
Universal Business
Language (UBL)
Position Paper:

Using List Containers
Authors:

Tim McGrath (tmcgrath@portcomm.com.au)

Stephen Green (stephen_green@bristol-city.gov.uk)

Chin Chee-Kai (cheekai@SoftML.Net)

Bill Meadows (Bill.Meadows@Sun.COM)

Anthony B. Coates (abcoates@londonmarketsystems.com)

Date: August 30, 2003

Filename: position-lcsc-listcontainers-02.doc

position-lcsc-listcontainers-02 1 August 30, 2003

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

Table of Contents
1Summary..3

2Problem Description...4

3Case when not using List Containers..6

3.1Models...6

3.2Schemas..7

3.3Instances...7

4Case when using Selected List Containers...9

4.1Models...9

4.2Schemas..10

4.3Instances...10

5Case when using all List Containers..11

5.1Models...11

5.2Schemas..11

5.3Instances...12

6Findings..13

6.1Benefits of List Containers..13

6.2Problems with using List Containers...14

7Conclusion..17

position-lcsc-listcontainers-02 2 August 30, 2003

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

2

1 Summary
This document represents the outcome of a test implementation of the NDR rules
concerning List Containers.

Due to the overall level of concern about this matter it was felt that a real world example
would be necessary to identify the strengths and weaknesses of implementing these
rules and allow an objective debate on their value.

Three versions of the current UBL Library were developed and implemented in
conceptual model, XSD Schema and XML instances. These were:

a. The current UBL Library with no list container structures

b. The current UBL Library with suitable list container structures identified by the LC team

c. The current UBL Library with list container structures for all BIEs with potentially
multiple occurrences (i.e a cardinality of either 0..n or 1..n)

From this exercise we have been unable to demonstrate any pronounced architectural
benefits in using List Containers, either in processing performance or readability.
Furthermore, even if some easily recognized value could be identified for using list
containers, these would need to outweigh the difficulty of their consistent implementation
into the UBL library.

We therefore suggest that Rule 116 be reconsidered by the UBL NDR team.

position-lcsc-listcontainers-02 3 August 30, 2003

35

36
37

38
39
40

41
42

43

44

45
46

47
48
49
50
51

52

53

3

2 Problem Description
The UBL Naming and Design Rules rules number 116 states:

All elements with a cardinality of 1..n, (and lack a qualifying
structure)1 MUST be contained by a list container named "(name
of repeating element)List", which has a cardinality of 1..1.

Importantly, these rules exist to satisfy syntactical features of the XML/XSD environment
and do not impact on the conceptual models of the Library itself. These conceptual
models identify and define the semantic containers (ABIEs) of the UBL Library. By
definition, list containers are XML-wrappers used for encapsulating one or more
instances of the same structures.

An amendment has subsequently been proposed for Rule 116 to deal with the case of
0..n occurrences (and to make the rule generic). This is...

Suppose that the <Thing> element has cardinality M..N. Then
1. If N <= 1 (i.e. <Thing> is 0..1 or 1..1), then <Thing>
does not have a container.
2. If N >= 2 (e.g. 0..2, 1..2, 2..2, 0..3, 1..3, ...) then
<Thing> has a <ThingList> container.
3. If M = 0, the cardinality of <Thing> inside <ThingList>
is 1..N, and the cardinality of <ThingList> is 0..1.
4. If M >= 1, the cardinality of <Thing> inside <ThingList>
is M..N, and the cardinality of <ThingList> is 1..1.

The rationales for having this rule are:

a. list container elements foster more readable schemas and instances.

b. list container elements improve document processing performance (such as
stylesheet processing)

and

c. other XML vocabularies use these constructs

However, there are also potential overheads associated with the use of list containers:

a. Additional levels of complexity in the Schemas (e.g. XPath of elements)

b. Increase in size of the UBL Schemas

and

c. A separation/mismatch between the structures in the conceptual UBL models (ie.
the spreadsheets and class diagrams) and the normative UBL Schemas. For
example, structures that are optional in the models appear mandatory in the
schemas.

