Position Paper: UBL Extension Mechanism

Author: Arofan Gregory (arofan.gregroy@commerceone.com

Date: Nov 17, 2001

Filename: draft-gregory-extensions-01.doc

1Position Paper: title-of-paper

Error! Bookmark not defined.1
Summary

22
Problem Description

53
Options

53.1
Option 1: foo

53.2
Option 2: bar

64
Recommendation

Overview

This paper addresses the matter of extensions, and what part they play in UBL. We have many possible places from which to draw a mechanism – XML Schema, xCBL, and ebXML. This poaper lays out some of the approaches that have been mentioned or discussed, and gives pros and cons for each.

The recommendation made here is that the ebXML context mechanism be used as the basis for UBL extensions, in order to leverage cross-syntax ebXML-compliant implementation. Further, this approach will simplify overall management of the schema libraries and their management within a living repository.

There are some conventions that must be established as to how the mechanism to be provided may be implemented, however, and how this process relates to what has been provided in the ebXML specification.

1 Problem Description

1.1 Interoperability and Approaches to Extension

UBL has set out to create a set of document types that will cover the 80% case for some common business-to-business processes. It is accepted that there will be many corner-cases in which the data sets recommended will fall short of what is needed for some trading partners performing some business processes. Further, there is a need for trading partners to define new documents based on the UBL component library.

These needs lead us to creating a mechanism for extension that will guarantee the greatest possible level of interoperability. The way in which extension works will have a large impact on how the UBL-defined document types look: if we anticipate that all extension will be a matter of subtractive refinement, then the generic documents will have every conceivable optional field. If we assume that all extension will be additive, then the published documents will have a minimum of fields in them, on the assumption that many will be added. If we advocate a combination of these, then we need to understand what relationships will be expressed in what form, so that we can optimize the data definitions that are published for easy use.

Interoperability is something that is worth examining, because it is not possible to guarantee 100% interoperability.

With XML Schema, it is possible to create applications that will understand the type relationships expressed in schemas to enable “default” processing of extended documents as if they were of the document type from which they were extended. Essentially, this means that additional data put into the extended document will be ignored by any application that only understands the parent document type. It also means that required fields cannot be removed from the extended document type, and further than subtractive refinement in general is not useful.

There are three basic approaches toward interoperability:

· “Common Core” Approach: This approach assumes that there is a small number of central data fields that most applications require, and that everything else can be left up to individual trading partners or applications to dictate. It uses a mechanism of presenting a small unchanging core of data fields and allowing users to add new data fields, or increase the number of existing data fields that can be used in extending the documents.

It has the advantage of being fairly easy to define, especially given the definition of core component structures on which UBL is based. It has the disadvantage of giving no guarantees about interoperability beyond the small unchanging set of pre-determined data elements. Two trading partners making the same addition to a standard document or component will use two different names and/or data types, creating a lack of interoperability between extended data sets. Further, this approach requires a high degree of customization, since the published data set is very small. The result is a large number of non-interoperable extensions.

· “Subsetting” Approach: This is the approach used by traditional EDI standards such as X12 and EDIFACT. It creates interoperability by providing a very large set of standard constructs (essentially, everything anyone can think of to use) after some level of harmonization, and then lets users subset the available data sets to indicate which parts of which documents they support. This means that if two trading partners use the same bit of data, they will call it by the same name and assign it the same type. There is a major disadvantage, however, in that this is a closed approach, in which – if the standard does not contain the data you need – you will often break the standard by abusing existing data elements, or inventing ones that are not part of the standard. In EDI, This phenomenon was extremely common, and did much to destroy interoperability between implementations. You rely on the ability of document designers to know of every potentially useful data element at design time, so that they can be incorporated. This is difficult to achieve.

· Mixed Approach: This approach is used in xCBL 3.0, and is one that tries to combine the best of both worlds. In this case, you take a fairly-well-fleshed-out document type definition, allow people to add their own extensions in case the needed data fields don’t already exist, and then subset the augmented superset. The up-side here is that you avoid having to know of every useful data field at design time, and allow trading partners to ad what they need in a fashion that does not break the standard, while guaranteeing that the most commonly needed data will be called by the same names and have the same types where possible. The down-side of this approach is that it tends to become complex.

