[image: image1.jpg]ACCELERATINGSELECTRONIC BUSINESS

Universal Business Language
Naming and Design Rules Specification Version 0.05

UBL Naming and Design Rules
Sub Committee
November 19, 2001

Status of this Document

This document specifies a UBL NDR DRAFT for the OASIS UBL Technical Committee

Distribution of this document is unlimited.

This version:

http://www.oasis-open.org/committees/ubl/ndrsc/drafts/draft-ublndrsc-designrules-v0pt05.doc

Latest version:

Previous version:

http://www.oasis-open.org/committees/ubl/ndrsc/drafts/ndr-20011112.doc
1 Preface

2 Table of Contents

21
Preface

2
Table of Contents
3
3
Introduction
7
3.1
Conventions used in this document
7
3.2
Intellectual property rights policies
7
3.3
Background
8
3.4
Scope
8
3.5
Business Case
8
3.6
References
8
3.7
Guiding Principles
8
3.8
Overview of remainder of document
9
4
Design Considerations
10
4.1
Implications of Schemas for Business Document Design
10
4.2
Extensibility
10
4.3
Modularity
12
4.4
Relationship between UBL Messages and UN/CEFACT Core Components and Business Information Entities
13
4.4.1
Support for UIDs
13
4.5
Schema Structure Considerations
13
4.6
Software processing considerations
13
4.7
Support for multiple sources and uses
13
4.8
External Interactions
13
4.9
Reuse purpose/objective
13
4.10
Registry and Repository
13
4.11
Trading Partner Agreements
13
5
Overall Design Rules
14
5.1
General Rules
14
5.2
Conventions
15
5.2.1
Naming
15
5.2.2
Standardization Conventions
15
5.3
Context Application
15
5.3.1
Industry Domain Context
15
5.4
Rules for generic or specific messages
15
6
Messages
16
6.1
Creation of specific messages
16
6.2
Document usage that is not logically related to the transaction set name
16
6.3
Document size and performance considerations
16
6.3.1
Statement of maximum nesting depth
16
6.3.2
Total size for UBL documents
16
6.3.3
Software processing considerations
16
6.4
Extension and Restriction
16
6.5
Units of functionality–reuse
16
6.6
Defining components–how they fit together
16
6.7
Types, Elements and Attributes
16
6.7.1
Rules for the Use of Types
16
6.7.2
Rules for the Use of Elements
16
6.7.3
Rules for the Use of Attributes
16
6.8
Global and Local
17
6.9
Allowed Data Types
17
6.10
Enumerated Types
17
6.11
Cardinality Rules
17
6.12
Nulls, Zeros, Spaces, and Absence of Data
17
6.13
Instance document (xml:lang, xml:space)
17
6.14
Instance of occurrences/loop control (method of iteration)
17
6.15
Hierarchical Rules
17
6.16
Message construction rules
17
6.17
Processing instructions
17
6.18
Implementation Guide management features
17
7
Schema Feature Rules
19
7.1
Namespaces
19
7.2
Includes
19
7.3
Use of Empty elements
19
7.4
Comments
19
7.5
Data Typing
19
7.6
Elements and attributes
20
7.7
Data types
20
7.8
Grouping (groups)
20
7.9
Aliasing
20
7.10
Keys
20
7.11
Notations
21
7.12
Processing instruction <APPINFO>
21
7.13
Semantic and syntax notes
21
8
Internationalization Features
22
8.1
Issue of Type and Element Tags–English or another language
22
8.2
Attributes–language choice
22
8.3
Content of elements, attributes, enumerated values–which languages
22
8.4
Character set approaches
22
9
Communication Integrity
23
9.1
Control enveloping structures
23
9.2
Security needs
23
9.2.1
Digital Signature
23
9.2.2
Encryption
23
9.3
Relevance of TRP
23
9.4
Message header components
23
9.5
XML PI–prologue information
23
9.6
High-level document contextual information–control information
23
9.7
Acknowledgment Functions
23
10
Message Management Rules
24
10.1
Versioning
24
10.1.1
Is it necessary, where do we need versioning
24
10.1.2
Method
24
10.1.3
Algorithm for versioning
24
10.2
Metadata
24
Appendix A
Schema Feature Use Rule
25
Appendix B
Conformance Testing of Design Rules
29
Appendix C
Validation
30
Appendix D
Message example document
31
Appendix E
Schema example document
32
Appendix F
A model of the message design process
33
Appendix G
–A model for Schema design process
34
Appendix H
Notation for dependency notes
35
Appendix I
References
36
Appendix J
Terminology
37
Appendix K
Author information
39
Appendix L
OASIS Intellectual Property Notice
40
Appendix M
Copyright Notice
41

