	Category
	Feature/Aspect
	UBL
	DoN Guide
	X12

	General
	Specification basis
	All UBL-based schemata and messages must be based on the W3C suite of technical recommendations holding Recommendation status

All UBL schema design rules must be based on the following W3C XML Schema Recommendations:

· XML Schema Part 1: Structure

· XML Schema Part 2: Datatypes
	Only W3C Recommended languages (i.e. DTD and XML Schema) should be used
	X12/XML Schemata and messages must be based on the W3C suite of technical specifications holding Recommendation status

X12/XML Schemata rules must be based on the following W3C XML Schema Recommendations:

· XML Schema Part 0: Primer

· XML Schema Part 1: Structure

· XML Schema Part 2: Datatypes

	
	English conformance
	· All UBL type, element, and attribute names must use Oxford English

· The content/value of tags, attributes, etc. may be in any language
	
	· X12/XML element names, attribute names, etc. MUST use Oxford English

· The content/value of tags, attributes, etc. may be in any language

	Structure
	Schema modularization - “include” and “import”
	BENEFITS:
· Smaller, modular schema documents encourage reuse

· Smaller, modular schema documents are easier to read and maintain

· Schema documents can be used to organize schema components into logical units

RISKS:
· Breaking down schema documents too much (e.g. one schema document per type) can be confusing and inconvenient to users
	
	

	
	Schema structure
	TBD - Russian Doll, Salami Slice, and Venetian Blind
	
	· X12/XML schema SHOULD be oriented toward data exchange as opposed to presentation

· An X12/XML message MUST contain:

· One and only one document entity element consisting of at least one aggregate information entity element

· At least one aggregate information entity element consisting of additional aggregate information entity elements and/or basic information entity elements

· SEE X12 DOCUMENT FOR REST

	
	Logical units
	Each UBL message must represent a single logical unit of information (such as an invoice or purchase order) which will be conveyed in the root element
	
	An X12/XML message SHOULD represent a single business document (such as invoice or purchase order)

	
	Data substructures
	UBL messages will use markup to make data substructures explicit - that is, to distinguish separate data items as separate elements and attributes
	
	

	
	Schema component order
	
	
	

	
	Loop control
	
	
	

	Modeling
	Modeling target
	UBL messages will be modeled for the abstractions of the user, not the programmer
	
	

	Business function/process
	Business function
	The business function of a UBL message set must be unique and must not duplicate the business function of another message
	
	The business function of am X12/XML message MUST be unique and must not duplicate the business function of another X12/XML message

	
	Business processes
	Each UBL message set must correspond to a business process model or models in the ebXML catalog of business processes
	
	Each X12/XML message set SHOULD correspond to a business process model or models in the ebXML catalog of business processes or an X12 catalog of business processes if available

	Encoding
	Character set
	UBL messages must use the UTF-8/UNICODE character set
	
	X12/XML messages MUST use the UTF-8 character set as the default

	Messages
	Message set name
	The name of the UBL message set must be consistent with its definition
	
	The name of the X12/XML message set must be consistent with its definition

	Instance documents
	Instances
	Instances conforming to schemas should be readable and understandable, and should enable reasonably intuitive interactions
	
	

	
	Documentation in instances
	
	In general, instances SHOULD NOT be documented; however, there may be situations where this is appropriate
	

	Datatypes
	Datatypes
	UBL messages will use well-known datatypes
	· Built-in datatypes SHOULD be used

· Custom datatypes SHOULD be used
	X12/XML Schemata MUST use built-in datatypes whenever possible

	
	Simple types
	· Low risk

· Need to define a profile - e.g. always use UTC or always define a time zone - and/or define types that replace some of the built-in types (e.g. dates and times)

· However, the latter will add to the risk because there won’t be widespread implementations
	
	