In addition, some members of the UBL TC felt that other, as yet unknown, side effects
may also be felt from introducing these constructs. For example, the requirement to
provide additional business rules to determine the identification of candidates for list
containers.

As such, there was concern that the benefit from using list containers may be less than
the cost. This paper documents the test cases built to prove or disprove these benefits
and costs.

1 We were unable to get clarification on what a 'qualifying structure' is that may relax this rule. We have had to
make the assumption that we have no such structures in the current library.

position-lcsc-listcontainers-02 4 August 30, 2003

54

55

56
57
58

59

60
61
62
63
64

65
66

67
68
69
70
71
72
73
74
75

76

77

78

79
80

81

82

83

84

85

86

87
88
89
90

91
92
93
94

95
96
97

4
5

6

The entire schemas and example instance documents are available as attachments to
this document, but for simplicity we have decided to use a representative fragment for our
comparisons. The TaxTotals ABIE contains demonstrates the differences between the
three approaches. It occurs in a 0..n association with Invoice and contains another 0..n
association (with TaxSubTotals).

There is a note of caution when using a 'small' example such as TaxTotals. One of the
issues of concern here is scalability. Performance and readability issues impact
differently depending on the scale or complexity of documents. Therefore, we
recommend the reader take time to study other structures in the attached document
beyond these examples.

position-lcsc-listcontainers-02 5 August 30, 2003

98
99
100
101
102

103
104
105
106
107

7

3 Case when not using List Containers

3.1 Models
The following is a section of the current UBL model describing the Invoice document.
There are no indicators in the “List” column to denote any list containers are required.

Note that the TaxTotals ASBIE has an occurrence of 0..n.

position-lcsc-listcontainers-02 6 August 30, 2003

108

109

110
111

113

114

115

8

The following is a section of the current UBL model describing the TaxTotals ABIE.

3.2 Schemas
A Schema fragment showing the TaxTotals structure...

<!-- for clarity, sections of xsd:annotation not pertinent to the
discussion have been omitted in the following structures-->
<xsd:element name="TaxTotals" type="TaxTotalsType"/>
<xsd:complexType name="TaxTotalsType">

<xsd:sequence>
<xsd:element ref="TotalTaxAmount">
</xsd:element>
<xsd:element ref="TaxSubTotal" minOccurs="0"

maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

A Schema fragment showing the TaxTotals structure referenced from an Invoice
document...

<xsd:element ref="cat:TaxTotals" minOccurs="0"
maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation>
<ccts:Component>
<ccts:CategoryCode>ASBIE</ccts:CategoryCode>
<ccts:DictionaryEntryName>Invoice. Tax

Totals</ccts:DictionaryEntryName>
<ccts:Definition>Associates the invoice with summary

information for a particular tax.</ccts:Definition>
<ccts:ObjectClass>Invoice</ccts:ObjectClass>
<ccts:PropertyTerm>TaxTotals</ccts:PropertyTerm>
<ccts:RepresentationTerm>TaxTotals</ccts:RepresentationTerm>
<ccts:AssociatedObjectClass>TaxTotals</ccts:AssociatedObject

Class>
</ccts:Component>
</xsd:documentation>
</xsd:annotation>

</xsd:element>

3.3 Instances
TaxTotals used in a sample instance of an Invoice document...

<cat:TaxTotals>

position-lcsc-listcontainers-02 7 August 30, 2003

116

118

119

120
121
122
123
124
125
126
127
128
129
130
131

132

133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155

156

157

158

9

<cat:TotalTaxAmount
currencyID="GBP">238.45</cat:TotalTaxAmount>

<cat:TaxSubTotal>
<cat:TaxAmounts>

<cat:TaxableAmount
currencyID="GBP">1362.56</cat:TaxableAmount>

<cat:TaxAmount
currencyID="GBP">238.45</cat:TaxAmount>

</cat:TaxAmounts>
<cat:TaxCategory>

<cat:ID>A</cat:ID>
<cat:RatePercentNumeric>17.50</cat:RatePercent

Numeric>
<cat:TaxScheme>

<cat:TypeCode>VAT</cat:TypeCode>
</cat:TaxScheme>

</cat:TaxCategory>
</cat:TaxSubTotal>

</cat:TaxTotals>

position-lcsc-listcontainers-02 8 August 30, 2003

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178

10

4 Case when using Selected List Containers

4.1 Models
The following is a revised section of the current UBL model describing the Invoice
document. There are now indicators in the “List” column to denote that list containers are
required for AllowanceCharge, TaxTotals and InvoiceLine.