Figures

Error! No table of figures entries found.
Tables

Error! No table of figures entries found.
3 Introduction

[Ed. Note–This Chapter will contain informative material.]

This document ...

The standards expressed here are for ...

See Article 2, Section 2 of [5] for the standards used for producing OASIS Specifications and other OASIS-wide documents.

3.1 Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [1].

"TC" is used throughout this document to mean "Technical Committee", which specifically means the Universal Business Language TC at this stage in this document's life cycle.

3.2 Intellectual property rights policies

The OASIS General Policy for intellectual property rights (IPR) is expressed in [6] as:

In all matters of intellectual property rights and procedures, the intention is to benefit the public at large, while respecting the legitimate rights of others.

The reader must refer to [6] for detailed description of IPR rules, conventions, and required document noticies. TC and TC subcommittee draft documents SHOULD contain applicable IPR notices from [6], and approved TC final documents MUST contain applicable notices from [6].

3.3 Background

3.4 Scope

3.5 Business Case

3.6 References

3.7 Guiding Principles

Following are the high-level guiding principles for the design of UBL that have been approved by the UBL TC.

1. Interchange format – The design of UBL cannot make any assumptions about sophisticated tools for creation, management, storage, or presentation being available. This is because UBL is purely an interchange format. The lowest common denominator for tools is incredibly low (for example, Notepad), and the variety of tools used is staggering. We do not see this situation changing in the near term.

2. Time constraints – Urgency is a key them in the development of UBL. Many facets of XML are still being debated. UBL will make rapid “informed” decisions that may not agree with the ultimate “right” design decisions subsequently reached elsewhere.

3. Simplicity - The design of UBL must be as simple as possible (but no simpler).

4. 80/20 rule - The design of UBL should provide the 20% of features that accommodate 80% of the needs.

5. Component reuse – The design of UBL document types should share as many common features as possible. The essential nature of e-commerce transactions is to pass along information that gets incorporated again into the next transaction down the line. For example, a purchase order contains information that will be copied into the purchase order response. This forms the basis for our need for a core library of reusable components. In fact, reuse in this context is important not only for the efficient development of software, but also for keeping audit trails.

6. Domain expertise – UBL will leverage expertise in a variety of domains through interaction with appropriate development efforts.

7. Customization and maintenance - The design of UBL must enable customization and maintenance.

8. Context sensitivity - The design of UBL must ensure that context-sensitive document types aren't precluded.

9. Proscriptiveness – UBL design will balance proscriptiveness in any one usage scenario with proscriptiveness across the breadth of usage scenarios supported. Having precise, tight content models and datatypes is a good thing (and for this reason, we might want to advocate the creation of more document type "flavors" rather than less; see below). However, in an interchange format, it is often difficult to get the prescriptiveness that would be desired in any one usage scenario.

10. Content orientation - Most UBL document types should be as "content-oriented" (as opposed to merely structural) as possible. Some document types, such as product catalogs, will likely have a place for structural material such as paragraphs, but these will be rare.

11. XML technology – UBL design will avail itself of standard XML processing technology wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). However, UBL will be cautious about basing decisions on "standards" (foundational or vocabulary) that are works in progress.