1.2 The ebXML Context-Based Approach

1.2.1 Overall Mechanism

In the May, 2000 ebXML deliverables were a set of documents that outlined the core components and context mechanism. It is necessary to understand the reason for creating this mechanism, so that we can fully appreciate its value. It adds some complexity to the picture, however, so the trade-offs also need to be understood.

The problem to be solved was not one of syntax-equivalence, but one of semantic equivalence. The goal was to build an automated system that allowed business vocabularies in different syntaxes to be equated with one another at a semantic level, such that their syntax-bound forms could then be equated.

This meant going upstream of a particular syntax implementation, and standardizing the basic semantics that eventually result in a particular business syntax. The semantic equivalencies are then tracked, through the syntax binding, so that syntax-bound message instances can be compared at the semantic level.

The picture looks like this:

(1) The business semantics are based on a standard set of semantic components (“core components”) that are modified to reflect the semantics needed for the business purpose (“BIEs”) by using a standard extension and restriction mechanism (the assembly and context rules). The ID of the core components is given in the transformation document that produces the BIE. The Ids of the core components and the corresponding BIEs are linked in the context and assembly rules, along with a record of how the semantic structure has been modified.

(2) The resulting BIEs are bound into a particular syntax, and the chain of Ids is preserved such that from the business document, a path could be traced back through the BIEs and context rules to the core components. This gives you sufficient meta-data to determine exactly where in two disparate business documents the semantic and syntactic equivalences occur.

(3) When you write the rules that modify the semantic model, you identify the business drivers for each change (the “context”) so that you also have a knowledge of why a particular modification was made. Thus, you can compare the business situations of two trading partners and identify which extensions are important and which are not, based on the business they are doing.

This system has a major impact on how we design the UBL extension mechanism, because it is impossible to express all of this in XML Schema instances. While it is tempting to think that no one will ever use anything but UBL ever again, that is obviously not the case. If we are to claim that UBL is ebXML-compliant, then we need to leverage this mechanism in some meaningful way in the UBL extension mechanism.

1.2.2 Assembly versus Refinement

Another aspect of the May 2000 ebXML Technical Report that we might want to consider is the Assembly mechanism. This is an integral part of the technical report, but it resulted mostly from the political requirement handed down from on high that the Core Components work would do nothing above the level of a fairly simple aggregate.

As a result of this, a mechanism was created for assembling a larger set of aggregates, up to the document level, and then using the refinement mechanism described above to make needed changes to the assembled model. If we decide to not use the ebXML assembly mechanism, we will need to replace it with some other formal stage, since it is an integral part of the link between the BIEs resulting from the context mechanism, and the core components themselves.

The need to write “assembly” documents is questionable, and could easily be replaced by a formal, high-level intermediate BIE created for the express purpose of being refined. I would suggest that this is very much the simplest way to achieve the goals of UBL – publishing a generic document and component library.

This will involve replacing that part of the ebXML spec with something else, however, which is an issue that may have non-technical repercussions.

1.3 Core Components, BIEs, Types, Elements, and Attributes

It is worth noting that, in a world equipped with XML Schema, we now have some additional complexities to address. In the past, we have had only a limited number of things subject to extension: in EDI, there were three or four levels of structural types (data elements, complex elements, mixed elements, and data types that prominently featured codelists); in XML, we had elements and attributes.

XML Schemas introduce much more sophisticated typing, as well as an ability to define data types in much richer ways. In essence, this is adding many of the old EDI features to the DTD-based XML features, and then giving the whole mess a major boost by adding aspects of object-oriented typing. This is a powerful mix, but it raises questions:

· What is the relationship between extended elements and/or attributes, and their type? We can now dictate that extensions can be made by defining new elements, but not new types, for example (within the bounds defined by XML Schema).

· Do we handle codelists (that is, enumerated data types) as a special category, and provide for their extension with a mechanism that resembles the EDI mechanism for extension? This is an idea to be considered, since many ‘extensions” are really just adding a value to an existing enumeration.

There is also a whole new level of control and complexity added when creating an ebXML-compliant library, because we now have a set of core components (pre-syntax-bound semantic models), a transformation language that turns them into BIEs (by extending, renaming, and restricting them) , and then a syntax binding. Do we require that users do these pre-syntax-bound extensions and restrictions as part of the extension mechanism? (See next section.)