position-lcsc-listcontainers-02 9 August 30, 2003

179

180

181
182
183

11

4.2 Schemas
A Schema fragment showing the TaxTotals structure referenced from an Invoice
document...

<xsd:element name="TaxTotalsList" type="TaxTotalsListType"/>
<xsd:complexType name="TaxTotalsListType">
<xsd:sequence>

<xsd:element ref="cat:TaxTotals" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
<ccts:Component>
<ccts:CategoryCode>ASBIE</ccts:CategoryCode>
<ccts:DictionaryEntryName>Invoice. Tax

Totals</ccts:DictionaryEntryName>
<ccts:Definition>Associates the invoice with summary

information for a particular tax.</ccts:Definition>
<ccts:ObjectClass>Invoice</ccts:ObjectClass>
<ccts:PropertyTerm>TaxTotals</ccts:PropertyTerm>
<ccts:RepresentationTerm>TaxTotals</ccts:Representati

onTerm>
<ccts:AssociatedObjectClass>TaxTotals</ccts:Associate

dObjectClass>
</ccts:Component>
</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
</xsd:complexType>

Note that the NDR rules for global elements requires the definition of a XSD
complexType for each list container. In this case, TaxTotalsListType. It is an instance of
this complexType that occurs one or more times in any given document.

4.3 Instances
TaxTotalsList used in a sample instance of an Invoice document...

<in:TaxTotalsList>
<cat:TaxTotals>

<cat:TotalTaxAmount
currencyID="GBP">238.45</cat:TotalTaxAmount>

<cat:TaxSubTotal>
<cat:TaxAmounts>

<cat:TaxableAmount
currencyID="GBP">1362.56</cat:TaxableAmount>

<cat:TaxAmount
currencyID="GBP">238.45</cat:TaxAmount>

</cat:TaxAmounts>
<cat:TaxCategory>

<cat:ID>A</cat:ID>
<cat:RatePercentNumeric>17.50</cat:Rate

PercentNumeric>
<cat:TaxScheme>

<cat:TypeCode>VAT</cat:TypeCode>
</cat:TaxScheme>

</cat:TaxCategory>
</cat:TaxSubTotal>

</cat:TaxTotals>
</in:TaxTotalsList>

position-lcsc-listcontainers-02 10 August 30, 2003

185

186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

213
214
215

216

217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

12

5 Case when using all List Containers

5.1 Models
The following is a revised section of the current UBL model describing the TaxTotals
ABIE. There are now indicators in the “List” column to denote that list containers are
required for TaxSubTotal.

5.2 Schemas

A Schema fragment showing the new additional TaxSubTotalsList structure referenced
from the TaxTotals ABIE...

<xsd:element name="TaxTotals" type="TaxTotalsType"/>
<xsd:complexType name="TaxTotalsType">

<xsd:sequence>
<xsd:element ref="TotalTaxAmount">
</xsd:element>

***---><xsd:element ref="TaxSubTotalList" minOccurs="0">
<xsd:annotation>
<xsd:documentation>

<ccts:Component>
<ccts:CategoryCode>ASBIE</ccts:Category

Code>
<ccts:DictionaryEntryName>Tax Totals.