12. Relationship to other namespaces – UBL design will be cautious about making dependencies on other namespaces. UBL does not need to reuse existing namespaces wherever possible. For example, XHTML might be useful in catalogs and comments, but it brings its own kind of processing overhead, and if its use is not prescribed carefully it could harm our goals for content orientation as opposed to structural markup.

13. Legacy formats - UBL is not responsible for catering to legacy formats; companies (such as ERP vendors) can compete to come up with good solutions to permanent conversion. This is not to say that mappings to and from other XML dialects or non-XML legacy formats wouldn't be very valuable.

14. Relationship to xCBL – UBL will not be a strict subset of xCBL, nor will it be explicitly compatible with it in any way.

3.8 Overview of remainder of document

4 Design Considerations

[Ed. Note - This Chapter will contain informative material]

[Ed. Note–Blue text was taken from outside sources and will require proper rewrite/referencing before we can go public.]

4.1 Implications of Schemas for Business Document Design

If we look at schema capabilities, certain considerations regarding data structure design strike us:

· In existing XML schema languages, extensibility is largely limited to element content, and does not readily accommodate the modification of existing attributes on a particular XML element. Consequently, designers use elements rather than attributes to contain data that may be subject to extension in schemas.

· Because data typing is much stronger when using XML schema processing, attention to the actual use of different kinds of data elements is critical in designing a common library. Where a DTD-based system would not produce errors over minor variations in the length of a #PCDATA field, for example, schema-validated XML applications will. The more control over our data our validation gives us, the more careful we need to be, or we will produce a standard data structure that will not be useful for some.

· In many respects, as a result of schema extensibility, less is more. If we can identify those places within business document structure that are most liable to be extended, then we should model only the absolute common core. Because schema extension mechanisms are additive, it is better to recognize what is in fact common, rather than taking a (possibly wrong) guess at what might be useful.

4.2 Extensibility

The requirements of e-commerce are such that many basic document types are generally useful, but for specific tasks or for particular markets, minor structural variations are extremely useful. If a truly common XML structure is to be established for e-commerce, it will need to be easily modifiable, while minimizing the costs associated with implementation around these variations on standard data structures.

In EDI there has been a gradual increase in the number of different elements, to accommodate market-specific variations. Several efforts within the EDI community are focused on eliminating this problem, which points out the fact that variations are a requirement, and one that is not easy to meet. A related EDI phenomenon is the overloading of the meaning and use of existing elements, creating a tangible bar to interoperation without low-level coordination between trading partners. The end result is a high cost in implementation.

XML DTDs require that a data structure be described fully before implementation, in terms of its elements, attributes, and their structural relationships and content models. Without these fundamental structural rules in place, building an e-commerce application becomes difficult or impossible. For documents of a given document type to be interoperable across different e-commerce applications, they must conform to a single DTD, with only minimal variation in their structures. In practice, the high degree of cross-application coordination required to handle structural variation reduces the usefulness of this built-in document-specific capability of XML processing with DTDs.

Schema-based XML processing offers us a way to enhance the ability of applications to interoperate, because it accommodates the required variations in basic data structures, without either overloading the meaning and use of existing data elements, or requiring wholesale addition of data elements specific to a particular industry or process. This is accomplished by allowing implementors to specify new element types that inherit the properties of existing elements. Schemas also allow you to specify exactly the structural and data content of the additions made to existing data structures. In this way, schemas allow us to limit variations and minimize the amount of additional implementation effort required in building an application.

This benefit derives from the nature of most variations required in e-commerce documents: many data structures are very similar to “standard” data structures, but have some significant semantic difference in a particular industry or process. Because schemas give us a mechanism for indicating the semantic “predecessors” of a particular variation, generic processing of standard types provides us with a basis for implementing just the refinements needed to handle the specific semantic variation. (An example of this would be the addition of a field to an address block, to describe some industry-specific addressing information. The address structure could be taken from a common library, and only the single additional field would require new processing, even though the entire structure were given a different name, to distinguish it from the “normal” address structure.)

