· Code. Type – It is character string (letters, figures or symbols). It can be used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, ...). Codelists must have versions.
· Identifier. Type – A character string to identify and distinguish uniquely, one instance of an logical or real object in an identification scheme from all other objects in the same scheme together with relevant supplementary information. Instead of being ‘restricted’, the number of forms should constantly increase (for example, as for Product Identification, Order Identification,...). New Identifiers are always being added and the list of identifiers cannot be versioned.

In some cases it may be that it is not possible to distinguish between “Identifier” and “Code” for coded values. This is particularly applicable if an object is identified uniquely using a coded value and this coded value also replaces a longer text. For example, this includes the coded values for “Country”, “Currency”, “Organization”, “Region” and so on. If the list of coded values proves to be consistent, then the”Code. Type” can be used for the individual coded values.

Examples:

· A passport number (Passport. Identifier) is clearly an “Identifier” because it a.) identifies a (real) object (the actual person) and b.) enhances the list of passport numbers with the newly issued passport.

· A country code (Country. Code or Country. Identifier) can either be an “Identifier” or a “Code”. The country code identifies a real object, namely the actual country uniquely. However, the country code itself is also a replacement for the respective (unique) country name. Therefore, it is also a “Code. Type”. Since the code list proves to be consistent to a certain extent, the country name should be represented by “Code. Type”. Changes only occur as the result of political events and they occur much less frequently compared to changes regarding humans.

· A processing code (Process. Code) is without doubt a “Code” because it a.) describes a method type rather than an object, and b.) the list of processing codes rarely changes.

UBL Comment/Proposal 5

New Supplementary Components (ref. Line 2245 and Table 8-1)

a) In the case of Code. Types

The supplementary code “Code List. Agency. Identifier” represents the unique identifier from the responsible agency of the specific code list. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every code list included within it.

The problem identified by UBL is, how can we fully distinguish any code list and make this interoperable without any mutual trading partner agreements being in place beforehand. The current supplementary components “Code List. Agency. Name” and “Code List. Uniform Resource. Identifier” are not sufficient because a) the names in “Code List. Agency. Name” are free text and require a manual agreement between the exchanging parties and b) the “Code List. Uniform Resource. Identifiers” are not very stable nor can they always be defined as an invokable URI. Therefore it makes sense to represent the responsible agency by other unique and international code lists or identifier schemes, like the DUNS number.

To solve this dilemma, two further supplementary components are proposed:

· Code List. Agency. Scheme. Identifier– Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Code List. Agency Scheme Agency. Identifier– Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Code List. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrate the precise distinction of code lists by utilising these proposed extra supplementary components:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	Code List. Identifier
	Code list for standard code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the propriety code

	Code List. Version. Identifier
	Version of the code list

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	Code List. Identifier
	Code list for the proprietary code

	Code List. Version. Identifier
	Code list version

	Code List. Agency. Identifier
	Standardized ID for the agency (normally the company that manages the code list)

	Code List. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Code List. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	Code List. Identifier
	ID schema for the proprietary identifier

	Code List. Version. Identifier
	ID schema version

	Code List. Agency. Identifier
	-

	Code List. Agency Scheme. Identifier
	-

	Code List. Agency Scheme Agency. Identifier
	-

b) In the case of Identifier. Types

The supplementary code “Identification Scheme. Agency. Identifier” represents the unique identifier from the responsible agency of the specific identification scheme of the identifiers. This identifier comes from the code list of the UN/CEFACT data element 3055. This code list does not have all agencies from every Identification Scheme in it.

The problem identified by UBL is, how can we fully distinguish any identification scheme and make this interoperable without any mutual trading partner agreements being in place beforehand. The current supplementary components “Identification Scheme. Agency. Name” and “Identification Scheme. Uniform Resource. Identifier” are not sufficient because a) the names in “Identification Scheme. Agency. Name” are expressed as free text and require a manual agreement between the exchanging parties and b) the “Identification Scheme. Uniform Resource. Identifiers” are not very stable nor can they always be defined as an invokable URI. Therefore it makes sense to represent the responsible agency by another unique and international code list or identifier scheme, like the DUNS number.

To doing this, two further supplementary components are necessary:

· Identification Scheme. Agency.Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Identification Scheme. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in Identification Scheme. Agency. Identifier is not based on UN/CEFACT data element 3055.

The following examples illustrates the precise distinction of Identification Schemes by using these proposed extra supplementary components:

a.) Standardized Identifiers whose ID schema is managed by an agency from code list DE 3055.

