[image: image1.png]AL

 [image: image1.png]

AgXML Standards Development Guidelines

Standards-Setting Process Guidelines

Some of these are common sense. Occasionally common sense is ignored in the depths of a standards discussion. These guidelines were written in the context of small-group, face-to-face standards development with white boards and computer projection available.

1. Use precise and accurate language. Some common-sense terms have very specific meanings in XML. Ironically, many of the Schema Development Guidelines undoubtedly violate this guideline—we’re working on it!

2. Don’t coin a term when one is commonly used in W3C recommendations, ebXML, or other well respected standards or publications.

3. Whenever a term is used that might strike the reader as “official” but it’s not, let the reader know (e.g. “wrapper element”, “top-level schema”, etc.).

4. Always date-version documents—facilitates referencing.

5. Enumerate lists rather than bullet them—facilitates referencing.

6. Set guidelines rather than rules. By nature people welcome guidelines and question rules. Guidelines often become de facto rules without political baggage.

7. Always ask yourself who will read written guidelines and whether they will understand the guidelines. This is especially applicable to technical people writing guidelines for largely business-oriented domain experts to follow during schema development. Despite what this guideline may imply, don’t violate guideline #1 since confusion will likely result among at least the technical people who end up implementing the standard.

8. Use examples.

9. When in doubt, be strict. Reconsider after receiving feedback from practical use.

10. When in doubt about the best choice for a guideline, just choose one, note the dilemma, and move on. A consistent non-optimal guideline is better than no guideline. You can always revisit a guideline or assign investigation and reporting by a sub-group.

11. When working in a group, don’t worry about wordsmithing. Note the concept and clean it up later.

12. Document how you arrived at a controversial decision. If you don’t, you (or worse others) will revisit it and potentially start the discussion again. You may revisit the decision anyway!

Schema Development Guidelines

The purpose of these guidelines is to encourage consistency across sets of schemas rather than impose policy. These guidelines should be frequently reviewed in light of emerging best practices and updated accordingly.

1. Go for clarity over cleverness! Clarity and ease of use/adoption are the top priorities.

2. Names in General: Spell out names completely. Don’t use abbreviations or acronyms. There are exceptions of course, particularly where the abbreviation or acronym is much better known than the term it represents (e.g. DNA, RADAR, LASER, FOB).

3. Naming Elements:
3.1. Be descriptive.

3.2. Capitalize the first letter of each word. (This is referred to as upper camel-case or just camel-case.)

3.3. Do not use underscores or dashes.

4. Naming Attributes:
4.1. Be descriptive.

4.2. Capitalize the first letter of each word following the first word. Make the first word lower-case. (This is referred to as lower camel-case.)

4.3. Do not use underscores or dashes.

5. Naming Enumerated Datatypes:
5.1. Give them the same name as the element to which they apply.

6. Elements vs. Attributes: This has been the subject of considerable debate from the early days of XML. Some of the original considerations related to concerns about bandwidth (attributes require less), the ability to specify enumerated lists of valid values for attributes in DTD’s, the ability to specify default values for attributes in DTDs, and the ability to refer to attributes by name in certain types of processing. However the emergence of the XML Schema and XPath standards, and declining concern about bandwidth have changed thinking in some areas.

6.1. When using XML Schemas for defining the structure of data, attributes are effectively a subset of elements. In other words, there’s nothing that you can do with attributes that you can’t do with elements. The converse isn’t true.

6.2. Elements should represent nouns—things. Another, more precise way to say this is that elements should represent data.

6.3. Attributes should represent adjectives—describes the noun. Another, more precise way to say this is that attributes should represent metadata.

6.4. When in doubt define the data as an element.

6.5. If you anticipate any sub-elements, define the node as an element.

6.6. Attributes are unordered. Keep that in mind if addressing data by position is important. Example: <Shirt size=”XXL” color=”blue”/>. The DOM standard would allow a processor to represent the color element as the first element.

6.7. Data defined by attributes require less space than data defined by elements, however, bandwidth is not a consideration for our standards-setting process.
Example:
 <SomeElement color=”blue”/>
requires twelve characters to define the color whereas
 <SomeElement><Color>blue</Color></SomeElement>
requires nineteen characters.

7. Processing Requirements: Computer resources required to process XML documents is not a consideration in our standards-development process.

8. Bandwidth: Bandwidth is not a consideration in our standards-development process.

9. Type, Code, and Qualifier: Be careful about using those terms, and terms like them, in schemas since they may seem to be applicable in many contexts. This seems to be an especially important consideration term definition has enumeration values.

10. Type vs. Wrapper Element:
10.1. There is a time and a place to use both, but use wrapper elements when the data structure is used in several different places.

10.2. Use the second of the following two examples:
 <Address type=”Ship To”>information</Address>
 ---- OR ----
 <ShipTo>
 <Address>information</Address>
 </ShipTo>
11. Attribute or Data Type Enumerations:

11.1. Use spaces between words.

11.2. Capitalize the first letter of each word except conjunctions and prepositions (and, or, of, the, etc.) between words.