In those cases where a variation in data structure is required only for some particular process, schemas again allow us to minimize implementation effort. It is possible to add a mechanism that allows a system to process a modified data element exactly as it would process its direct, standard parent, except for the specific interaction that requires the modified structure. By having most processes ignore the variation, except where it is specifically needed, schemas again help us reduce the effort required to build e-commerce applications, and enhance the level of interoperability.

Note that schema syntax can express structural extensions and information about new data types. This ability can help users accommodate requirements placed on them by legacy processing systems with nonstandard specifications.

While the problems encountered in EDI applications cannot be avoided entirely, the use of XML schemas helps us identify variations in data structure, and manage them better. Further, it gives us a solid syntax for modifying only those specific aspects of the data structure that require modification.

4.3 Modularity

Consideration was given to the usability of any standard set of e-commerce components. If we look at Simpl-EDI, we have a case where the different types of elements have been formally classified:

Message Type—the type of the containing document/message

Segment—the type of the subsection (frequently nested)

Composite Data Elements—data elements that have both data members and some substructure

Data Elements—data elements without substructure

While Simpl-EDI is organized according to this set of distinctions, XML, because it has a broader application, is not. In XML, an element at any level is potentially a substructure in some other element. In effect, a PurchaseOrder element is not significantly different than an AddressBlock element, even though their uses within a processing application may be very different. The generic processing capabilities of XML tools do not recognize any inherent difference.

In many ways, this capability of XML is advantageous. It allows us to process nested (“looping”) structures easily. It fails to provide any useful distinction about the functional roles played by any specific element in a particular XML application. If there is any formal distinction in XML, it is between mixed content elements, which can contain plain text as well as element substructures, and those elements whose only content is element substructures. Even here, the difference is not as clear as in EDI, because XML elements are capable of carrying attributes that always contain content.

However, when it comes to building a standard set of business documents that are easy to understand and use, the conceptual classification of data elements may be helpful. If such a classification is seen as useful, it was considered that a four-level breakdown, based on the Simpl-EDI model, would be the best approach. The WG recognized that this may or may not be helpful for a particular user population. As it is not a strong technical distinction in XML, this conceptualization is left up to those documenting a particular set of business documents for an e-commerce application. It is not seen as a necessary part of a standard business document set.

Description

XML Schemas can be broken into multiple schema documents, which can be assembled using includes and imports.

Benefits

Smaller, modular schema documents encourage reuse.

Smaller schema documents are easier to read and maintain.

Schema documents can be used to organize schema components into logical units.

Risks

Breaking down schema documents too much (e.g. one schema document per type) can be confusing and inconvenient to users.

4.4 Relationship between UBL Messages and UN/CEFACT Core Components and Business Information Entities

4.4.1 Support for UIDs

4.5 Schema Structure Considerations

A discussion on Russian Doll, Salami Slice, and Venetian Blind approaches with appropriateness for structured transaction exchanges

4.6 Software processing considerations

Document size & performance considerations

4.7 Support for multiple sources and uses

4.8 External Interactions

The ability to meaningfully process (? Validate/explain?) the document and interpret the contents without reference to external documentation (Schema should define all syntax and semantic notes and comments) (human or machine)

4.9 Reuse purpose/objective

4.10 Registry and Repository

4.11 Trading Partner Agreements

5 Overall Design Rules

5.1 General Rules

1. All UBL schemata and messages must be based on the World Wide Web Consortium (W3C) suite of technical specifications holding recommendation status.