	Anonymous vs. named

types
	Anonymous complex types
	· Low risk

· Use only when not intended for reuse
	
	X12/XML Schemata SHOULD use named types

	
	Named complex types
	· Low risk

· Use with caution
	
	X12/XML Schemata SHOULD use named types

	Abstract types/elements
	Abstract complex types
	· Low risk

· Critical for xsi:type, but we’re concerned about usage parameters
	
	

	
	Abstract elements
	
	
	

	Local vs. global

elements
	Globally defined elements
	No risk; necessary and appropriate
	
	

	
	Locally defined elements
	
	
	

	
	Local vs. global elements
	Support “global + local non-unique” approach

· Some elements are global and some are local, with multiple local elements with the same name allowed

· Need to ensure that local elements can be validated

· Must also develop conventions and rules for deciding when to make elements local

· Use local element definition whenever datatype is a primitive datatype

· SEE UBL DOCUMENT FOR REST
	
	X12/XML Schemata MUST declare elements and attributes locally except for the root element

	Local vs. global

attributes
	Global attributes
	· Low risk

· People need to be aware of the prefixing requirements
	
	

	Occurrence
	Occurrence
	No risk; it is essential for business documents
	The exact number of times an element can, or must, be repeated MAY be specified
	

	Attributes
	Attributes
	No risk
	
	See “Elements vs. attributes”

	Elements vs. attributes
	Elements vs. attributes
	
	· Use of attributes SHOULD be minimized, and only used to provide supplementary metadata necessary to understand the business value of an XML element

· Attributes MAY be used to express code values while the content of the code (the definition) MAY be located as the element value

· Attribute values SHOULD be short, preferably numbers or conforming to the XML Name Token

· Attributes with long string values SHOULD NOT be created

	· X12/XML messages MUST convey data as XML elements

· Attributes MUST NOT be used to convey data

· Attributes MUST be used to convey metadata only

· Also states: X12/XML Schemata MAY use attributes for metadata

· The number of attributes SHOULD be carefully considered and in general used sparingly

· Attributes, if used, SHOULD be used to provide extra metadata required to better understand the business value of an element

	
	
	
	· Attributes SHOULD only be used to describe information units that cannot or will not be further extended or subdivided

· Information specific to a single application or database MUST NOT be expressed as values of attributes

· Use attributes to provide metadata that describes the entire contents of an element

· If the element has any children, any attributes should be generally applicable to all the children
	

	Default/fixed values
	Defaulted element values
	
	
	

	
	Fixed element values
	
	
	

	
	Defaulted attribute values
	· Uncertain risk

· Relying on documentation for essential business information is a concern, but so is the fact that documents parsed in the absence of their schema are interpreted differently than when parsed in the schema’s presence
	
	

	
	Fixed attribute values
	Same as with defaulted attribute values
	For DTDs - MAY be used to capture the metadata
	

	Documentation (general)
	Annotations
	· Low risk

· Need to define a profile for how to use this, so that arbitrary application info isn’t added
	· An element’s definition, source of definitions or code lists, version information, and other metadata MAY be captured by the use of Schema annotations

· (contradicts the above?) DON XML developers MUST, through XML comments or XML Schema annotations, document XML element and XML Schema type definitions

· Developers MAY extend the XML Schema annotation (<documentation>) tag by further marking up information provided with custom tags
	· X12/XML Schemata MUST use annotations for all type definitions

· X12/XML Schemata MUST use the <documentation> and <appinfo> tags to express comments

· Developers MAY extend the XML Schema annotation <xsd:documentation> tag by further marking up information provided with custom tags

	
	
	
	· No standards for this yet exist; however, the general guidelines of the document should be followed, and custom metadata tag names should follow the naming convention of the source data dictionary
	

	
	Header components
	
	To promote interoperability, every schema, stylesheet, or document MUST contain some basic metadata; the following metadata SHOULD be provided:

· Schema name

· Schema version

· COE Namspace(s)

· Navy Functional Data Area

· URL to most current version

· For XML Schema - other Schemas imported or included to include COE Namespace, Schema file name, and URL