Tax Sub Total</ccts:DictionaryEntryName>
<ccts:Definition>Information relating

to the tax sub total for one type of tax, e.g. VAT (Value Added
Tax) and one category.</ccts:Definition>

<ccts:ObjectClass>TaxTotals</ccts:Objec
tClass>

<ccts:PropertyTerm>TaxSubTotal</ccts:Pr
opertyTerm>

<ccts:RepresentationTerm>TaxSubTotal</c
cts:RepresentationTerm>

<ccts:DataType>TaxSubTotal</ccts:DataTy
pe>

<ccts:AssociatedObjectClass>TaxSubTotal
</ccts:AssociatedObjectClass>

</ccts:Component>
</xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

position-lcsc-listcontainers-02 11 August 30, 2003

240

241

242
243
244

246

247

248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

13

5.3 Instances
TaxTotalsList structure...

<in:TaxTotalsList>
<cat:TaxTotals>

<cat:TotalTaxAmount
currencyID="GBP">238.45</cat:TotalTaxAmount>

<cat:TaxSubTotalList>
<cat:TaxSubTotal>

<cat:TaxAmounts>
<cat:TaxableAmount

currencyID="GBP">1362.56</cat:TaxableAmount>
<cat:TaxAmount

currencyID="GBP">238.45</cat:TaxAmount>
</cat:TaxAmounts>
<cat:TaxCategory>

<cat:ID>A</cat:ID>
<cat:RatePercentNumeric>17.50</c

at:RatePercentNumeric>
<cat:TaxScheme>

<cat:TypeCode>VAT</cat:T
ypeCode>

</cat:TaxScheme>
</cat:TaxCategory>

</cat:TaxSubTotal>
</cat:TaxSubTotalList>

</cat:TaxTotals>
</in:TaxTotalsList>

position-lcsc-listcontainers-02 12 August 30, 2003

282

283

284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

14

6 Findings

6.1 Benefits of List Containers
List Container elements foster more readable schemas and instances

Firstly, there is some doubt as to the value of human readability. Either for XSD Schema
code (rather than using a schema editor) or XML instances (which are designed for
applications).

Given that such a requirement exists, it is a subjective opinion whether the schemas in
4.2 and 5.2 are more readable than those of 3.2. It would depend on the environment
being used.

When using an XML editing tool it is doubtful whether list containers offer any advantage
as the tools tend to manage the structures independently.

When using a text editor to view 'raw' schemas it can be argued that having “lists”
elements and their requisite complexType definitions create more difficulty for the reader.
This is because, to satisfy the global naming rules, we flatten out the container's depth
within the schema (as illustrated by definition of "ListType" global types in section 4.2)
and having the schema reference those global types. Arguably, this not only offers no
advantage in making schemas any easier to read than before but actually creates a more
round-about reference before one finally arrives at the definition of the contained types.

With respect to readability of XML instances, it could be said that when the contained
items grows into large lists, then a container could be a useful aggregation. However,
with such repetitious data, humans would probably not be able to process the data
visually anyway. They may then use products (such as Internet Explorer's XML viewer)
that create navigable trees. In this case the list containers are useful for folding up a
repeated group of elements that the reader does not want to look at.

In our study the strongest case for a list container was InvoiceLine, which repeated six
times. Unfortunately, this example is too large to include in this document as it runs to
over 300 lines of XML code. (This example is provided as part of the document, “UBL-
Invoice-0.81-draft-8-all-list-JoineryExample.xml”).

List Container elements improve document processing performance

The opinion of the UBL TC members experienced in this area is mixed (and somewhat
polarized). However, there appears to be a small favoring of list containers from 'feels
right' attitude rather than any empirical evidence of benefits. This is obviously difficult to
simulate in a meaningful way.

In the opinion of at least one Java/XML programmer, the main difference with processing
list containers is that an application program can use the getElementsByTagName
function with a list container to go more directly a group of elements. This avoids having
to 'walk the tree'. Technically speaking, the results are accessed as a node (or element)
with child nodes. For example, getElementsByTagName("InvoiceLineList"), provides a
node with InvoiceLine children, but getElementsByTagName("InvoiceLine") produces a
nodelist (or List) with Invoice Lines. The difference is between getting a node with child
nodes and getting a nodelist. Usually it is the nodelist (or List in JDOM) which an
application processes, ignoring any parent node. That is, the application gets a list of the
Invoice Lines and just iterates through them or uses them as a collection - any container
would be ignored. Consequently, it has proved difficult to find any examples where having
a container parent to the children would be a benefit to a programmer.