2 Options

The above mix of considerations leads to a fairly complex set of options. The following approach makes a recommendation in each area, and then looks at the result of thoise decisions. The major areas are as outlined above:

· Interoperability Approach (Common Core, Subsetting, or Mixed)

· Alignment with ebXML, and with which part (Assembly? Refinement? Both?)

· Approaches to CCs, BIEs, and XML Constructs

2.1 Option 1: Interoperability

It is clear that using the Mixed approach is the best way to address all of the requirements. Even though this comes at the price of a somewhat higher level of complexity, we run the risk of either promoting a lack of interoperability (with the “common core” approach), or encouraging our users to violate the tenets of our extension methodology (the “subsetting” approach).

Let’s take a closer look:

· “Common Core”: As mentioned, the first problem faced here is that extensions are not interoperable, except by chance, since only a very small common core is actually specified in the standard. This approach might work if only look at design-time integration in a world of point-to-point message exchanges, but it fails if we look at community-based trading and the idea that some integration might occur at run-time (as enabled by default processing of strongly-typed schema-based XML docs).

· “Subsetting”: As mentioned, we encourage trading partners to break the rules to meet any requirements we didn’t anticipate. Especially given the time-frames in which UBL is to be produced, we simply cannot move fast enough, or completely enough, to make this approach work. Another notable downside of this approach is that, if we want to express refinement in an XML Schema, we will be relying on a highly-risky feature of XML Schema that has yet to be implemented in a compliant fashion in a production tool!

If we can – based on these objections - agree that by using the Mixed approach we avoid these problems, then we still need to address the major issue: complexity.

It is difficult to exactly determine what set of things to include to produce a “reasonably complete” set of data elements to hit the 80% rule by which UBL is being conducted. We do have xCBL, ebXMl Core Components, and other standards to work from, however, and – if only by examining the common subset – we should be able to determine a reasonable first cut. It should also be noted that – because we allow both additive and subtractive refinement – if we miss something major, others can always add it in. We can still rely on the existence of public repositories to promote some degree of standardization outside of the standard itself. Presumably, users will look first at what others have done, before inventing their own and working with the extension mechanism.

Another aspect of this issue is that you end up with a large number of types of things that users must be aware of. If we look at the xCBL model, then you have the following mechanism:

(1) a large, superset standard (xCBL) that is…

(2) extended to meet the corner-case needs of users…

(3) which is then subsetted to meet exactly the data needs of a particular trading community.

Instead of a simple set of Schemas, that can be extended, you have three different things to worry about. (And when we start trying to make this ebXML compliant, we end up looking at greater complexity yet.)

The arguments pointing to this as the best approach do exist, however:

· Additive extension and subsetting are at the heart of XML Schema design, and as such should not be too bewildering to most users.

· Given the complexity of any type of extension or refinement, we are faced with the idea that tools may be required to make an extension methodology useable by business people. Tools can easily be created to hide the level of complexity we are discussing here.

· Simpler systems have failed to produce a sufficient degree of interoperability for our needs.

2.2 EbXML Compliant?

UBL could divorce itself from everything in ebXML except the theoretical basing of BIEs on the core component models. While this option looks attractive from many perspectives, it has a couple of bad consequences:

(1) Marketing: This is essentially refusing to play along with the overall standardization effort represented by ebXML and follow-on efforts, and it would result, sooner or later, with huge negative consequences to marketing efforts.

(2) Functionality: We would sacrifice the promised benefits of ebXML in not basing our work on semantic models, and this enabling automated, guaranteed cross-syntax mapping of vocabularies.

(3) Charter: We would be violating the UBL charter.

[NOTE: Add in thinking of the Context group here, from e-mail thread on this topic.]

For these reasons, we should be ebXML-compliant. However, there remains the question of whether or not we should adopt both the Assembly mechanism and the refinement mechanism presented by ebXML.

Especially given that the Context group in ebXML itself saw the Assembly mechanism as a less-than-desirable aspect of the equation, necessitated by political considerations. If a workable substitute can be created, then the refinement piece of ebXML should be retained, and the job of defining document-level constructs handled differently.

We should not ignore the requirement for non-UBL organizations to use our components to build their own documents, however, and perhaps the Assembly mechanism – or something like it – may be useful here. (Needs more discussion).