	Identifier
	Standard

	Identification Scheme. Identifier
	ID schema for the standard identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Agency from DE 3055 (excluding roles)

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

b.) Proprietary identifier whose ID schema is managed by an agency that is identified using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	Agency from DE 3055 that manages the standardized ID ‘schemeAgencyId’

c.) Proprietary identifier whose ID schema is managed by an agency that is identified without using a standard.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	Standardized ID for the agency (generally the company that manages the proprietary identifier)

	Identification Scheme. Agency Scheme. Identifier
	ID schema for the schemeAgencyId

	Identification Scheme. Agency Scheme Agency. Identifier
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary identifier whose ID schema is managed by an agency that is specified by a role or is not specified at all.

The role is specified as a prefix in the tag name. Optionally, schemeID and schemeVersionID can be used as attributes if more than one ID schema exists. If there is only one ID schema, then no attributes are required.

	Identifier
	Proprietary

	Identification Scheme. Identifier
	ID schema for the proprietary identifier

	Identification Scheme. Version. Identifier
	ID schema version

	Identification Scheme. Agency. Identifier
	-

	Identification Scheme. Agency Scheme. Identifier
	-

	Identification Scheme. Agency Scheme Agency. Identifier
	-

UBL Comment/Proposal 6

New Core Component Types (ref. Line 2245 and Table 8-1)

UBL has identified the requirement for the following additional CCTs:

a) Rate. Type

Rate. Type is a value which expresses the ratio between a specified unit and a rate basis unit.

Rate. Type can be used to represent a value of a physical or quantitative dimension relative to a quantitative or measure unit, for example kilometers per hour, kilogram per meter, pieces per time, count per minute.

The content component of Rate. Type comprises the rate value and will be represented in decimal.

RateType comprises the following supplementary components:

· Rate. Unit. Code – The units of a rate are represented in accordance with UN/ECE Recommendation #20.

· Rate. Basis Unit. Code – The basis unit of a rate rate are represented in accordance with UN/ECE Recommendation #20.

· Rate Unit Code. List Version. Identifier The version of unit code list and basis unit code list. Note: The default version is the 2002 version of the set of Common Codes from UN/ECE Recommendation 20.

c) URI. Type

“URI. Type” is a digital and unique address that is represented by the Unified Resource Identifier (URI) (compare IETF RFC 1738, IETF RFC 1808, IETF RFC 2396 and IETF RFC 2732).

“URI. Type” is a Core Component Type that can be used to represent global data types (GDTs) for e-mail addresses, Web pages, as well as documents or information found on Web pages.

The content component of URI. Type is based on the convention of the URI scheme. The syntax of this scheme is specified in the recommendation IETF RFC 2396. A URI comprises the schema (in other words, how a resource is to be accessed) followed by a colon and the schema-specific part. The schema-specific part is in each case only of importance to the service that is connected with the respective schema. A resource can have multiple URIs. On the one hand, reflection can mean that a resource can be physically located in multiple positions, and on the other can be accessed by using different protocols that are specified by the schema name. Example: A file can be referenced by http and ftp.

URI. Type comprises the following supplementary components:

· URI. Language. Code – If the attachment is a document or text then the language of the attachment can be represented correspondingly IETF RFC 1766 or IETF RFC 3066.

· URI. Protocol. Identifier – If the URI schemas above are not sufficient to determine the protocol of the address, then an additional URI schema in accordance with the specifications of IETF RFC 2717 can be requested. It is also possible to define the corresponding protocol type by using the additional specifications in the “protocolID” attribute. The code from the code list UN/EDIFACT DE 3155 “Communication Address Code Qualifier” is used for this type of protocol:

· AB – SITA (Communications number assigned by Societe Internationale de Telecommunications Aeronautiques (SITA)).

· AD – AT&T mailbox - AT&T mailbox identifier.

· AF – U.S. Defense Switched Network - The switched telecommunications network of the United States Department of Defense.

· AN – O.F.T.P. (ODETTE File Transfer Protocol) - ODETTE File Transfer Protocol.

· AO – Uniform Resource Location (URL) - Identification of the Uniform Resource Location (URL) Synonym: World wide web address.

· EM – Electronic Mail . Exchange of Mail by electronic means (SMTP).

· EI – EDI transmission - Number identifying the service and service user.

· FT – FTAM - File transfer access method according to ISO.

· GM – GEIS (General Electric Information Service) mailbox - The communication number identifies a GEIS mailbox.

· IM – Internal mail - Internal mail address/number.

· SW – S.W.I.F.T. - Communications address assigned by Society for Worldwide Interbank Financial Telecommunications s.c.

· XF – X.400 address - The X.400 address.

· The code is missing for the following protocols (the respective code suggestions are to be submitted to the UN/CEFACT Forum for standardization purposes):

· ms – Microsoft Mail (Example: MM)

· ccmail – CC-Mail (Example: CC)

a) Meta Language. Type

“Meta Language. Type” is a core component type which can be used for the representation of values by other meta languages, which will be based on examples of different XML standards or EDI standards.