The probable response to this point would depend on the XML processing environment
being used. The ability to manipulate list containers may reduce coding logic. But there
are many factors which may also impact performance. For example, validating XSD
schemas with list containers would also add processing overheads as would using larger
schema documents and instances. Finally, in an XSLT environment , applications would

position-lcsc-listcontainers-02 13 August 30, 2003

310

311

312

313
314
315

316
317
318

319
320

321
322
323
324
325
326
327

328
329
330
331
332
333

334
335
336
337

338

339
340
341
342

343
344
345
346
347
348
349
350
351
352
353
354

355
356
357
358
359

15

typically transform the structures to build the container structures they require anyway.
The UBL Form Presentation group hold no strong opinion on the value of such structures
to their processing requirements.

From a strategic point of view, we should be cautious of applying current technology
issues (perceived or real) as a design criteria. Especially when, as in this case, a
supplementary technology fix is available if needed. Furthermore, when we look at the
design choices of other XML vocabularies (see below) it appears that not all XML
designers perceive the lack of list containers as a performance overhead.

Other XML vocabularies use these constructs

A market survey reveals that the following XML business vocabularies use list containers
(or something similar to):

• xCBL

• the proposed ASC-X12 XML guidelines

Whereas the following do not:

• RosettaNet

• HR-XML

• CIQ

• OAGIS

6.2 Problems with using List Containers
Naming and Re-usability

The approach taken to defining Lists is to identify occurrences of 0..n and 1..n in the
model. With a few (possibly erroneous) exceptions, these appear in the identification of
associations or relationships. That is, it is the Association BIEs that have occurrences of
more than one. In the spreadsheet models these show as the green rows.

This is both logically and structurally correct. As an analogy, if we say a book has many
pages, we do not expect the book to contain the same page many times. The book is
associated with many different instances of the thing we call a page. With our Invoice
example, it is not the same TaxTotals appearing several times, we expect different
instances. To do this we cannot define TaxTotals as occurring many times, it is the
association with Invoice that occurs many times.

Closer inspection of the schema fragments for TaxTotals in section 3.2 reveals it to be
the definition of “Invoice. Tax. Totals” – not “Tax. Totals” in general. [Note the Dictionary
Entry Name]

The case is clearer when we examine re-use of these list containers. Three examples
sprang out of the exercise.

• TaxCategory is a potential list container (occurs 0..n) when used within
AllowanceCharge and also within Item.

However when defining the meta-data such as Dictionary Entry Name, we must
use either the definition from Item.TaxCategory or AllowanceCharge. TaxCategory.

• AddressLine: the association Address to AddressLine can occur 0..7 times.

That is, an Address may have up to seven lines. If we introduce AddressLineList
containing 0..7 address lines – what happens if we want to use AddressLine more
than 7 times in another association? What happens when the minOccur and
maxOccur both change to 1..3 in another association? Do we define AddressLine0-
7List and also AddressLine1-3List? Even though the contents within each

position-lcsc-listcontainers-02 14 August 30, 2003

360
361
362

363
364
365
366
367

368

369
370

371

372

373

374

375

376

377

378

379

380

381
382
383
384

385
386
387
388
389
390

391
392
393

394
395

396
397

398
399

400

401
402
403
404
405

16

contained items of these containers are exactly the same, there is no resuability of
these container types as soon as we start defining such containers due to
cardinality differences.

• BasePrice: Base price is used with three different cardinalities:

When associated with an Item is has 0..n - “an item may have more than one base
price”

When associated with a LineItem it has 0..1 - “a item when ordered on a line may
only have one price”

When associated with an InvoiceLine it has 1..1 - “an item appearing on an Invoice
line must have a price”

If we wanted to define BasePriceList, we must do so only within its association with
Item not for each time BasePrice is re-used in he library.

The findings of this reveals that the list container should be defining the ASBIE not the
ABIE. Otherwise, we end up with duplicate element names for our lists.

It is not a solution to change the definitions of TaxCategory or TaxTotalsList to be
generic. The BasePrice and AddressLine examples demonstrate we actually need
separate list containers with their own definitions for each association (ASBIE).