· For DTD - external entities referenced to include file name and URL

· A description of the purpose of the schema

· SEE DOCUMENT FOR REST
	

	
	XML comments
	
	· For DTDs - may be used to annotate the DTD with definitions and constraints, which the DTD syntax does not allow

· DON XML developers MUST, through XML comments or XML Schema annotations, document XML element and XML Schema type definitions
	X12/XML Schemata MUST NOT use XML comments

	Application

info/Processing

instructions
	Application info
	Unacceptable; designed to add a layer of semantics that could mess up our intended semantics
	Application specific metadata (such as SQL statements or API calls) that is of interest only to a single application SHALL NOT be included in instances or schemas
	Application specific metadata (such as SQL statements or API calls) that is of interest only to a single application SHALL NOT be included in XML Schemata

	
	Processing instructions in schemas
	· High risk

· Designed to add a layer of semantics that could mess up our intended semantics
	Application specific metadata (such as SQL statements or API calls) that is of interest only to a single application SHALL NOT be included in instances or schemas
	X12/XML messages MUST NOT use processing instructions

	
	Processing instructions in documents
	· Uncertain risk

· Has potential for Trojan horses (especially if the programming code is included) - but do we need to provide some kind of escape hatch to account for real life?

· Anyway, we can’t control (through XML parsers) whether people use them

· We can say that processors that handle UBL documents may/must ignore PIs
	· Application specific metadata (such as SQL statements or API calls) that is of interest only to a single application SHALL NOT be included in instances or schemas
· Including application specific metadata in an instance unnecessarily clutters the document, increases bandwidth requirements, and is only useful to one application
	

	Language
	xml:lang
	· Uncertain risk

· Its values are not enumeratable

· If we use this rather than create our own attribute, we probably want to restrict its value somehow

· However, this is a schema design issue and not a risk assessment issue
	
	

	Space
	xml:space
	
	
	

	Namespaces
	Namespaces - general
	· High risk

· Huge interoperability and comprehensibility problems

· Hard to mitigate risks
	
	

	
	Namespaces design - heterogeneous/ homoegeneous/ chameleon
	
	
	

	
	Default namespace - targetNamespace or XML Schema namespace?
	
	
	

	
	schemaLocation
	
	
	

	
	elementFormDefault
	Recommend “unqualified”
	
	

	
	attributeFormDefault
	
	
	

	Compositors
	Compositors - sequence/choice/all
	
	
	

	Type derivation
	Complex type extension
	Low risk
	
	

	
	Complex type restriction
	Low risk
	
	

	
	Simple type extension
	
	
	

	
	Simple type restriction
	
	
	

	
	Derivation by simpleContent
	
	
	

	
	Derivation by complexContent
	
	
	

	
	List types
	
	
	

	
	Union types
	
	
	

	Groups
	Attribute groups
	· Low risk

· They are just a macro feature, and thus are to be avoided when reuse of types is desired
	
	

	
	Model groups
	· Low risk

· Same as attribute groups
	
	X12/XML Schemata MUST NOT use named model groups

	Substitution
	Substitution groups
	· Low risk

· This is one way to allow all elements of the same “class” in a certain content model location, and abstract complex types with xsi:type in the instance in another

· It is unclear which is safer

· Also, model groups can be redefined to accomplish approximately the same thing
	
	X12/XML Schemata MUST NOT use substitution groups

	
	Type substitution
	
	
	

	Keys/Uniqueness
	Keys
	· High risk

· The simple type “ID” is risky because it must be an XML NAME, and references to keys might as well be URI references because the reference often come from outside
	
	

	
	XPointer (used in key references done as URI refs)
	· High risk

· Not well supported, we may have to define a profile
	
	

	
	Scoped keys
	· High risk

· Not well supported, we may have to define a profile
	
	

	
	Multipart keys
	· High risk

· Not well supported, we may have to define a profile

· In addition, it’s not transformable into other schema languages
	
	