2.3 Option 2: CCs, BIEs, and XML Constructs

The issues related to how we express various extensions are many, and depend on what decision we make about ebXML compliancy. Ideally, we could have a library of “core” types expressed in XML (both data types and complex types) which would then be used in element types that produced generic documents, elements, etc. Extensions and refinements would then be made to the types, which would result in extensions in the documents that use those types. This model would produce a clean relationship between the “library” and the “business documents,” while allowing users to re-name elements as they needed. CCs and BIEs could be ignored as unnecessary complexity. This was in fact the approach used with xCBL.

It fails for several reasons:

(1) It is not compatible with the use of an ebXML-complaint mechanism, which relies on the recognition of models (CCs and BIEs) that are subsequently syntax-bound.

(2) It fails to provide sufficient metadata about why an extension is used from a business perspective (which is ultimately the reason why you want to be ebXML-complaint).

(3) Depending on how important the design team feels that alignment with object-oriented scoping is (and it seems to be emerging that this is an important aspect of a good XML component library), the system described here relies entirely on global declarations, and the abandonment of locally declared element types. This makes OO-type scoping impossible.

If we accept that these objections are too high a price to pay, then we must ask ourselves what other alternatives exist. The following system could be adopted, and has been discussed:

(1) Use the full set of recommended XSD features as a way of modeling the semantic structures. Thus, we have a class of “Core Components” consistently expressed in an XSD form. App Info would be conventionally used to indicate those fields that are not only required but which cannot be removed using subtractive refinement (these are two different categories of things). If we do not do this, we will find that default processing at run-time to promote interoperability is not possible.

(2) Model the BIEs – created from the CCs expressed in XML – in XSD, with the Core Component relationship expressed not necessarily as an XSD extension but inside a conventional use of App Info, with a CC GUID, along with information about the contexts for which the BIE is deemed sufficient, and with a pointer to the rules informing the extensions and refinements made to the CCs to produce the BIE. If possible, additions and subtractions should be expressed in XSD – with the supporting App Info – if this is technically feasible. (An alternative is to only express additive extensions this way, with the added benefit of not relying on a potentially unsupported feature of XSD).

(3) Recognize that what has been created is a priviledged set of BIEs, intended for direct use or for further extension. The ebXML Assembly mechanism is thus avoided. A similar class of new documents (BIEs) built out of existing UBL BIEs at the component level would need to be recognized in the repository, so that people could create their own messages not yet included in the standard, also without using the ebXML Assembly mechanism. However, there is an issue of message-identity that would need to be resolved somehow (and could, for this case only, rely on the ebXML Assembly Mechanism). Be aware that this approach directly contradicts the repository specification that came out of ebXML, which requires that all BIEs are extensions of the semantic CC models only, and not of each other. This issue could be taken up with the appropriate team further developing that specification.

(4) The “syntax binding” portion of the ebXML specification is taken care of by the existence of a syntax binding, consisting of a one-to-one correspondence between the language used to “model” the BIEs (XSD) and the syntax in which UBL document definitions are expressed (XSD, possibly minus all the weird App Info).

(5) Enumerations are handled as a special case of extensions: assuming that support for the XSD post-parse info set exists, we can create a “union type” of string (or whatever) and an enumeration, allowing detectable additions to be made to codelists without revising the schemas themselves. Ideally, there would be a conventional specification of what these values would be for the purposes of exchange with trading partners. (This topic needs further discussion).

3 Recommendation

The recommendation is that we take the proposal given in Option 3, and answer whatever questions remain.

This gives us the benefit of a workable approach to interoperability, the benefit of ebXML compliance (where it meets our needs), and the full use of XSD.

It also takes the simplest possible route to ebXML compliance, by combining the semantic models with their syntax-bound form. This requires the conventional use of AppInfo in certain cases, but it keeps a fairly complex system (involving CCs, BIEs, and Context Rules) from becoming a monster (take preceding list and add at least 3 layers of UML models).

There are certainly some risks here, however:

· Use of XSD’s subtractive refinement

· Need to formally recognize a distinction that barely exists, between the extensible BIEs (semantic models expressed in XSD) and business documents (syntax-bound representations of those models.

· Ability to pass new requirements to other ebXML specifications (repository, and perhaps even core components)

PAGE
10