2. All UBL schema design rules must be based on the W3C XML Schema Recommendations

· XML Schema Part 1: Structures

· XML Schema Part 2: Datatypes

3. All UBL type, element, and attribute names must use Oxford English

· The content/value of tags, attributes, etc. may be in any language

4. Each UBL message must represent a single logical unit of information (such as invoice or purchase order) which will be conveyed in the root element

5. The business function of a UBL message set must be unique and must not duplicate the business function of another message

6. The name of the UBL message set must be consistent with its definition

7. Each UBL message set must correspond to a business process model or models in the ebXML catalogue of business processes

8. UBL messages must use the UTF-8/UNICODE character set

9. UBL messages must express semantics fully in schemas and not rely merely on well-formedness.

10. Instances conforming to schemas should be readable and understandable, and should enable reasonably intuitive interactions.

11. UBL messages will be modeled for the abstractions of the user, not the programmer.

12. UBL messages will use markup to make data substructures explicit (that is, distinguish separate data items as separate elements and attributes).

13. UBL messages will use well known data types.

14. Code lists should be cited by external reference. In terms of the eCo architecture, the provision of code lists may be regarded as a “service”.

15. In the context of a schema, information that expresses correspondences between data elements in different classification schemes (“mappings”) may be regarded as metadata. This information should be accessible in the same manner as the rest of the information in the schema.

[Ed. Note–The above list needs scrubbed, and most items moved to appropriate subsections in Sections 5 and 6.]

5.2 Conventions

5.2.1 Naming

5.2.2 Standardization Conventions

List of all used Standardization Conventions

· Date/time ISO 80601

· Country code

· Currency

· Codes and Code lists

5.3 Context Application

5.3.1 Industry Domain Context

5.3.1.1 Addressing of vertical domains

5.4 Rules for generic or specific messages

Support for multiple concurrent uses of a message

6 Messages

6.1 Creation of specific messages

6.2 Document usage that is not logically related to the transaction set name

6.3 Document size and performance considerations

6.3.1 Statement of maximum nesting depth

6.3.2 Total size for UBL documents

6.3.3 Software processing considerations

6.4 Extension and Restriction

6.5 Units of functionality–reuse

6.6 Defining components–how they fit together

6.7 Types, Elements and Attributes

6.7.1 Rules for the Use of Types

6.7.2 Rules for the Use of Elements

6.7.3 Rules for the Use of Attributes

6.7.3.1 Under what circumstances are we going to use attributes and for what purpose

6.7.3.2 General rule for attributes

6.7.3.3 Standardized attributes

6.7.3.4 Categories of usage

6.8 Global and Local

6.9 Allowed Data Types

6.10 Enumerated Types

6.11 Cardinality Rules

6.12 Nulls, Zeros, Spaces, and Absence of Data

6.13 Instance document (xml:lang, xml:space)

6.14 Instance of occurrences/loop control (method of iteration)

· One consistent way to do

· When to use and when not to use

· Define what we mean by a loop–what is it

· Does it apply and if so how and if not why

6.15 Hierarchical Rules

6.16 Message construction rules

6.17 Processing instructions

6.18 Implementation Guide management features

· Ability to generate IG from schema document utilyzing a stylesheet

· For working/internal purposes

· XSLT approaches–not appropriate???

7 Schema Feature Rules

[Ed. Note–I recommend we have Appendix A contain our deliberations of all schema features (as defined by the UBL Organizing Committee Schema WG). I recommend this chapter lists those features we decide to support that have not been addressed in Chapters 5 or 6. Each subsection must include specific instruction and examples on how the feature is to be used. The following sub-sections are not intended to be all-inclusive, but representative until we finish our deliberations on which features to support.]

7.1 Namespaces

· Conventions/best practices

· Target namespaces

· How we would structure URL/URI

7.2 Includes

7.3 Use of Empty elements

· Are empty elements to be nillible?

· Mandatory requirement

7.4 Comments

· Allowable in document? Purpose?, When?

· Definitions of comments

· Machine processible?

7.5 Data Typing

· Allowed

· Approaches

· Document structure/build order convention

7.6 Elements and attributes

· Wildcards

· Occurrence (n,m)

· Mixed content

· Attributes

· Global attributes

· Defaulted and fixed attribute values

7.7 Data types

· Simple types

· Anonymous complex types

· Named complex types

· Complex type abstractions?