11.3. Example: Ship To is correct. Ship to and ship to and ShipTo are incorrect.

12. Wrapper Elements
12.1. Guideline: When an element can occur more than once, wrap the element in another element. Generally the wrapper element name will be the plural of the name of the element that it wraps. (Note that wrapper element is not an official XML term.)

12.2. Background:
This guideline was discussed extensively and the Technical Committee did not have a compelling reason to choose one way over another. The following examples illustrate the design principle in question here:
 <Document>
 <Header>information</Header>
 <Detail>information</Detail>
 <Detail>information</Detail>
 <Detail>information</Detail>
 </Document >
 ---- OR ----
 <Document>
 <Header>information</Header>
 <Details>
 <Detail>information</Detail>
 <Detail>information</Detail>
 <Detail>information</Detail>
 </Details>
 </Document>
We basically had (still have) three options. We could adopt the first method, the second method, or a mix. We decided to adopt the second method.

12.3. Note: In some cases a non-repeating element may be “wrapped” as well—especially in cases where a reusable component is defined (a component defined in its own XSD file).

13. Don’t be overly descriptive. For example if the root element of the document is PurchaseOrder then is sufficient to call line items LineItems rather than PurchaseOrderLineItems. This guideline really needs to be applied in the context of all standards in a domain, and the potential need to uniquely identify certain elements/attributes across schemas. Note: see the Maintain symantec integrity guideline.
14. Maintain symantec integrity. Don’t use the same name for different things and use the same name for the same things. For example an element called Details may occur in several schemas. If the structure of a Details element differs across schemas, consider naming each instance of Details more specifically. Frequently refer to the AgXML Glossary to help sort out what element/attributes mean in certain contexts.

15. Don’t use domain-specific terms (e.g. Ag or Grain) anywhere unless part of the natural way of referring to a business term—that will be handled by the namespace.

16. Inclusion: If you’re unsure about whether an element should be included, include it, make it optional, and add a note explaining the pros and cons of its inclusion in the AgXML Glossary.

17. Don’t use mixed elements (elements that contain other elements and text). For example, don’t allow a structure like this (the part in violation of the guideline is in red):
 <Document>
 <Header>information</Header>
 <Detail>information</Detail>
 <Detail>information</Detail>
 <Detail>information</Detail>
 information
 </Document >
18. Globally-define all elements. This guideline especially should be reviewed frequently in light of best practices and our need to manage an increasing number of schemas.

19. Spell out names in an enumeration unless otherwise indicated in the element name (e.g. Country vs. CountryCode and Currency vs. CurrencyCode).

20. Date and Time
20.1. When only a date is required, create an element with an element type name that includes a Date suffix and assign the date datatype. Example:
<ContractCreationDate>2001-11-01</ContractCreationDate>
20.2. When both a date and time are required, create an element with a DateTime suffix and assign the TimeInstant datatype. Example:
<ContractCreationDateTime>
 2001-11-01T15:30:15
</ContractCreationDateTime>
20.3. If a date/time pair is allowed where the date is required and the time is optional, create an element type name that includes a DateTime suffix and make it required. Define two child elements within the “DateTime” element, one for the date with a date datatype and an optional one for the time with a time datatype. Example:
<ContractCreationDateTime>
 <ContractCreationDate>2001-11-01</ContractCreationDate>
 <ContractCreationTime>15:30:15</ContractCreationTime>
</ContractCreationDateTime>
21. Flag/Indicator Usage
21.1. Whether a flag value is required or optional from a business point of view (i.e. a flag is generally assumed to be a certain value), create a boolean-typed element with an element name suffixed with “Flag”. If using the flag makes sense to use in all contexts, make it required.
Example:
 <Rule11AppliesFlag>True</Rule11AppliesFlag>
22. Don’t ever use the presense of an element to indicate information (beyond the obvious). This is related to the “Flag/Indicator Usage” guideline. For example, don’t use the presense or absense of <EstimatedWeightFlag> to indicate that a weight is estimated or not. Of course in the case where there are only five line items in a purchase order, we can infer that there isn’t a sixth.

23. Don’t include calculated values or summary information. For example, control totals (EDI), extended price (quantity*unit price), sums. Apply this guideline carefully. For example, you may want to include calculated currency values where the calculations are subject to certain rounding rules that aren’t straightforward (e.g. taxes, dicounts, etc.).

24. Percentage: Always use the decimal form. For example, 1.5% should be expressed as 0.015 rather than 1.5%.

25. All Child Elements and Attributes Optional: When all child elements and attributes of a parent element are optional, make the parent element optional as well.

Version Date: 2001-11-05
AgXML Standards Development Guidelines © AgXML L.L.C. 2000, All Rights Reserved
Page 1 of 5