Therefore, to adhere to the NDR rules, the "(name of repeating element)", should not be
TaxTotalsList but should have been InvoiceTaxTotalsList. That is, we should be using
the name of the ASBIE not the ABIE.

In fact, these examples in this paper had to be manually edited to avoid duplicate
definitions caused by not qualifying Lists with their associations.

Identifying candidates manually (selected list containers)

If list containers may help readability in some circumstances, this then leads to the
problem of how to identify what candidate structures may potentially have enough
occurrences to benefit for a list container. This is demonstrated by the 'selected list
containers' approach (section 4.).

With these examples, we found structures that had redundant containers (ie a container
wrapping one instance), such as the TaxTotal in section 4.3. We also encountered some
repeated structures that may possibly have benefited from being within a list container,
but were not flagged in the models. For example, our original analysis of
ItemIdentification suggested that normally one PhysicalAttribute would suffice. However,
our chosen business context (the Building industry) happens to rely of these for
identifying products, as can been seen from our example fragment.

<cat:SellersItemIdentification>
<cat:ID>236WV</cat:ID>
<cat:PhysicalAttribute>

<cat:AttributeID>wood</cat:AttributeID>
<cat:DescriptionID>soft</cat:DescriptionID>

</cat:PhysicalAttribute>
<cat:PhysicalAttribute>

<cat:AttributeID>finish</cat:AttributeID>
<cat:DescriptionID>primed</cat:DescriptionID>

</cat:PhysicalAttribute>
<cat:PhysicalAttribute>

<cat:AttributeID>fittings</cat:AttributeID>
<cat:DescriptionID>satin</cat:DescriptionID>

</cat:PhysicalAttribute>
<cat:PhysicalAttribute>

<cat:AttributeID>glazing</cat:AttributeID>
<cat:DescriptionID>single</cat:DescriptionID>

</cat:PhysicalAttribute>
</cat:SellersItemIdentification>

Unfortunately, different industries have widely different uses of lists and entities. This
demonstrates the difficulty with prediction of data occurrences and the subsequent frailty
of the 'selected lists' approach.

position-lcsc-listcontainers-02 15 August 30, 2003

406
407
408

409

410
411

412
413

414
415

416
417

418
419

420
421
422

423
424
425

426
427

428

429
430
431
432

433
434
435
436
437
438
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

459
460
461

17

Finally, the selective definition of list containers also creates a problem where
implementors cannot immediately identify which structures might have list containers and
which don't. For example, they could extrapolate whether BasePrice has a list container
by looking at the models or cardinality. Worse still, they could not derive whether
BasePrice had a list within Invoice and not in other occurrences.

position-lcsc-listcontainers-02 16 August 30, 2003

462
463
464
465
466

468

18

7 Conclusion
From this exercise we have been unable to demonstrate any pronounced architectural
benefits in using List Containers, either in processing performance or readability.
Furthermore, even if some easily recognized value could be identified for using list
containers, these would need to outweigh the difficulty of their consistent implementation
into the UBL library.

We therefore suggest that Rule 116 be reconsidered by the UBL NDR team.

position-lcsc-listcontainers-02 17 August 30, 2003

469

470
471
472
473
474

475

476

19

Appendix A.Notices
OASIS takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Information on OASIS's procedures with respect to rights in
OASIS specifications can be found at the OASIS website. Copies of claims of rights
made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementors or users of this specification, can be obtained
from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to implement this specification. Please address the information to the OASIS
Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards
[OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without restriction
of any kind, provided that the above copyright notice and this paragraph are included on
all such copies and derivative works. However, this document itself does not be modified
in any way, such as by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing OASIS specifications, in which case the
procedures for copyrights defined in the OASIS Intellectual Property Rights document
must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS
or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

position-lcsc-listcontainers-02 18 August 30, 2003

477

478
479
480
481
482
483
484
485
486
487

488
489
490
491

492
493

494
495
496
497
498
499
500
501
502

503
504

505
506
507
508
509

20