· Complex type extension?

7.8 Grouping (groups)

· Substitution groups

· Attribute groups

· Model groups

· XPointer (used in key references done as URI refs)

7.9 Aliasing

7.10 Keys

· Needed or not

· Keys in general?

· Scoped keys

· Multipart keys

· Uniqueness constraint

7.11 Notations

· Notations

· Annotations

· Application info

7.12 Processing instruction <APPINFO>

· Processing instructions in schemas

· Processing instructions in documents

7.13 Semantic and syntax notes

8 Internationalization Features

8.1 Issue of Type and Element Tags–English or another language

8.2 Attributes–language choice

8.3 Content of elements, attributes, enumerated values–which languages

8.4 Character set approaches

9 Communication Integrity

This chapter will deal with enveloping, security, and header information standards

9.1 Control enveloping structures

9.2 Security needs

9.2.1 Digital Signature

9.2.2 Encryption

9.3 Relevance of TRP

9.4 Message header components

· ST-SE

· Root Element

9.5 XML PI–prologue information

9.6 High-level document contextual information–control information

9.7 Acknowledgment Functions

10 Message Management Rules

10.1 Versioning

10.1.1 Is it necessary, where do we need versioning

10.1.2 Method

10.1.3 Algorithm for versioning

10.2 Metadata

Appendix A Schema Feature Use Rule

This section documents the teams discussion and decisions on the use of schema features, to include partial/total restrictions on each feature.

[Ed. Note–should this be part of the main text, or should it be the first annex]

Appendix A. Target namespaces

Risk–High. Huge interoperability and comprehensibility problems; hard to mitigate risks.

Appendix A. Wildcards

Risk–High. Useful for publishing flexibility in catalog applications, but we might be concerned about the ability of foreign-namespace material to be a Trojan horse and, e.g., disable a base semantic; we may want to use it advisedly and ensure that only specific namespaces get in.

Appendix A. Globally defined elements

Risk–None. Necessary and appropriate.

Appendix A. Locally defined elements

Appendix A. Occurrence (n,m)

Risk–None. It’s essential for business documents.

Appendix A. Mixed content

Risk–High. Can be confusing to application designers, and so we should guide them not to use it except in cases where “free text” is needed (typically publishing applications) and that, in those cases, they are aware of considerations such as whitespace.

Appendix A. Attributes

Risk - None

Appendix A. Global attributes

Risk–Low They seem okay, but people need to be aware of the prefixing requirements.

Appendix A. Defaulted and fixed attribute values

Risk–Uncertain. Different processing scenarios (e.g., multipurpose large validation suite vs. small single-purpose tool) seem to favor different choices on this; relying on documentation for essential business info is a concern, but so is the fact that documents parsed in the absence of their schema are interpreted differently than when parsed in the schema’s presence. Note that RELAX NG doesn’t have this feature but that XSLT could replace it.

Appendix A. Simple types

Risk–Low. We need to keep our eye on the few ambiguities, and define a profile (e.g., either always use UTC or always define a time zone) and/or define types that replace some of the built-in types (e.g. dates and times), though the latter adds to the risk because there won’t be widespread implementations.

Appendix A. Anonymous complex types

Risk–Low. Use only when not intended for reuse.

Appendix A. Named complex types

Risk–low. Use with caution.

Appendix A. Complex type abstractness

Risk–Low. Critical for xsi:type, but we’re concerned about usage parameters

Appendix A. Complex type extension

Risl–Low.

Appendix A. Complex type restriction

Risk - Low

Appendix A. Substitution groups

Risk–Low. This is one way to allow “all elements of the same ‘class’” in a certain content model location, and abstract complex types with xsi:type in the instance is another. It’s unclear which is safer. Also, model groups can be redefined to accomplish approximately the same thing

Appendix A. Attribute groups

Risk–Low. They’re just a macro feature, and thus are to be avoided when reuse of types is desired.