It is very useful to have a core component type to carry specific information in other meta languages. Because some meta languages are the standard language for the expression of specific types of information. For example, “MathML” is a very common language for the representation of mathematical formulas and “SVG” is used very often for the representation of vector graphics. etc.

The content component of “Meta Language. Type” would comprise an instance based on a specific meta language.

Following supplementary components are necessary:

· Meta Language. Type. Code – Describes the format of the binary content if the format from “mimeCode” is ambiguous.

· Meta Language. Type. Name - The textual equivalent of the type code.

· Meta Language. Version. Identifier – Identifies the version of a meta language.

· Meta Language. Agency. Name – The name of the agency that manages this meta language.

· Meta Language. Agency. Identifier – Identifies the agency that manages this meta language. The default agencies used are those from DE 3055 but roles defined in DE 3055 cannot be used.

· Meta Language. Agency Scheme. Identifier – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in Meta Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Meta Language. Agency Scheme Agency. Identifier – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles). Note: This attribute is necessary, if the value in Meta Language. Agency. Identifier is not based on UN/CEFACT data element 3055.

· Meta Language. MIME. Code – Identifies the type of medium (image, audio, video, application) of the meta language in accordance with the MIME type definition in IETF RFC 2046 or the MIME type recommendations based on it.

· Meta Language. Character Set. Code – Identifies the particular character record of text data of the meta language.

· Meta Language. Encoding. Code – Specifies the decoding algorithm of the meta language.

· Meta Language. Language. Identifier – The identifier of the language used in the corresponding instance of the meta language.

· Meta Language. Uniform Resource. Identifier – This identifier defines the Uniform Resource Identifier that identifies where the instance is located.
· Meta Language. Scheme Uniform Resource. Identifier – The identifier defines the Scheme Uniform Resource Identifier that identifies where the scheme of the specific meta language is located.
UBL Comment/Proposal 7

New Representation Terms (ref. Lines 2257-2258 and Table 8-3)

UBL identified the requirement for the following additional secondary RTs.

a) Date Time. Type

· Day - It is a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring days are not supported by this datatype. The ·value space· of gDay is the space of a set of calendar dates as defined in § 3 of [ISO 8601]. Specifically, it is a set of one-day long, monthly periodic instances.

· Duration – It represents a duration of time. The ·value space· of duration is a six-dimensional space where the coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in § 5.5.3.2 of [ISO 8601], respectively. These components are ordered in their significance by their order of appearance i.e. as year, month, day, hour, minute, and second.

· Month – It represents a gregorian month that recurs every year.

· Month Day – It is a gregorian date that recurs, specifically a day of the year such as the third of May.

· Year – This representation term represents a gregorian calendar year.

· Year Month – This representation term represents a specific gregorian month in a specific gregorian year.

b) Numeric. Type

· Factor – It represents a numerical factor for mathematical reasons.

· Float – It represents long numerical string in a specific convention. It corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985].
· Integer – It represents a number without any decimals.

UBL Comment/Proposal 8

Use of ACCs/ABIEs as Semantic and List Containers (ref Line …)

Some of the ACCs as well as the ABIEs could be defined as semantic or list containers as described below.

a) Semantic Container

A semantic container is an ACC/ABIE, which has semantically equivalent information to BCCs/BBIEs or ASCCs/ASBIEs. The components of the semantically equivalent information should be based on either the same representation term in the case of BCCs/BBIEs, or on the same object class term of the appropriate ACCs/ABIEs, if they are ASCCs/ASBIEs.

Semantic containers help a business information modeller, when used as templates within empty business information objects, so that the modellers have an example of different kinds of components to help them fill in data in each of the specific business information entities or business documents. Furthermore, the same semantic containers can be reused in different business information or business documents.

Any ACC/ABIE which would be defined as a semantic container should be distinct from all other ACCs/ABIEs by means of being specified a different name (such as the extension “. Container” instead of “. Details” and the use of plural names for its object class term).

For example:

Parties. Container (ABIE as a semantic container)

Buyer_ Party. Party (ASBIE based on ACC “Party”)

Seller_ Party. Party (ASBIE based on ACC “Party”)

Manufacturer_ Party. Party (ASBIE based on ACC “Party”)

b) List Container

A list container is an ACC/ABIE which, has one and only one ASCC/ASBIE but which allows this single ASCC/ASBIE to be repeated infinitely.

A list container could be used for the separation of ACCs/ABIEs which can be repeated infinitely from the other components at the same level. This would help processing and modelling as it is not very helpful to have such repeated components mixed up with other components at the same level.

Any ACC/ABIE which would be defined as a list container should be distinct from all other ACCs/ABIEs by means of a different name (such as the extension “. List” instead of “. Details” and the use of plural names for its object class term).

For example:

Items. List (ABIE as a list container)

Product. Item (ASBIE which can be repeated infinitely)