	
	Uniqueness constraint
	· Uncertain risk

· Highly desirable for business documents, but we’re uncertain about its deployment in tools
	
	

	Notations
	Notations
	Unacceptable
	
	X12/XML Schemata MUST NOT notations

	Mixed content
	Mixed content
	· High risk

· Can be confusing to application designers, and we should guide them to not use it except in cases where “free text” is needed (typically publishing applications) - and that in those cases they are aware of considerations such as whitespace
	
	X12/XML messages MUST NOT use mixed content

	Empty/null processing
	Empty elements
	
	
	

	
	Nil values
	
	
	

	Wildcards
	Wildcards
	· High risk

· Useful for publishing flexibility in catalog applications, be we might be concerned about the ability of foreign-namespace material to be a Trojan horse and (for example) disable a base semantic

· May want to use it advisedly and ensure that only specific namespaces get in
	
	X12/XML Schemata MUST use wildcards if they use namespace=”##other” - not well-worded, X12 working on refining this

	
	processContents - skip/strict/lax
	
	
	

	Datatype facets
	Datatype facets
	
	
	

	
	Minimum/maximum value constraints
	
	SHOULD be used
	

	Regular expressions
	Regular expressions
	
	SHOULD be used
	

	Versioning
	
	Issue: Should namespaces contain version information, or should versions be indicated in some other way?
	· Version information for instances, schemas, and stylesheets MUST be available via document annotations (XML comments or Schema annotations)

· XML Schemas SHOULD include the version number in the header comments and SHOULD capture the version in an annotation to the root element of the document

· Developers can make version information more easily available to applications through the use of the <xsd:appinfo> tag (with a <Version> subelement)

· SEE DON DOCUMENT FOR REST
	· X12/XML messages MUST use existing ANSI ASC X12 versioning mechanisms and release schedules

· Beginning document element MAY contain a version identifier (such as 5010)

· X12/XML Schemata SHOULD include the version number in the header annotation

	Definitions
	Semantics
	UBL messages must express semantics fully in schemas and not rely merely on well-formedness
	
	

	
	Semantic notation
	
	
	

	
	XML component definitions
	
	· Definitions SHOULD be brief and when possible taken from existing standard data element definitions such as those provided by the DDDS, ebXML Core Components, COE Reference Data Sets, or other Military Standards (MIL-STD-6040, 6011, 6016, etc.)

· Definitions SHOULD contain URL or other pointers to the definition’s source, so that analysts can look up additional information

· SEE DON DOCUMENT FOR REST
	

	
	Correspondences
	· In the context of a schema, information that expresses correspondences between data elements in different classification schemes (“mappings”) may be regarded as metadata

· This information should be accessible in the same manner as the rest of the information in the schema
	
	

	Code Lists/Enumerations
	Code lists/ Enumerations
	· Code lists should be cited by external reference

· In terms of the eCo architecture, the provision of code lists may be regarded as a “service”
	· DON XML developers SHOULD use XML Schemas to express enumeration constraints on XML element and attribute values, when such enumerated lists are of reasonable length and when code lists are considered stable (not likely to change frequently)

· The decision to explicitly enumerate in a schema SHOULD be made by program managers based on the resulting size of the schema, bandwidth availability, and validation requirements

· SEE DON DOCUMENT FOR REST
	

	Block/Final
	“block” attribute
	
	
	X12/XML Schemata MUST use the block attribute for disallowing type substitution if appropriate

	
	“blockDefault” attribute
	
	
	

	
	“final” attribute
	
	
	

	
	“finalDefault” attribute
	
	
	

	Redefinition
	Type redefinition
	
	
	X12/XML Schemata MUST NOT use type redefinition

	
	Group redefinition
	
	
	X12/XML Schemata MUST NOT use group redefinition

	XSL/XSLT
	Stylesheet support
	
	
	

	
	XSLT approaches
	
	
	