Appendix A. Model groups

Risk–Low. Same as attribute groups.

Appendix A. Keys in general

Risk–High. The simple type “ID” is risky because it must be an XML NAME, and references to keys might as well be URI references because the references often come from outside.

Appendix A. XPointer (used in key references done as URI refs)

Risk–High. Not well supported; we may have to define a profile.

Appendix A. Scoped keys

Risk–High. Not well supported; we may have to define a profile.

Appendix A. Multipart keys

Risk–High. Not well supported; we may have to define a profile. In addition, it’s not transformable into other schema languages.

Appendix A. Uniqueness constraint

Risk–Uncertain. It’s highly desirable for business documents, but we’re uncertain about its deployment in tools.

Appendix A. Notations

Risk–Unacceptable.

Appendix A. Annotations

Risk–Low. We need to define a profile for how to use this, so that arbitrary application info isn’t added

Appendix A. Application info

Risk–Unacceptable. This is designed to add a layer of semantics that could mess up our intended semantics.

Appendix A. Processing instructions in schemas

Risk–High. This is designed to add a layer of semantics that could mess up our intended semantics.

Appendix A. Processing instructions in documents

Risk–Uncertain. Has the potential for Trojan horses (especially if programming code is included), but do we need to provide some kind of escape hatch to account for real life? And anyway, we can’t control (through XML parsers) whether people use them; we could say that processors that handle UBL documents may/must ignore PIs.

Appendix A. xml:lang

Risk–Uncertain. Its valid values are not enumeratable; if we use this rather than create our own attribute, we would probably want to restrict its values somehow; however, this is a schema design issue and not a risk assessment issue

Appendix A. xml:space

Appendix B Conformance Testing of Design Rules

B.1 Tools Used

We should develop a standard list of

XML parsers (and other tools) that guide our conformance testing for

guidelines. Here is a start:

Xerces-J

Xerces-C++

Apache Crimson (does this support XSD?)

Tibco Extensibility

XML Spy

W3C XSV

IBM XML Schema Checker (on alphaworks)

B.2 Test Schema’s

We should list all test messages here

Appendix C Validation

Appendix D Message example document

Appendix E Schema example document

Appendix F A model of the message design process

Appendix G –A model for Schema design process

Appendix H Notation for dependency notes

Appendix I References

Appendix J Terminology

	Application-level validation
	Adherence to business requirements, such as valid account numbers.

	Ad hoc schema processing
	Doing partial schema processing, but not with official schema validator software; e.g., reading through schema to get the default values out of it.

	Context
	A particular set of context driver values.

	DTD validation
	Adherence to an XML 1.0 DTD.

	Instance constraint checking
	Additional validation checking of an instance, beyond what XSD makes available, that relies only on constraints describable in terms of the instance and not additional business knowledge; e.g., checking co-occurrence constraints across elements and attributes. Such constraints might be able to be described in terms of Schematron.

	Generic BIE
	A semantic model that has a “zeroed” context. We are assuming that it covers the requirements of 80% of business uses, and therefore is useful in that state.

	Instance root/doctype
	This is still mushy. The transitive closure of all the declarations imported from whatever namespaces are necessary. A doctype may have several namespaces used within it.

	Root Schema
	A schema document corresponding to a single namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root schema always pull in the “meat” of the definitions for that namespace, regardless of how small it is?

	Schema
	Never use this term unqualified!

	Schema Module
	A “schema document” (as defined by the XSD spec) that is intended to be taken in combination with other such schema documents to be used.

	Schema Processing:
	Schema validation checking plus provision of default values and provision of new infoset properties.

	Schema Validation:
	Adherence to an XSD schema.

	Well-Formedness Checking:
	Basic XML 1.0 adherence.

Appendix K Author information

Appendix L OASIS Intellectual Property Notice

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Appendix M Copyright Notice

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMTED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

15

